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ABSTRACT
Gödelian sentences of a sufficiently strong and recursively enumer-
able theory, constructed in Gödel’s ground-breaking paper of 1931
on the incompleteness theorems, are unprovable if the theory is
consistent; however, they could be refutable. These sentences are
independent when the theory is so-called ω-consistent; a notion
introducedbyGödel,which is stronger than (simple) consistency, but
‘much weaker’ than soundness. Gödel goes to great lengths to show
in detail that ω-consistency is stronger than consistency, but never
shows, or seems to forget to say, why it is much weaker than sound-
ness. In this paper, we study this proof-theoretic notion and compare
some of its properties with those of consistency and (variants of)
soundness.
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1. Introduction

In the penultimate paragraph of the first section of his celebrated paper on the incomplete-
ness theorems, Gödel (1931, p. 151) wrote:

The method of proof just explained can clearly be applied to any formal system that, first,
[. . . ] and in which, second, every provable formula is true in the interpretation considered.
The purpose of carrying out the above proof with full precision in what follows is, among
other things, to replace the second of the assumptions just mentioned by a purely formal and
much weaker one.

He began the next section with the sentence, ‘We now proceed to carry out with full pre-
cision the proof sketched above’. It is clear then that Gödel (1931) sketched his proof of
the first incompleteness theorem in Section 1 for the system of Principia Mathematica, and
then noted that his method of proof works for any formal system that, first, is sufficiently
strong (in today’s terminology) and, second, is sound (with respect to the standard model
of natural numbers, see, e.g. §2 of Isaacson 2011 for the terminology). He then said that in
the rest of the article the proof would be carried out with full precision, while the second
assumption (that of soundness) was replaced by a ‘purely formal and much weaker one’.
This assumption was called ω-consistency by him (Gödel 1931, p. 173); see Definition 2.1
below. A question pursued in this paper is the following:
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Why is the purely formal notion of ω-consistency much weaker than soundness?1

One possible answer could be the pure formality of ω-consistency itself! Gödel knew that
soundness (or truth) is not purely formal (what we know today from Tarski’s Undefinabil-
ity Theorem); see, e.g.Murawski 1998. And,ω-consistency is purely formal (arithmetically
definable, see Definitions 2.7 and 2.8 below). Since soundness implies ω-consistency, and
the latter is definable while the former is not, thenω-consistency should be (much) weaker
than soundness. Could Gödel (1931) have meant in the penultimate paragraph ‘to replace
the second of the assumptions just mentioned by a purely formal and (thus) much weaker
one?’ In other words, could his reason for the weakness of ω-consistency in compari-
son with soundness be the pure formality (arithmetical definability) of the former (and
undefinability of the latter)?

On the other hand, the independence of the Gödelian sentences can be guaranteed
by much weaker assumptions (much weaker than ω-consistncy!). Indeed, 1-consistency
is more than enough; see Isaacson 2011, §§5.1 for the definition of 1-consistency, its
sufficiency, and its being weaker than ω-consistency, also Isaacson 2011, §6, for a suffi-
cient condition weaker than 1-consistency. Even Gödel (1931) mentioned in the very last
page that ‘we can, in [the first incompleteness theorem], replace the assumption of ω-
consistency by the following: The proposition “κ is inconsistent” is not κ-provable’; this
condition, which is equivalent to the consistency of the theory with its (standard) Con-
sistency Statement, is also necessary for the independence of the Gödelian sentences, see
Isaacson 2011, Theorem 35. These stronger (than simple consistency) assumptions were all
removed by Rosser (1936) who showed the independence of some other sentences from
consistent theories (that are recursively enumerable and contain sufficient arithmetic).

