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ABSTRACT
A fascinating and catchymethod for proving that a number of special
lines concur is using the concept of locus. This is now the classical
method for proving the concurrency of the internal angle bisectors
and perpendicular side bisectors of a triangle. In this paper, we prove
the concurrency of the altitudes and the medians by showing that
they are loci of some interesting points. Our proofs for these ancient
theorems seem to be new. We also provide loci method proofs for
the concurrency theorems of Ceva and Carnot.
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1. Introduction

Amarvellous observation in the geometry of triangles is the fact that there are some special
lines in triangles that are concurrent (i.e. the lines meet at one point). The proofs of some
of these theorems (specially that of the concurrency of altitudes and medians) could be
forgotten if one has been away from geometry for long. Yet, a proof via loci (this is the Latin
plural of locus, the location of all the points that share a certain property) may be easier to
remember, even after many years. An example, maybe the simplest one, is recalling that
a perpendicular side bisector of BC in �ABC is the locus of all the points X such that
|XB| = |XC|. This means that a point X lies on the perpendicular side bisector of BC if
and only if X has equal distances from the points B and C. Similarly, an internal angle
bisector of∠A is the locus of all the points X inside�ABC such that X has equal distances
from the sides AB and AC. Thus, the three internal angle bisectors as well as the three
perpendicular side bisectors of every triangle are concurrent. These theorems are proved
in Euclid’s Elements (as Propositions 4 and 5 of the book IV); see Hajja andMartini (2013,
§2) or Ostermann and Wanner (2012, §§ 4.3). The concurrency of the altitudes and the
medians do not appear in the Elements of Euclid, though they are classical theorems by
now. Some believe that Archimedes knew the concurrency of the medians, see Ostermann
andWanner (2012, p. 84), and two proofs for the concurrency of the altitudes are attributed
to Newton (1642–1726) and Gauss (1777–1855); see Hajja andMartini (2013, Proofs #2 &
#1). In this paper, we prove these theorems, and also the concurrency theorems of G. Ceva
(1647–1734) and L. Carnot (1753–1823), by using loci.
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2. Altitudes and perpendiculars

Gauss’s proof for the concurrency of the altitudes makes an indirect use of some loci. It
actually shows that the altitudes of a triangle are perpendicular side bisectors of another
triangle, and so are concurrent (being the loci of some points). Two other proofs of this
theorem, Hajja and Martini (2013, Proofs #4 & #5), show that the altitudes of a triangle
are internal angle bisectors of some other triangles. Here, we prove the concurrency of
the altitudes by directly showing them to be some loci. The following theorem essentially
appears in Petersen (1879, p. 10: h.). In its proof, we have considered the case where the
altitude lies inside the triangle, cf. Hajja and Martini (2013, Lemma); other cases can be
dealt with similarly.

Theorem 2.1 (Each Altitude is a Locus): The locus of all the points X on the plane such
that |XB|2 − |XC|2 = |AB|2 − |AC|2 is (the extended line of) the altitude AH (see Figure 1).

Proof: IfX is on the altitudeAH, then apply Pythagoras’ theorem to the four right triangles
�ABH, �AHC, �XBH, and �XHC as follows:

|XB|2 − |XC|2 = (|BH|2 + |HX|2) − (|XH|2 + |HC|2)
= |BH|2 − |HC|2

= (|BH|2 + |HA|2) − (|AH|2 + |HC|2)
= |AB|2 − |AC|2.

Now, suppose that we have |XB|2 − |XC|2 = |AB|2 − |AC|2; draw a perpendicular line
from X to BC and assume that it meets BC at Y. By Pythagoras’ theorem,

|XB|2 − |XC|2 = (|BY|2 + |YX|2) − (|XY|2 + |YC|2)
= |BY|2 − |YC|2
= (|BY| + |YC|) · (|BY| − |YC|)
= |BC| · (|BY| − |YC|).

