How (not) то
Compute the Halting Probability or Validate the Heuristic Principle

Saeed Salehi

April 2024

Gregory John Chaitin

Born: 1947 $_{77}$ (Jewish) Argentine-American
Algorithmic Information Theory
A. Kolmogorov \& R. Solomonoff
O. Incompleteness (1971) ${ }_{24}$
I. Heuristic Principle (1974) ${ }_{27}$
2. Halting Probability (1975) 28 2 Chaitin's Constant: Ω
\leftarrow March 2001_{54}
IBM's Thomas John Watson
Research Center in New York A Genius
Many honors (\& writings) Many critics (and many fans)

0. Chaitin's Incompleteness Theorem

2018: (S. S. \& P. Seraji), On Constructivity and the Rosser Property: a closer look at some Gödelean proofs, APAL 169(10):971-80.
2020: (Saeed Salehi) Gödel's Second Incompleteness Theorem: how it is derived and what it delivers, BSL 26(3-4):241-56.

Chaitin's (alternative proof for the $1^{\text {st }}$) Incompleteness Theorem:
For each sufficiently strong, consistent, and RE theory T, there exists a (Characteristic/Chaitin) constant \mathfrak{c}_{T} such that for no string σ can T prove that
" σ cannot be generated by an input-free program with length $\leqslant \mathfrak{c}_{T}$ ". true for co-finitely many σ 's

2018: CIT is non-constructive, though can be extended to Rosserian.
2020: CIT cannot be constructive, and not infers or inferred from \mathbb{G}_{2}.

Exaggerations and Criticisms

1978: M. Davis: "Chaitin...showed how...to obtain a dramatic extension of Gödel's incompleteness theorem" (What is a Computation?, p. 265)
1986: G. Chaitin: "This [the CIT] is a dramatic extension of Gödel's theorem" (Randomness and Gödel's theorem, p. 68[Inf.Rand.Inc. 1987])
1988: I. Stewart: "Chaitin...has proved the ultimate in undecidability theorems...that the logical structures of arithmetic can be random" (The Ultimate in Undecidability, Nature ${ }_{332}$, p. 115)
1989: G. Chaitin: "I have shown that God...plays dice...in pure math... My work is a fundamental extension of the work of Gödel and Turing on undecid. in pure math" (Undecidability \& Randomness in Pure Math)

1989: M. van Lambalgen, Algorithmic Information Theory, JSL 544:1389-400.
1996: D. Fallis, The Source of Chaitin's Incorrectness, Phil.Math.III 43:261-96.
1998: P. Raatikainen, On Interpreting Chaitin's Incom. Thm., JPL 276:569-86.
2000: P. Raatikainen, Algor. Info. Theory \& Undecid., Synthese $123_{2}: 217-25$.

A Fanfare

```
Lecture - Undecidability & Randomness in
Pure Mathematics

\section*{Book | 02002}

Conversations with a Mathematician
Math, Art Science and the Limits of Reason

\author{
Greggo L. Chaitio
}

\section*{Chapter}

\section*{Abstract}

I have shown that God not only plays dice in physics, but even in pure mathematics, in elementary number theory, in arithmetic! My work is a
1 Altmetric
236 Accesses
```

```
236 Accesses
```

```
```