Before going to technical details, let us quote Smoryński (1985, p. 158, Remark) aboutω-
consistency: ‘One weakness of Gödel’s original work was his introduction of the semantic
notion ofω-consistency. I find this notion to be pointless, but I admit many proof theorists
take it seriously.’ It is notable that someprominent logicians, of the caliber ofHenkin (1954)
studied, and even generalized, the concept of ω-consistency, which is a syntactic (purely
formal, proof-theoretic) notion; not ‘semantic’! (see Remark 3.3 below). However, we can
agreewith Smoryński (1985) thatω-consistency could be ‘pointless’, andmay be dismissed.

2. ω-Consistency and Some of Its Properties

Let us fix a sufficiently strong theoryP over an arithmetical language (which contains+,×,
and possibly some other constant, relation, or function symbols). This could be Peano’s
Arithmetic, which is more than enough, or some of its weaker fragments, such as I�1.

All our theories are (usually re) sets of arithmetical sentences that contain P.

Let us be given a fixed Gödel coding and arithmetization by which we have the prov-
ability predicate PrT(x), for a fixed coding of the theory T, saying that ‘(the sentence
with code) x is T-provable’. We assume familiarity with the notions of �m and �m
formulas.

1 See also Isaacson 2011, p. 141, the paragraph after the proof of Proposition 19.
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Definition 2.1 (ω-Consistency): The theoryT is calledω-consistent, when there is no for-
mula ϕ(x), with exactly one free variable x, such that the negation of the universal closure
of ϕ and all the numerical instances of ϕ are T-provable (i.e. T � ¬∀xϕ(x) and T � ϕ(n)
for each n∈N; where n denotes the standard term that represents n).

Example 2.2 (of an ω-consistent and an ω-inconsistent theory): Every sound theory is
ω-consistent; see Isaacson 2011, Theorem 16. To see a natural ω-inconsistent theory, let us
consider the negation of the (formal) Induction Principle. For a formula ϕ(x), the formal
Induction Principle of ϕ is

INDϕ : ϕ(0) ∧ ∀x [ϕ(x)→ϕ(x+1)] −→ ∀x ϕ(x).

It is known that the IND of formulas with smaller complexity do not necessarily imply
the IND of formulas with higher complexity. So, ¬INDϕ could be consistent with some
weak arithmetical theories, for some sufficiently complex formula ϕ. We show that¬INDϕ
entails anω-inconsistency. First, note that¬INDϕ � ¬∀xϕ(x). Second, we have¬INDϕ �
ϕ(n)→ϕ(n+1) for every n∈N, and so by (meta-)induction on n one can show¬INDϕ �
ϕ(n) for every n∈N, noting that ¬INDϕ � ϕ(0). Therefore, ¬INDϕ is ω-inconsistent.

We will use the following result of Isaacson 2011, Theorem 21, which is the ω-version
of Lindenbaum’s lemma:

Proposition 2.3 (Isaacson 2011: ω−ConT =⇒ ∀ψ: ω−ConT+ψ ∨ ω−ConT+¬ψ ): If T
is ω-consistent, then for every sentence ψ either T+ψ or T+¬ψ is ω-consistent.

Proof: Assume (for the sake of a contradiction) that both theories T+ψ and T+¬ψ are
ω-inconsistent. Then for some formulas α(x) and β(x)we haveT+ψ � ¬∀x α(x) andT+
ψ � α(n) for each n∈N, also T+¬ψ � ¬∀x β(x) and T+¬ψ � β(n) for each n∈N. By
Deduction Theorem we have T � ¬∀x [ψ→α(x)] and T � ¬∀x [¬ψ→β(x)], and so by
Classical Logic we have (I) T � ¬∀x ([ψ→α(x)] ∧ [¬ψ→β(x)]). Again, by Deduction
Theorem, for every n∈N we have (II) T � [ψ→α(n)] ∧ [¬ψ→β(n)]. Now, (I) and (II)
imply that T is not ω-consistent, which contradicts the assumption. �

Corollary 2.4 (Consistency ofω-consistent theories with PA): Everyω-consistent theory
is consistent with Peano’s Arithmetic.