Figure 1. X lies on AH ⇐⇒ Y = H.
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Since for a similar reason we have |AB|2 − |AC|2 = |BC| · (|BH| − |HC|), from the pre-
sumed assumption |XB|2 − |XC|2 = |AB|2 − |AC|2 and the above equality we get{

|BY| + |YC| = |BH| + |HC| ( = |BC|),
|BY| − |YC| = |BH| − |HC| ( = (|AB|2 − |AC|2)/|BC|).

Thus, Y = H, and so X lies on AH. �

Corollary 2.2 (Altitudes Concur): The altitudes of a triangle are concurrent.

Proof: If X is the intersection of the altitudes drawn from B and C in �ABC, then by
Theorem 2.1 we have {

|XA|2 − |XC|2 = |AB|2 − |BC|2,
|XB|2 − |XA|2 = |BC|2 − |AC|2.

Thus, |XB|2 − |XC|2 = |AB|2 − |AC|2, which results by adding the two sides of the above
equations. So, by Theorem 2.1, X lies on the altitude drawn from A too. �

The above proof does not appear among the 12 proofs for the concurrency of the alti-
tudes listed byHajja andMartini (2013). The concurrency of the altitudes (Corollary 2.2) as
well as the concurrency of the perpendicular side bisectors are two special cases of Carnot’s
Concurrency Theorem, which can be proved by using loci as follows.

Theorem 2.3 (Each Perpendicular is a Locus): Let H be a point on and inside the line
segment BC. The locus of all the points X such that |XB|2 − |XC|2 = |BH|2 − |HC|2 is the
line perpendicular to BC at H (see Figure 1).

Proof: If X is on the line perpendicular to BC with foot H, then we showed in the proof
of Theorem 2.1 that the equality |XB|2 − |XC|2 = |BH|2 − |HC|2 holds. Conversely, if for
a point X, |XB|2 − |XC|2 = |BH|2 − |HC|2 holds, then assume that the line perpendicular
to BC from X meets BC at Y. Therefore, similar to the proof of Theorem 2.1, we can show
that |BY| + |YC| = |BH| + |HC| and |BY| − |YC| = |BH| − |HC|. Thus, Y = H and so
the point X lies on the perpendicular line to BC with foot H. �

Corollary 2.4 (Carnot’s Concurrency Theorem): Let A′,B′,C′ be some points on and
inside, respectively, the sides BC, AC, AB of�ABC. The respective perpendiculars to the sides
at the points A′,B′,C′ are concurrent if and only if Carnot’s identity holds true for them:
|AB′|2 + |BC′|2 + |CA′|2 = |AC′|2 + |CB′|2 + |BA′|2; or equivalently, the following equal-
ity holds: (|AB′|2 − |B′C|2) + (|CA′|2 − |A′B|2) + (|BC′|2 − |C′A|2) = 0 (see Figure 2).

Proof: Let X be the intersection of the perpendiculars to AB and AC with, respec-
tively, the feet C′ and B′. We have, by Theorem 2.3, |XB|2 − |XA|2 = |BC′|2 − |C′A|2 and
|XA|2 − |XC|2 = |AB′|2 − |B′C|2. Thus, by adding the two sides of these equations, we get
|XB|2 − |XC|2 = (|BC′|2 − |C′A|2) + (|AB′|2 − |B′C|2). Now, by Theorem 2.3, X lies on
the perpendicular line with foot A′, if and only if |XB|2 − |XC|2 = |BA′|2 − |A′C|2, if and
only if (|BA′|2 − |A′C|2) = (|BC′|2 − |C′A|2) + (|AB′|2 − |B′C|2). �
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Figure 2. Carnot’s Theorem.

Actually, Hajja andMartini (2013, Proof #7) infers the concurrence of the altitudes from
Carnot’s concurrency theorem. As a matter of fact, the altitudes are loci of some other,
trigonometric, kind.

Proposition2.5 (EachAltitude is a(nother kindof) Locus): LetHbe a point on and inside
the line segment BC. The locus of all the points X on the plane such that cotg(∠XBC)

cotg(∠XCB)
= |BH|

|HC| is
the line perpendicular to BC at H (see Figure 1).