236 Accesses

```
```

```
236 Accesses
```

``` fundamental extension of the work of Gödel and Turing on undecidability in pure mathematics. I show that not only does undecidability occur, but in fact sometimes there is complete randomness, and mathematical truth becomes a perfect coin toss.
https://doi.org/10.1007/978-1-4471-0185-7_8

\section*{HP: Heuristic Principle / Halting Probability}
- On Chaitin's Heuristic Principle and Halting Probability. arXiv:2310.14807v3 [math.LO].
https://arxiv.org/abs/2310.14807
1. Heuristic Principle
2. Halting Probability

\section*{1. Chaitin's Heuristic Principle}
- Greater Complexity Implies Unprovability

If a sentence is more complex (heavier) than the theory, then that sentence is unprovable from that theory.

\section*{(Un-)Provability:}

Example (Arithmetic \& Geometry)
Auithmetic \(\vdash \neg \exists x, y, z\left(x y z \neq 0 \wedge x^{4}+y^{4}=z^{2}\right)\). Pierre de Fermat Aurithmetic \(\vdash \exists x, y, z>1\left(x^{4}+y^{4}=z^{2}+1\right) . \quad x=5, y=7, z=55\)
Axithmetic \(\vdash \exists x, y, z\left(x y z \neq 0 \wedge x^{4}+y^{4}+1=z^{2}\right)\) ?
Geometry \(\vdash \forall \triangle A B C(\overline{A B}=\overline{A C} \longleftrightarrow \angle B=\angle C)\)
Auithmetic \(\nvdash 1=2 \quad\) areomettry \(\nvdash \forall \triangle A B C(\overline{A B}=\overline{A C})\)

Auithmetic \(\nvdash 1=2\)
\[
\begin{aligned}
& a=b \\
& a^{2}=a b \\
& a^{2}-b^{2}=a b-b^{2} \\
& (a+b)(a-b)=b(a-b) \\
& (a+b)=b \\
& a+a=a \\
& 2 a=a \\
& 2=1 \\
& 2=d_{C} \quad \\
& 2=1
\end{aligned}
\]
crometty \(\nvdash \forall \triangle A B C(\overline{A B}=\overline{A C})\)


\section*{Solomonoff-Kolmogorov-Chaitin Complexity}

Definition (Program Size Complexity)
\(\mathcal{C}(x)=\) the length of the shortest input-free program that outputs only \(x\) (and halts).

Example
\begin{tabular}{|c|c|}
\hline \((10)^{n}=1010 \cdots 10\) & \(\left\{10^{n}\right\}_{n=1}^{\infty}=10100100010000 \cdots 10^{n} 10^{n+1}\) \\
\hline BEGIN & BEGIN \\
\hline input \(n\) & let \(n=1\) \\
\hline for \(i=1\) to \(n\) & while \(n>0\) do \\
\hline print 1 & begin \\
\hline print 0 & print 1 \\
\hline \multirow[t]{3}{*}{END} & \[
\begin{aligned}
& \text { for } i=1 \text { to } n \\
& \text { print } 0
\end{aligned}
\] \\
\hline & \[
\begin{aligned}
& \text { let } n=n+1 \\
& \text { end }
\end{aligned}
\] \\
\hline & END \\
\hline
\end{tabular}

\section*{Descriptive Complexity \& Randomness}
- \(111111111111111111111111111111111111 \cdots 1^{*}\)
- \(100100100100100100100100100100100 \cdots(100)^{*}\)
- \(0101101110111101111101111110111 \cdots\left\{01^{n}\right\}_{n>0}\)
- \(0101111010111110111111111011 \cdots\left\{01^{(\pi-3)_{n}}\right\}_{n=1}^{\infty}\)
- \(11000110000111111000010010100001101010 \cdots\)

Definition (Random)
A random number or a string is one whose program-size complexity is almost its length.

\section*{Complexity of Sentences and Theories}

Avithmetic:
- \(\exists x, y, z\left(x y z \neq 0 \wedge x^{2}+y^{2}=z^{2}\right)_{x=3, y=4, z=5}\)
- \(\neg \exists x, y, z\left(x y z \neq 0 \wedge x^{3}+y^{3}=z^{3}\right)\)
- \(\neg \exists x, y, z\left(x y z \neq 0 \wedge x^{4}+y^{4}=z^{4}\right)\)
- \(\forall n>2 \neg \exists x, y, z\left(x y z \neq 0 \wedge x^{n}+y^{n}=z^{n}\right)\)

Grometty:
\(-\forall \triangle A B C\left(M_{a}, M_{b}, \mathcal{M}_{c}\right.\) midpoints \(\left.\rightarrow \exists \mathbb{G}\left[A M_{a} \cap B M_{b} \cap C M_{c}=\{\mathbb{G}\}\right]\right)\)
- \(\forall \triangle A B C\left(A A^{\prime}, B B^{\prime}, C C^{\prime}\right.\) altitudes \(\left.\rightarrow \exists \mathbb{H}\left[A A^{\prime} \cap B B^{\prime} \cap C C^{\prime}=\{\mathbb{H}\}\right]\right)\)
- \(\forall \triangle A B C \exists!\mathbb{O}(\overline{\mathbb{O} A}=\overline{\mathbb{O} B}=\overline{\mathbb{O} C})\)
- \(\forall \triangle A B C(\mathbb{G}, \mathbb{H}, \mathbb{O}\) are identical or on a line)

\section*{Heuristic Principle, HP}

Definition (HP-satisfying weighing)
A mapping \(\mathbb{W}\) from theories and sentences to \(\mathbb{R}\) satisfies HP when, for every theory \(\mathcal{T}\) and every sentence \(\psi\) we have
\[
\mathfrak{W}(\psi)>\mathscr{W}(\mathcal{T}) \Longrightarrow \mathcal{T} \nvdash \psi
\]

Equivalently, \(\quad \mathcal{T} \vdash \psi \Longrightarrow \mathscr{W}(\mathcal{T}) \geqslant \mathscr{W}(\psi)\)
- Chaitin's Idea: program-size complexity
- Lots of Criticisms ...
- Some built their own partial weighting
- Fans come to rescue ...

\section*{HP, a lost PARADISE}
- Criticisms:

For complex sentences \(\mathscr{G}, \mathscr{G}^{\prime}\), or complex numbers \(\mathcal{N}, \mathcal{N}^{\prime}\), the following complicated sentences are all provable:

- \(1+\mathcal{N}=\mathcal{N}+1, \quad \mathcal{N} \times \mathcal{N}^{\prime}=\mathcal{N}^{\prime} \times \mathcal{N}, \quad n\left(\mathcal{N}+\mathcal{N}^{\prime}\right)=n \mathcal{N}+n \mathcal{N}^{\prime}\).
- A Salvage?
\(\Delta \delta\)-complexity: \(\mathcal{C}(x)-|x|\).
XXX \(\mathcal{T} \vdash \psi \Longrightarrow \delta(\mathcal{T}) \geqslant \delta(\psi)\) XXX
- No Hope:
\[
\begin{aligned}
& \triangleright \perp \rightarrow \mathscr{S}, \quad \mathscr{S} \rightarrow \top, \quad p \rightarrow(\mathscr{S} \rightarrow p), \quad \neg p \rightarrow(p \rightarrow \mathscr{S}) \\
& \triangleright \mathcal{N}>0, \quad \mathcal{N} \times 0=0, \quad 1+\mathcal{N} \neq 1, \quad 2 \leqslant 2 \times \mathcal{N} .
\end{aligned}
\]

\section*{\(\mathrm{HP}^{-1}\), THE CONVERSE OF HP}
\[
\mathrm{HP}: \quad \mathcal{T} \vdash \psi \Longrightarrow \mathscr{W}(\mathcal{T}) \geqslant \mathscr{W}(\psi)
\]
can be satisfied by any constant weighing.
\[
\mathrm{HP}^{-1}: \quad \mathscr{W}(\mathcal{T}) \geqslant \mathscr{W}(\psi) \Longrightarrow \mathcal{T} \vdash \psi
\]
cannot hold for real-valued weights since every two real numbers are comparable ( \(a \geqslant b \vee b \geqslant a\) ), while some theories and sentences are incomparable, such as \(\psi\) and \(\neg \psi\) for a non-provable and non-refutable \(\psi\) (like any atom in PL or \(\forall x \forall y(x=y)\) in FOL).

Both HP and \(\mathrm{HP}^{-1}\) hold for some non-real-valued weightings.

\section*{EP, The Equivalence Principle}
\[
\mathrm{EP}: \quad \mathscr{W}(\mathcal{T})=\mathscr{W}(\mathcal{U}) \Longrightarrow \mathcal{T} \equiv \mathcal{U}
\]
is a (weak) consequence of \(\mathrm{HP}^{-1}\).
This is compatible with HP, even for real-valued weighings.

Theorem (Existence)
There exist some real-valued weightings that satisfy both HP and EP.
Theorem (Computability)
No computable HP+EP-satisfying weighing exists for undecidable logics. For decidable logics, there are computable \(H P+E P\)-satisfying weightings.