Proof: Suppose that T is an ω-consistent theory. By Proposition 2.3 and Example 2.2,
T+INDϕ , for an arbitrary formula ϕ(x), is ω-consistent too. So is the theory T+
{INDϕ1 , . . . , INDϕn}, for any finite set of formulas {ϕ1(x), . . . , ϕn(x)}. Thus, T (which
contains P) is consistent with Peano’s Arithmetic. �

We next observe that ω-consistent theories remain ω-consistent when extended by
any true �3-sentence. This was first proved for true �1-sentences in Isaacson 2011,
Theorem 22, with a proof attributed to ‘(letter from Georg Kreisel 4 April 2005)’. Let us
recall that our base theory P is�1-complete, i.e. can prove every true�1-sentence.
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Theorem 2.5 (ω−ConT ∧ σ ∈�3−Th(N) =⇒ ω−ConT+σ ∧ ¬ω−ConT+¬σ ): If T is
an ω-consistent theory and σ is a true �3-sentence, then T+σ is ω-consistent and T+¬σ
is ω-inconsistent.

Proof: Let σ = ∃xπ(x) for a�2-formula π . Since σ is true, then there exists some k∈N

such that N � π(k). Let π(k) = ∀y θ(y) for some �1-formula θ . Then for every n∈N we
have N � θ(n). So, by the �1-completeness of P we have P � θ(n) for each n∈N. Now,
from ¬σ � ¬π(k) we have ¬σ � ¬∀x θ(x). Thus, P+¬σ is ω-inconsistent; so is T+¬σ .
Since T is ω-consistent, then by Proposition 2.3, T+σ must be ω-consistent. �

Later, wewill see that this result is optimal: adding a true�3-sentence to anω-consistent
theory does not necessarily result in anω-consistent theory (see Corollary 2.13 below). Let
us now note that ω-consistency implies�3-soundness.

Corollary 2.6 (ω−ConT =⇒ �3−SoundT): Every ω-consistent theory is �3-sound, i.e.
every provable�3-sentence of it is true.

Proof: If T is ω-consistent, and π is a T-provable �3-sentence, then π must be true,
since otherwise ¬π would be a true �3-sentence, and so T+¬π would be ω-consistent
by Theorem 2.5, but this is a contradiction since T+¬π is inconsistent by T-provability
of π . �

We now note that the notion of ω-consistency is arithmetically definable.

Definition 2.7 (�T(�ϕ�): the formula ϕ is a witness for the ω-inconsistency of T):
Let Frm1(x) say that ‘x is (the Gödel code of) a formula with exactly one free variable’.
Let �T(x) say that ‘x is (the code of) a formula with exactly one free variable, and the
negation of the universal closure of (the formula coded by) x and also every (numerical)
instance of (the formula coded by) x is T-provable’. I.e. �T(�ϕ�) is the following for-
mula: Frm1(�ϕ�) ∧ PrT(�¬∀vϕ(v)�) ∧ ∀wPrT(�ϕ(ẇ)�). Here �α� (which is a term in
the language of P) denotes the Gödel code of the expression α, and ẇ is Feferman’s dot
notation.

Definition 2.8 (ω−ConT): Let ω−ConT be the sentence ¬∃x�T(x), where �T(x) is
defined in Definition 2.7.

We note that when T is an re theory, then PrT(x) is a �1-formula, so �T(x) is a �2-
formula, thusω−ConT is a�3-sentence. As far as I know, the first proof of the weakness of
ω-consistency with respect to soundness appeared in print in Kreisel 1955 and is referred
to as ‘(Kreisel 1955)’ in Isaacson 2011, Proposition 19.