Proof: If X is on the line perpendicular to BC with foot H, then cotg(∠XBC) = |BH|
|XH| and

cotg(∠XCB) = |HC|
|XH| ; so,

cotg(∠XBC)

cotg(∠XCB)
= |BH|

|HC| . If, on the other hand, X is a point on the plane

for which cotg(∠XBC)

cotg(∠XCB)
= |BH|

|HC| holds, then draw a perpendicular line to BC from X to meet

it at Y. Then, similar to what we saw above, cotg(∠XBC)

cotg(∠XCB)
= |BY|

|YC| . Therefore,
|BH|
|HC| = |BY|

|YC| ,
and so, similar to the proof of Theorem 2.1, we can show that Y = H. So, X lies on the
perpendicular line to BC with foot H. �

Now, we can give another locus-method proof for the concurrency of the altitudes.

An Alternative Proof for Corollary 2.2: By Proposition 2.5, for the altitude AH we have
cotg(∠B)

cotg(∠C)
= |BH|

|HC| . Let X be the intersection of the altitudes drawn from B and C. Then

∠XBC = 90◦ − ∠C and∠XCB = 90◦ − ∠B. Thus, cotg(∠XBC)

cotg(∠XCB)
= cotg(90◦−∠C)

cotg(90◦−∠B)
= tg(∠C)

tg(∠B)
=

cotg(∠B)

cotg(∠C)
= |BH|

|HC| . Therefore, by Proposition 2.5, the point X lies on the altitude AH too.

3. Medians and Cevians

The following theorem essentially appears in Petersen (1879, pp. 9–10: g. & App. 1). Let
SF denote the area (surface) of a figure F.

Theorem 3.1 (Each Median is a Locus): The locus of all the points X inside �ABC such
that the triangles �AXB and �AXC have equal areas is the median AM (see Figure 3, by
taking A′ = M).

Proof: If X lies on the median AM, then since M is the midpoint of BC, we have
S�ABM = S�AMC, and also S�XBM = S�XMC. So, by subtracting the two sides of the
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Figure 3. X lies on AA′ ⇐⇒ S�AXA′ = 0.

equations, we get S�AXB = S�ABM − S�XBM = S�AMC − S�XMC = S�AXC. Now, for
the converse implication, suppose that S�AXB = S�AXC. If X does not lie on the line
AM, then X is either inside �ABM or inside �AMC. Assume, without loss of gener-
ality, that X is inside �ABM (see Figure 3). By the assumption S�AXB = S�AXC, we
have S�AXC = 1

2S♦ABXC. Since M is the midpoint of BC, we have S�AMC = 1
2S�ABC

and S�XMC = 1
2S�XBC. Thus, S♦AXMC = S�AXC + S�XMC = 1

2 (S♦ABXC + S�XBC) =
1
2S�ABC = S�AMC. Therefore, S�AXM = S♦AXMC − S�AMC = 0; so, X lies on AM. �

As a matter of fact, the locus of all the points X on the plane with S�AXB =
S�AXC consists of two lines: one the extended line of the median AM, and the
other the line drawn from A parallel to BC (see also the link https://t.ly/b1cT of
math.stackexchange.com).

Corollary 3.2 (Medians Concur): The medians of a triangle are concurrent.

Proof: If X is the intersection of the medians drawn from B and C in �ABC, then by
Theorem 3.1 we have S�BXA = S�BXC and S�CXA = S�CXB. Thus, S�AXB = S�AXC, and
so by Theorem 3.1, the point X lies on the median drawn from A too. �

It is now known that the concurrency of the internal angle bisectors, altitudes
(Corollary 2.2), and medians (Corollary 3.2) are special cases of Ceva’s Concurrency
Theorem, which can also be proved by using loci. Let us recall that a Cevian is a line
segment that connects a vertex of a triangle to a point on the opposite side.

Theorem 3.3 (Each Cevian is a Locus): Let A′ be a point on and inside BC. The Cevian
AA′ is the locus of all the points X inside �ABC such that S�AXB

S�AXC
= |BA′|

|A′C| (see Figure 3).