\section*{The Proof}

\section*{Definition (Sequence of Sentences)}

Let \(\boldsymbol{\psi}_{1}, \boldsymbol{\psi}_{2}, \boldsymbol{\psi}_{3}, \cdots\) be an effective list of all the sentences.
For a theory \(T\) and \(n>0\), let
\[
\chi_{n}(T)= \begin{cases}0, & \text { if } T \nvdash \psi_{n} ; \\ 1, & \text { if } T \vdash \psi_{n} .\end{cases}
\]

Finally, let \(\mathscr{V}(T)=\sum_{n>0} 2^{-n} \chi_{n}(T)\).
The Main Observation
For all theories \(T\) and \(U\), we have \(T \vdash U \Longleftrightarrow \forall n>0\) : \(\chi_{n}(T) \geqslant \chi_{n}(U)\). \(\mathrm{HP}+\mathrm{HP}^{-1}\)

So, we have both
\[
\begin{array}{r}
\text { HP }: T \vdash U \Longrightarrow \mathscr{V}(T) \geqslant \mathscr{V}(U) \\
\mathrm{EP}: \mathscr{T}(T)=\mathscr{V}(U) \Longrightarrow T \equiv U
\end{array}
\]

\section*{A Referee Report (for 1.)}


\section*{2. Chaitin's Halting Probability}
- Halting Probability (of a randomly given input-free program)
\[
\Omega=\sum_{p \text { halts }} 2^{-|p|}
\]

\section*{Halting or Looping forever:}

A random \(\{0,1\}\)-string may not be (the ASCII code of) a program.
Even if it is, then it may not be input-free.
If a binary string is (the code of) an input-free program, then it may halt after running or may loop forever.
\[
\Omega=\sum_{p \in\{0,1\}^{*} \text { halts }}^{p: \text { input-free }} 2^{-|p|} .
\]

\section*{A Partial Agreement}

The probability of getting a fixed binary string of length \(n\) by tossing a fair coin (whose one side is ' 0 ' and the other ' 1 ') is \(2^{-n}\), and the halting probability of programs with size \(n\) is \(\frac{\text { the number of halting programs with size } n}{\text { the number of all binary strings with size } n}=\frac{\#\{p \in \mathbb{P}: p \downarrow \&|p|=n\}}{2^{n}}\) since there are \(2^{n}\) binary strings of size \(n\). Thus, the halting probability of programs with size \(n\) can be written as \(\sum_{p \downarrow}^{|p|=n} 2^{-|p|}\).

Denote this number by \(\Omega_{n}\); so, the number of halting programs with size \(n\) is \(2^{n} \Omega_{n}\).

\section*{And a Disagreement}

According to Chaitin (and almost everybody else), the halting probability of programs with size \(\leqslant N\) is \(\sum_{n=1}^{N} \Omega_{n}=\sum_{p \downarrow}^{|p| \leqslant N} 2^{-|p|}\); and so, the halting probability is \(\sum_{n=1}^{\infty} \Omega_{n}=\sum_{p \downarrow} 2^{-|p|}(=\Omega)\) !

Let us see why we believe this to be an error. The halting probability of programs with size \(\leqslant N\) is in fact
\[
\frac{\text { the number of halting programs with size } \leqslant N}{\text { the number of all binary strings with size } \leqslant N}=\frac{\sum_{n=1}^{N} 2^{n} \Omega_{n}}{\sum_{n=1}^{N} 2^{n}} .
\]

Now, it is a calculus exercise to notice that, for sufficiently large \(N s\),
\[
\frac{\sum_{n=1}^{N} 2^{n} \Omega_{n}}{\sum_{n=1}^{N} 2^{n}} \neq \sum_{n=1}^{N} \Omega_{n}, \text { and } \lim _{N \rightarrow \infty} \frac{\sum_{n=1}^{N} 2^{n} \Omega_{n}}{\sum_{n=1}^{N} 2^{n}} \neq \lim _{N \rightarrow \infty} \sum_{n=1}^{N} \Omega_{n} .
\]

\section*{Possible Errors / Mistakes}

The number \(\Omega\) was meant to be "the probability that a computer program whose bits are generated one by one by independent tosses of a fair coin will eventually halt".