Definition 2.9 (Kreiselian �3-Sentences of T, κ : I am ω-inconsistent with T): For a
theory T, any �3-sentence κ that satisfies P � κ↔¬ω−ConT+κ is called a Kreiselian
sentence of T.
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If one thought, mistakenly, that ω-consistency is equivalent to soundness, then
Kreiselian sentences correspond to the Liar sentences. Now, Kreisel’s proof of the non-
equivalence of ω-consistency with soundness corresponds to the classical proof of Tarski’s
Undefinability Theorem. Let us note that by Diagonal Lemma there exist some Kreiselian
sentences for any re theory, be it ω-consistent or not; see Isaacson 2011, Proposition 19.

Theorem 2.10 (ω−ConT =⇒ ω−ConT+κ & N � κ): If T is re and ω-consistent, and κ
is a Kreiselian sentence of T, then κ is false and T+κ is ω-consistent.
Proof: If κ were true, then by Definition 2.9 and the soundness of P, the theory T+κ
would be ω-inconsistent. But by Theorem 2.5, and the assumed truth of the �3-sentence
κ , the theory T+κ should be ω-consistent; a contradiction. Thus, κ is false; and so, by the
soundness of P, the theory T+κ is ω-consistent. �

So, for an re ω-consistent theory T and a Kreiselian sentence κ of T, the theory T+κ is
ω-consistent but not sound (since κ is false); T+κ is not even�3-sound.

Corollary 2.11 (ω−ConT �=⇒�3−SoundT): ω-consistency does not imply�3-soundness.

Theorem 2.12 (�m−SoundT �=⇒ω−ConT): For any m∈N, �m-soundness does not
imply ω-consistency.

Proof: It is rather easy to see that �m-soundness (the truth of provable �m-sentences) is
equivalent to consistencywith�m−Th(N), the set of true�m-sentences. By Salehi and Ser-
aji 2017, Theorem 2.5, there exists a true�m+1-sentence γ such that P+�m−Th(N) � γ .
So, the theoryU = P+�m−Th(N)+¬γ is consistent.We show thatU is notω-consistent.
Let γ = ∀x σ(x) for some �m-formula σ . By the truth of γ we have �m−Th(N) � σ(n)
for each n∈N. So, we have U � ¬∀x σ(x) and U � σ(n) for each n∈N. Thus, U is not
ω-consistent, but it is �m-sound (being consistent with �m−Th(N)). However, U is not
re; let us consider its sub-theory T = P+¬∀x σ(x)+{σ(n)}n∈N. The theory T is re and
�m-sound, but not ω-consistent. �

Therefore, while soundness implies ω-consistency, �m-soundness, even for large m’s,
does not imply ω-consistency. We can now show the optimality of Theorem 2.5.

Corollary 2.13 (ω−ConT ∧ π ∈�3−Th(N) �=⇒ω−ConT+π ): Adding a true �3-
sentence to an ω-consistent theory does not necessarily result in an ω-consistent theory.

Proof: Let κ0 be a Kreiselian sentence ofP. Then, by Theorem 2.10, the theoryT0 = P+κ0
is ω-consistent and ¬κ0 is a true�3-sentence. But T0+¬κ0 is not even consistent. �

Finally, we can show that adding a Kreiselian sentence or its negation to a sound theory
results, in both cases, in an ω-consistent theory (cf. Theorem 3.7 below).

Corollary 2.14 (N � T =⇒ ω−ConT+κ ∧ ω−ConT+¬κ ): If κ is a Kreiselian sentence of
a sound re theory T, then both T+κ and T+¬κ are ω-consistent.
Proof: The theory T+¬κ is sound, and T+κ is ω-consistent by Theorem 2.10. �
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3. Some Syntactic Properties of ω-Consistency

Let us begin this section, like the previous one, with another interesting result of Isaacson
(2011, Theorem 20); see Salehi and Seraji 2017, Proposition 3.2, for a generalization.

Proposition 3.1 (Isaacson 2011: ω−ConT ∧ CompleteT =⇒ T=Th(N)): True Arith-
metic, Th(N), is the only ω-consistent theory which is complete.