Proof: Suppose, first, thatX lies onAA′. Then we have S�ABA′
S�AA′C

= |BA′|
|A′C| , and

S�XBA′
S�XA′C

= |BA′|
|A′C| .

By Proposition 19 in the Book V of Euclid’s Elements (f = a
b = c

d ⇒ f = a−c
b−d , where

b �= d) we have |BA′|
|A′C| = S�ABA′−S�XBA′

S�AA′C−S�XA′C
= S�AXB

S�AXC
. Now, second, suppose that S�AXB

S�AXC
= |BA′|

|A′C|
holds. If X is not on AA′, then without loss of generality we can assume that X is inside
�ABA′. By Proposition 18 in the Book V of Euclid’s Elements ( ab = c

d ⇒ a+b
b = c+d

d ) we

https://t.ly/b1cT
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have S♦ABXC
S�AXC

= |BC|
|A′C| . On the other hand, we also have

S�XBC
S�XA′C

= |BC|
|A′C| = S�ABC

S�AA′C
. Therefore,

S♦AXA′C = S�AXC + S�XA′C = |A′C|
|BC| (S♦ABXC + S�XBC) = |A′C|

|BC| S�ABC = S�AA′C. Thus,
S�AXA′ = S♦AXA′C − S�AA′C = 0; so, X lies on AA′. �

Corollary 3.4 (Ceva’s Concurrency Theorem): Let A′, B′, and C′ be on (and inside),
respectively, the sides BC, AC, and AB of �ABC. The Cevians AA′, BB′ and CC′ are con-
current if and only if Ceva’s identity holds: |AB′| · |BC′| · |CA′| = |AC′| · |CB′| · |BA′|; or
equivalently, |AB′|

|B′C| · |CA′|
|A′B| · |BC′|

|C′A| = 1.

Proof: If X is the intersection of BB′ and CC′, then by Theorem 3.3 we have S�BXA
S�BXC

= |AB′|
|B′C|

and S�CXB
S�CXA

= |BC′|
|C′A| . Thus, by multiplying the two sides of these equations, we get S�AXB

S�AXC
=

|AB′|
|B′C| · |BC′|

|C′A| . Now, by Theorem 3.3, X lies on AA′, if and only if S�AXB
S�AXC

= |BA′|
|A′C| , if and only

if |BA′|
|A′C| = |AB′|

|B′C| · |BC′|
|C′A| . �

By a trigonometric version of Ceva’s Concurrency Theorem, and using the Law of Sines,
one can show that the medians are some other kind of loci too. Hence, we can give an
alternative proof for Corollary 3.2 again by using loci.

Proposition 3.5 (Each Median is a(nother kind of) Locus): The locus of all the points X
inside �ABC with sin(∠XAB)

sin(∠XAC)
= |AB|−1

|AC|−1 is the median AM (see Figure 3, by taking A′ = M).

Proof: IfX lies onAM, then by the law of sines we have sin(∠XAB)
|BM| = sin(∠AMB)

|AB| (in�AMB)
and sin(∠XAC)

|MC| = sin(∠AMC)
|AC| (in �AMC). So, from |MB| = |MC| and sin(∠AMB) =

sin(∠AMC), we have sin(∠XAB)
sin(∠XAC)

= |AB|−1

|AC|−1 . If, conversely, we have
sin(∠XAB)
sin(∠XAC)

= |AB|−1

|AC|−1 , then

prolong AX to meet BC atM′. Then by the law of sines we have sin(∠XAB)
|BM′| = sin(∠AM′B)

|AB| (in

�AM′B) and sin(∠XAC)
|M′C| = sin(∠AM′C)

|AC| (in �AM′C). So, sin(∠XAB)
sin(∠XAC)

= |BM′|
|M′C| · |AB|−1

|AC|−1 . Thus,

from the assumption sin(∠XAB)
sin(∠XAC)

= |AB|−1

|AC|−1 , we get |BM′| = |M′C|. Therefore,M′ = M; so,X
lies on AM. �

Finally, we can give another locus-method proof for the concurrency of the medians.