As also pointed out by Chaitin, the series \(\sum_{p \downarrow} 2^{-|p|}\) could be \(>1\), or may even diverge, if the set of programs is not taken to be prefix-free (that "no extension of a valid program is a valid program"-what "took ten years until [he] got it right").

So, the fact that, for prefix-free programs, the real number \(\sum_{p \downarrow} 2^{-|p|}\) lies between 0 and 1 (by Kraft's inequality, that \(\sum_{s \in S} 2^{-|s|} \leqslant 1\) for every prefix-free set \(S\) ) does not make it the probability of anything!

\section*{Possible Source of Error/Mistake}
\(S \mapsto \Omega_{S}=\sum_{\sigma \in S} 2^{-|\sigma|}\) is a measure; but not a probability measure! (e.g. \(\Omega_{\{0,1\} \cup\{00\}}>1\) ). (Prefix-free sets are not closed under union).

If \(S\) is prefix-free (Kraft) or decipherable (McMillan) then \(\Omega_{S} \leqslant 1\). ( \(\mathcal{C}\) is decipherable, when if \(x_{1} \cdots x_{m}=y_{1} \cdots y_{n}\) for \(x_{i}, y_{j} \in \mathcal{C}\), then \(m=n\) and \(x_{i}=y_{i}\) for all \(i \leqslant m\) ).
(The Guilty!)
- Revisiting the Inequalities of Kraft and McMillan with New Proofs.

But a real number cannot be called a probability, if it is just between 0 and 1 ; there should be a measure and a space for a probability that satisfies Kolmogorov axioms: \(\mu(\emptyset)=0, \mu(\mathbb{S})=1\), and \(\forall\left\langle S_{i} \cap S_{j}=\emptyset\right\rangle_{i \neq j}\) family \(\left\{S_{i} \subseteq \mathbb{S}\right\}\), we should have \(\mu\left(\bigcup_{i} S_{i}\right)=\sum_{i} \mu\left(S_{i}\right)\).

For all the (input-free) programs \(\mathbb{P}\), we have \(\Omega_{\mathbb{P}} \neq 1\).

\section*{Any Solutions?}

\section*{1. Conditional Probability}

Let \(\Omega_{S}=\sum_{s \in S} 2^{-|s|}\) and \(\mho_{S}=\Omega_{S} / \Omega_{\mathbb{P}}\) for a set \(S \subseteq \mathbb{P}\) of programs. This is a probability measure: \(\mho_{\emptyset}=0, \mho_{\mathbb{P}}=1\), and for any family \(\left\{S_{i} \subseteq \mathbb{P}\right\}_{i}\) of pairwise disjoint sets of programs, \(\mho_{\bigcup_{i} S_{i}}=\sum_{i} \mho_{S_{i}}\). If \(\mathcal{H}\) is the set of all the binary codes of the halting programs, then the (conditional) halting probability is \(\mho_{\mathcal{H}}\), or \(\Omega / \Omega_{\mathbb{P}}\).
We then have \(\mho_{\mathcal{H}}>\Omega\) since it can be shown that \(\Omega_{\mathbb{P}}<1\).

\section*{2. Asymptotic Probability}

Count \(\hbar_{n}\) the number of halting programs (the strings that code some input-free programs that eventually halt after running) that have integer codes \({ }^{\ddagger}\) less than or equal to \(n\). Then define the halting probability to be \(\lim _{n \rightarrow \infty} \hbar_{n} / n\), of course, if it exists. Or take \(\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} 2^{n} \Omega_{n}\right) /\left(\sum_{n=1}^{N} 2^{n}\right)\) if the limit exists.
Note that this number can be shown to be \(\leqslant \frac{\Omega}{2}\).
\(\ddagger\) integer code: \(0_{\mathbf{1}}, 1_{\mathbf{2}}, 00_{\mathbf{3}}, 01_{\mathbf{4}}, 10_{\mathbf{5}}, 11_{\mathbf{6}}, 000_{\mathbf{7}}, 001_{\mathbf{8}}, 00_{\mathbf{9}}, \cdots\)

\section*{Thank You!}

\section*{Thanks to}

\section*{The Participants .................. . For Listening ... and}

The Organizer, For Taking Care of Everything ...```