Proof: LetT be a complete andω-consistent theory;T is�3-sound byCorollary 2.6. So, we
have (C2) T � �2−Th(N)+�2−Th(N); since if η∈�2−Th(N)+�2−Th(N) and T � η,
thenT � ¬η, by the completeness ofT, whichwould contradict the�3-soundness ofT.We
now show, by induction on m�2, that (Cm) T � �m−Th(N)+�m−Th(N). For proving
(Cm⇒Cm+1) suppose that (Cm) holds. It is easy to see that�m−Th(N) � �m+1−Th(N);
so by (Cm) we already have T � �m+1−Th(N). We now show T � �m+1−Th(N). Let π
be a true�m+1-sentence; let π=∀x σ(x) for some�m-formula σ . For every n∈Nwe have
N � σ(n), so�m−Th(N) � σ(n), thus by (Cm)we haveT � σ(n). Now, theω-consistency
of T implies T � ¬∀x σ(x); so T � ∀x σ(x) from the completeness of T, thus T � π . �

Corollary 3.2 (lim⊆ ω−Con �= ω−Con): The limit (union) of a chain of ω-consistent
theories is not necessarily ω-consistent.

Proof: Let κ0 be a Kreiselian sentence of P and put T0 = P+κ0. Then T0 is ω-consistent
by Theorem 2.10. Now, by Proposition 2.3 one can expand T0 in stages T0⊆T1⊆T2⊆· · ·
in a way that each Tm is ω-consistent and their union T∗ = ⋃

m Tm is complete. But by
Proposition 3.1, T∗ cannot be ω-consistent since N � κ0 by Theorem 2.10 and so T∗ �=
Th(N). Thus, the limit T∗ of the chain {Tm}m of ω-consistent theories is not ω-consistent.

�

Remark 3.3 (Non-Semanticity of ω-Consistency): Proposition 3.1 enables us to show
that ω-consistency is not a semantic (model-theoretic) notion. Assume, for the sake of a
contradiction, that for a classC of structures (over the language of P) and for every theory
T, (♠) T is ω-consistent if and only ifM�T for someM∈C .

A candidate for such a C that comes to mind naturally is the class of ω-type structures:
a model A is called ω-type, when there is no formula ϕ(x) such that A�¬∀x ϕ(x) and at
the same timeA�ϕ(n) for every n∈N. It is clear that if a theory has anω-type model, then
it is an ω-consistent theory.

For showing the impossibility of (♠), take T0 to be an unsound ω-consistent theory (as
in e.g. the proof of Corollary 3.2) and assume that for M0∈C we have M0�T0. Then,
the full first-order theory Th(M0) ofM0, the set of all sentences that are true inM0, is a
complete ω-consistent theory. So, by Proposition 3.1, Th(M0) should be equal to Th(N);
thusM0 ≡ N whence N�T0, a contradiction.2

We now show that Theorem 2.5 can be formalized in P.

2 It can be shown that a structure is ω-type if and only if it is an elementary extension of N; Proposition 3.1 can also be
proved by the Tarski-Vaught test for elementarity: IfM is a model of a completeω-consistent theory, then for any formula
ϕ(x),M � ∃xϕ(x) implies the existence of some standard n∈NwithM � ϕ(n).
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Theorem 3.4 (σ ∈�3 =⇒ P 	 σ∧ω−ConT →ω−ConT+σ ): For every �3-sentence σ
and any theory T we have P � σ∧ω−ConT →ω−ConT+σ .