AnAlternative Proof for Corollary 3.2: Let themedians through B andCmeet each other
at X. By Proposition 3.5, we have (1)

sin(∠XBA)
sin(∠XBC)

= |AB|−1

|BC|−1 and (2)
sin(∠XCB)
sin(∠XCA)

= |BC|−1

|AC|−1 . Also,

by the law of sines we have (3)
sin(∠XAB)

|BX| = sin(∠XBA)
|AX| (in�XAB), (4)

sin(∠XAC)
|XC| = sin(∠XCA)

|AX|
(in �XAC), and (5)

sin(∠XBC)
|XC| = sin(∠XCB)

|XB| (in �XBC). Therefore,

sin(∠XAB)

sin(∠XAC)
= |BX| · sin(∠XBA)

|XC| · sin(∠XCA)
by (3) and (4)

= sin(∠XCB)

sin(∠XBC)
· sin(∠XBA)

sin(∠XCA)
by (5)
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= sin(∠XBA)

sin(∠XBC)
· sin(∠XCB)

sin(∠XCA)

= |AB|−1

|AC|−1 by (1) and (2).

So, by Proposition 3.5, the point X lies on the median through A too.

4. Conclusions

The internal angle bisectors of a triangle concur because the internal bisector of an angle
is the locus of all the points inside the triangle that are equidistant from the sides of the
angle. The essentially same argument shows that an internal bisector of an angle concurs
with the external bisectors of the two other angles. The perpendicular side bisectors of
a triangle concur because each of them is the locus of all the points that are equidistant
from the two vertices of the side. These two theorems appear in Euclid’s Elements, and are
proved in that book by using loci. Two other now-classical concurrency theorems, that of
the altitudes and the medians, do not appear there; though, the ancient Greeks had all the
tools for proving those theorems. Could a reason for this exclusion be that no proof by
using loci was known for them? In this paper, we proved these two theorems by the loci
method.We noted that the altitudeAH of�ABC is the locus of all the pointsX on the plane
such that |XB|2 − |XC|2 is the fixed value |AB|2 − |AC|2 (Theorem 2.1); and the median
AM is the locus of all the points X inside �ABC such that the triangles �AXB and �AXC
have equal areas (Theorem 3.1). Thus, we presented proofs for the concurrence of the alti-
tudes (Corollary 2.2) and the medians (Corollary 3.2) by using loci. As a generalisation,
we showed (Theorem 2.3) that a perpendicular line to BC from a point A′ on it is the locus
of all the points X such that |XB|2 − |XC|2 is the fixed value |BA′|2 − |A′C|2. As a result,
Carnot’s concurrency theorem follows (Corollary 2.4): for the points A′,B′,C′ on (and
inside), respectively, the sides BC, AC, AB of �ABC, the perpendicular lines from those
points to the corresponding sides are concurrent if and only if Carnot’s identity |AB′|2 +
|BC′|2 + |CA′|2 = |AC′|2 + |CB′|2 + |BA′|2 holds. Also, we showed (Theorem 3.3) that
each Cevian AA′ is the locus of all the points X inside �ABC such that the ratio of the
area of �AXB to the area of �AXC is the fixed fraction |BA′|/|A′C|. So, Ceva’s concur-
rency theorem follows as a result (Corollary 3.4): the Cevians AA′, BB′, CC′ in �ABC
concur if and only if Ceva’s identity |AB′| · |BC′| · |CA′| = |AC′| · |CB′| · |BA′| holds. The
altitudes (Proposition 2.5) and themedians (Proposition 3.5) were proved to be some other
(trigonometric) kind of loci, and so we presented alternative proofs for their concurrence
by using loci.
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Exercises

I apologize to the senior readers for putting some exercises at the end.

(1) Show that if AH is an altitude and AD is an internal angle bisector in �ABC, then |BH|
|HC| =

cotg(∠B)

cotg(∠C)
and |BD|

|DC| = cosec(∠B)
cosec(∠C)

. Deduce Ceva’s identity for (the feet of) the altitudes and the
internal angle bisectors. Deduce Carnot’s identity for (the feet of) the altitudes by noting that,
e.g. |BH| = |BC| cotg(∠B)

cotg(∠B)+cotg(∠C)
.