Proof: The proof of Theorem 2.5 (which was based on Proposition 2.3) can be formalized
in P with some hard work. We now present a more direct proof for Theorem 2.5 (with-
out appealing to Proposition 2.3) whose formalizability in P is straightforward. Suppose
that ω−ConT and that σ is a true �3-sentence. If ¬ω−ConT+σ then for some formula
ϕ(x) we have T+σ � ¬∀x ϕ(x) and T+σ � ϕ(n) for every n∈N. Let σ = ∃xπ(x) for
a �2-formula π . Since σ is true, then there exists some u(∈N) such that π(u) is true.
Let π(u) = ∀y θ(y) for some �1-formula θ . Then θ(z) is true for every z. So, by the �1-
completeness ofT we have (�)T � θ(n) for each n∈N. For reaching to a contradiction, we
show thatT isω-inconsistent and the formula θ(x) ∧ [π(u)→ϕ(x)] is awitness for that. By
Deduction Theorem we have T � σ→¬∀x ϕ(x) and so T � π(u)→¬∀x [π(u)→ϕ(x)]
therefore T � ¬∀y θ(y) ∨ ¬∀x [π(u)→ϕ(x)], thus (i) T � ¬∀x (θ(x) ∧ [π(u)→ϕ(x)]).
On the other hand, for every n∈N we have T � π(u)→ϕ(n), which by (�) implies
that (ii) T � θ(n) ∧ [π(u)→ϕ(n)] for each n∈N. Thus, by (i) and (ii) the theory T is
ω-inconsistent, a contradiction. So, T+σ must be ω-consistent. �

As a corollary, we show that all the Kreiselian sentences are P-provably equivalent to
one another, for a given arithmetization of syntax.

Corollary 3.5 (P 	 κ≡¬ω−ConT): If κ is a Kreiselian sentence of the re theory T, then
P � κ↔¬ω−ConT.

Proof: Argue insideP: If κ then¬ω−ConT+κ byDefinition 2.9, which implies¬ω−ConT
by Theorem 3.4 (noting that κ ∈�3); therefore, κ implies ¬ω−ConT . Conversely,
if ¬ω−ConT then ¬ω−ConT+κ and so κ by Definition 2.9; therefore, ¬ω−ConT
implies κ . �

By the P-provable equivalence of κ with ¬ω−ConT , we have the following corollary
which is the ω-version of Gödel’s Second Incompleteness Theorem, that was first proved
by Rosser (1937); see also Boolos 1993, p. xxxi.

Corollary 3.6 (ω−ConT =⇒ ω−ConT+¬ω−ConT ): If the re theory T isω-consistent, then
so is T+¬ω−ConT.

In fact, the existence of an unsound ω-consistent theory should have been known from
Rosser 1937, Theorem 1; notice that if T is ω-consistent, then T+¬ω−ConT is unsound
and ω-consistent by Corollary 3.6. As noted before Definition 2.9 above, it seems that no
other (explicit) proof for the weakness ofω-consistency with respect to soundness, though
implicit in Rosser 1937, appears in print until Kreisel 1955; see also Lindström 1997, p. 36,
Isaacson 2011, Proposition 19, and Lajevardi and Salehi 2021, p. 279.

Thus far, we have seen some ω-versions of Lindenbaum’s lemma and also Gödel’s first
and second incompleteness theorems. We do not claim novelty for any of these results;3

3 See e.g. the https://t.ly/GmquO link of the online forum MathOverFlow whose Proposition 1 (due to Emil Jeřábek, saying
that ‘If T ⊇ Q isω-consistent, and φ is a true�3-sentence, then T+φ isω-consistent’) is half of our Theorem 2.5.

https://t.ly/GmquO
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nevertheless, the following ω-version of Rosser’s incompleteness theorem seems to
be new.

Theorem 3.7 (ω−ConT =⇒ ∃ρ∈�3−Th(N): ω−ConT+ρ ∧ ω−ConT+¬ρ): If T is an
ω-consistent re theory, then there exists some true �3-sentence ρ such that both T+ρ and
T+¬ρ are ω-consistent.

Proof: By Diagonal Lemma, there exists a�3-sentence ρ such that (see Definition 2.7)

(�) P � ρ ↔ ∀χ [�T+¬ρ(χ)→∃ξ <χ �T+ρ(ξ)].

a. We first show that T+ρ is ω-consistent.
Assume not; then for some (fixed, standard) formula ϕ(x), the �2-sentence
�T+ρ(�ϕ�) is true, so we have �2−Th(N) � �T+ρ(�ϕ�). Also, by Proposi-
tion 2.3, T+¬ρ is ω-consistent. Thus, U = T+¬ρ+�2−Th(N) is consistent by
Corollary 2.6. Now, by (�) we have U � ∃χ[�T+¬ρ(χ)∧∀ξ <χ¬�T+ρ(ξ)]. Since
U � �T+ρ(�ϕ�) then we have U � ∃χ��ϕ� �T+¬ρ(χ). But by the ω-consistency
of the theory T + ¬ρ, the �2-sentence ∀χ��ϕ�¬�T+¬ρ(χ) is true, and so should
be �2−Th(N)-provable. Thus, U is inconsistent; a contradiction. Therefore, T+ρ
must be ω-consistent.

b. We now show that T+¬ρ is ω-consistent.
If not, then by Proposition 2.3, the theory T+ρ should be ω-consistent, and so
the theory U = T+ρ+�2−Th(N) should be consistent by Corollary 2.6. Also, for
some formula ϕ(x) we should have �2−Th(N) � �T+¬ρ(�ϕ�). Now, by (�) we
have U � ∃ξ <�ϕ��T+ρ(ξ). But ∀ξ <�ϕ�¬�T+ρ(ξ) is a true �2-sentence by the
ω-consistency of the theory T+ρ. So, ∀ξ <�ϕ�¬�T+ρ(ξ) is �2−Th(N)-provable,
which implies that U is inconsistent; a contradiction. Therefore, T+¬ρ must be
ω-consistent.

So, both of the theories T+ρ and T+¬ρ are ω-consistent, whence the �3-sentence ρ is
true (by the soundness of P). �

Note that Theorem 3.7 is optimal in a sense, since by Theorem 2.5 for no true �3-
sentence σ can the theory T+¬σ be ω-consistent. We end the paper with the observation
that Theorem 3.7 can be formalized in P.

Corollary 3.8 (ω−ConT → ρ �→ ω−ConT): If ρ is a �3-sentence that was constructed
for the re theory T in the Proof of Theorem 3.7 (�), then

(1) P � ω−ConT −→ ρ ∧ ω−ConT+ρ ∧ ω−ConT+¬ρ , and
(2) if T is ω-consistent, then T � ρ → ω−ConT; moreover, T+ρ+¬ω−ConT is ω-

consistent.
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Proof: For part (2), it suffices to note that since T+ρ+¬ω−ConT+ρ is ω-consistent by
Theorem 3.7 and Corollary 3.6, and P � ¬ω−ConT+ρ ↔ ¬ω−ConT by part (1), then
the theory T+ρ+¬ω−ConT is ω-consistent as well. �

4. Conclusions

Since Gödel knew (well before 1931) that (the semantic notion of) soundness is not
arithmetically definable, while (the syntactic notion of) ω-consistency is formalizable
(Definition 2.8), then one may guess that this could be his reason for the (much greater)
weakness of the latter in comparison with the former. Going deeper into the probably first
printed proof of this fact (by Kreisel in 1955) we see thatω-consistency does not imply�3-
soundness (Corollary 2.11), though everyω-consistent theory is�3-sound (Corollary 2.6).
Despite the fact that full soundness implies ω-consistency, we noted that for any nat-
ural m there exist �m-sound theories which are not ω-consistent (Theorem 2.12). We
also observed the ω-versions of Lindenbaum’s Lemma (in Proposition 2.3), Gödel’s sec-
ond incompleteness theorems (in Corollary 3.6), and Rosser’s incompleteness theorem
(in Theorem 3.7). Not every property of (simple) consistency holds for ω-consistency;
for example, the union of a chain of ω-consistent theories is not necessarily ω-consistent
(Corollary 3.2), and no ω-consistent theory can be complete unless it is the full True
Arithmetic (Proposition 3.1).
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