(2) Let A′ be on the side BC in �ABC. Show that
(I)

S�ABA′
S�AA′C

= 1 iff A′ is the foot of the median;

(II)
S�ABA′
S�AA′C

= |AB|
|AC| iff A′ is the foot of the internal angle bisector;

(III)
S�ABA′
S�AA′C

= |AB|
|AC| · cos(∠B)

cos(∠C)
iff A′ is the foot of the altitude.

(3) In Carnot’s Concurrency Theorem, what happens if B′ = C and C′ = A? What is then the
relation of A′ to H, the foot of the altitude AH?

(4) Given two distinct points A and B, find the locus of all the points X such that the absolute value
| |XA|2 − |XB|2| is a fixed positive number c. What happens if c → 0?What if c = |AB|2?What
happens if c → ∞?

(5) Given �ABC, find the locus of all the points X on the plane such that the following fractions,
each separately, is a fixed positive number c. What happens if c → 0? What if c = 1? What
happens if c → ∞?

(i)
S�XAB

S�XAC
(ii)

sin(∠XAB)

sin(∠XAC)
(iii)

cos(∠XAB)

cos(∠XAC)
(iv)

tg(∠XAB)

tg(∠XAC)

(6) Given two distinct points A and B, find the locus of all the points X such that the fraction |XA|
|XB|

is a fixed positive number c. What happens if c → 0? What if c = 1? What happens if c → ∞?

Notation Let d(X, �) denote the distance of the point X from the line �.

(7) Show that, given two intersecting lines � and �′, the locus of all points X such that the fraction
d(X,�)
d(X,�′) is a fixed number c consists of two intersecting lines. What happens if c → 0? What if
c = 1? What happens if c → ∞?Answer all the questions in the case that � and �′ are parallel.

(8) Show that the median AM is the locus of all the points X inside �ABC such that d(X,AB)
d(X,AC)

=
|AB|−1

|AC|−1 . Show that a CevianAA′ is the locus of all the pointsX inside�ABC such that d(X,AB)
d(X,AC)

=
|AB|−1|BA′|
|AC|−1|A′C| .

(9) In�ABC, choose the pointsNa,Nb, andNc on, respectively, the sides BC,AC, and AB, in a way
that we have |ANb| = |AC| cotg(∠A/2)

cotg(∠A/2)+cotg(∠C/2) , |BNc| = |AB| cotg(∠B/2)
cotg(∠A/2)+cotg(∠B/2) , and finally

|CNa| = |BC| cotg(∠C/2)
cotg(∠B/2)+cotg(∠C/2) . By proving Ceva’s identity, show that ANa, BNb, and CNc

https://doi.org/10.1007/s00591-013-0123-z
https://books.google.com/books?id=H89FAQAAIAAJ
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are concurrent. Also, prove Carnot’s identity for Na,Nb,Nc, and show that the perpendicular
lines to the sides with feet Na, Nb, and Nc are concurrent at the incenter of �ABC. Prove that
Na,Nb,Nc are the tangency points of the incircle of the triangle �ABC.

(10) Let us call the points (A′,B′,C′) on, respectively, the sides (BC,AC,AB) of �ABC, a Ceva-
Carnot triple, when both Ceva’s identity and Carnot’s identity hold (thus, the Cevians AA′,
BB′, and CC′ are concurrent, and so are the perpendicular lines to the sides with feetA′,B′,C′).
Examples of such triples include the midpoints of the sides, and the tangency points of the
incircle. Let A′ be fixed on BC. Show that either
(1) there are no points (B′,C′) such that (A′,B′,C′) is a Ceva-Carnot triple, or
(2) there is exactly one couple of points (B′,C′) such that (A′,B′,C′) is a Ceva-Carnot triple,

or
(3) there are exactly two couples of points (B′,C′) such that (A′,B′,C′) are Ceva-Carnot

triples, or
(4) there are infinitely many couples of points (B′,C′) such that (A′,B′,C′) are Ceva-Carnot

triples.
Provide examples for each of the four cases.
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