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Chapter 1

Introduction and
preliminaries

Computer science is no more about computers than astronomy is
about telescopes.

– Edsger Dijkstra

“Trees and terms are important structured objects that can be found al-
most everywhere in computer science, not only in connection with their
mathematical foundations.” Jantzen [25]. Also, almost every working math-
ematician has heard of “trees” as this notion appears in many seemingly
different areas of mathematics from graph theory to universal algebra to
logic. In computer science trees are often regarded as a natural generaliza-
tion of strings. Though it is not possible to present a complete history of
the subject here, we quote the following from the survey paper [23]:

“The theory of tree automata and tree languages emerged in the middle
of the 1960s quite naturally from the view of finite automata as unary alge-
bras advocated by J. R. Büchi and J. B. Wright. From this perspective the
generalization from strings to trees means simply that any finite algebra of
finite type can be regarded as an automaton which as inputs accepts terms
over the ranked alphabet formed by the operation symbols of the algebra,
and these terms again can be seen as (formal representations of) labeled
trees with a left-to-right ordering of the branches. Strings over a finite al-
phabet can then be regarded as terms over a unary ranked alphabet, and
hence finite automata become special tree automata and string languages
unary tree languages. The theory of tree automata and tree languages can
thus be seen as an outgrowth of Büchi’s and Wright’s program which had
as its goal a general theory that would encompass automata, universal alge-
bra, equational logic, and formal languages. Some interesting vistas of this
program and its development are opened by Büchi’s posthumous book [9] in
which many of the ideas are traced back to people like Thue, Skolem, Post,
and even Leibniz.”

It is true that the theory of tree automata and tree languages may have
come into existence by generalizing string automata and languages, but
“[o]f course, no branch of mathematics could stay alive very long as a mere
generalization.” [55].
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2 Chapter 1, Introduction and preliminaries

Apart from its intrinsic interest, the theory of tree automata and tree
languages has found several applications and it offers new perspectives to
various parts of mathematical linguistics. It has also been applied to some
decision problems of logic, and it provides tools for syntactic pattern recog-
nition (see [12] and [22]). “Actually using tree automata has proved to
be a powerful approach to simplify and extend previously known results,
and also to find new results. For instance recent works use tree automata
for application in abstract interpretation using set constraints, rewriting,
automated theorem proving and program verification, databases and XML
schema languages.” [12].

Mathematicians who have heard of trees may recall one or two definitions
of them. Considering trees as terms over a ranked alphabet and a leaf
alphabet has become a custom in some schools, especially here in Turku,
Finland. An advantage of this approach is that the concepts and results of
universal algebra become immediately usable.

It is worth noting that the impact of universal algebra on the theory of
tree automata and tree languages has not been in one direction only; devel-
opments of tree automata and tree languages have suggested new problems
and concepts of universal algebra. Also in this dissertation we have devel-
oped algebraic notions and proved theorems in universal algebra when the
necessity has emerged. However, the recent book of Denecke and Wismath
[15] is the first universal algebra text where tree automata and tree languages
are explicitly studied (see Chapters 5 and 8 of [15]).

The main topic of this dissertation is the variety theory of tree languages.
The history of variety theory begins with Eilenberg’s celebrated variety the-
orem [17]. As Pin [39] puts it, “[t]he most important tool for classifying
recognizable languages is Eilenberg’s variety theorem [17], which gives a
one-to-one correspondence between (pseudo-)varieties of finite semigroups
and varieties of recognizable languages.”

Eilenberg’s theorem was motivated by characterizations of several fam-
ilies of string languages by syntactic monoids or semigroups (see [17, 38]),
above all by Schützenberger’s [50] theorem connecting star-free languages
and aperiodic monoids. A fascinating feature of this variety theorem is the
existence of its many instances. As a matter of fact, most of the interesting
classes of algebraic structures are varieties, and similarly, most of the inter-
esting families of tree or string languages studied in the literature turn out
to be varieties of some kind. The aforementioned variety theorem connects
these interesting families to each other.

Eilenberg’s theorem has since then been extended in various directions.
One of these extensions is Thérien’s [57] notion of varieties of congruences
on free monoids. Another extension is Pin’s positive variety theorem [39]
which establishes a bijective correspondence between positive varieties of
string languages and varieties of ordered semigroups.
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Concerning trees, which are studied in the field of universal algebra,
Steinby’s variety theorem [52] for varieties of recognizable subsets of free
algebras and varieties of finite algebras was the first one of this kind. The
correspondence with varieties of congruences, and some other generaliza-
tions, were added later by Almeida [1] and Steinby [53, 54]. Another variety
theorem for trees is Ésik’s [19] correspondence between families of tree lan-
guages and classes of theories (see also [20]).

As Ésik [19] notes, any variety theorem connects families of tree lan-
guages with classes of some structures via their “syntactic structures”. One
of these syntactic structures is the syntactic semigroup/monoid of a tree
language introduced by Thomas [58] and further studied by Salomaa [48].
A different formalism, based on essentially the same concept, was considered
by Nivat and Podelski [32, 42].

Several variety theorems for trees are proved in this dissertation:
The variety theorem for families of tree languages and varieties of finite

algebras, provided by Steinby and Almeida, is generalized to many-sorted
algebras in Chapter 2, which is joint work with Steinby [46].

Chapter 3, based on a joint paper with Petković [34], is inspired by
Pin’s theory of positive varieties of string languages and varieties of ordered
monoids. We prove a variety theorem for positive varieties of tree languages
and varieties of finite ordered algebras which correspond to each other via
syntactic ordered algebras.

Tree languages definable by syntactic monoids are studied in Chapter 4.
It was already known that any family of tree languages definable by syntactic
monoids is a (generalized) variety of tree languages, though not every variety
of tree languages is definable by syntactic monoids [54]. Characterizing the
varieties of tree languages which are definable by syntactic monoids was a
relatively long-standing open problem [54, 19]. Here we give an answer to
this question by providing a variety theorem for families of tree languages
and varieties of finite monoids which correspond to each other via syntactic
monoids [45]. This characterization is generalized to a characterization of
positive varieties of tree languages definable by syntactic ordered monoids
in Chapter 5. This generalization was obtained together with Petković [34].
Also an instance of this positive variety theorem and the variety theorem in
Chapter 4 is elaborated.

The rest of the dissertation is a study of Wilke’s tree algebra formalism
[60] for binary trees. A completeness theorem for the axiomatization of
tree algebras and a variety theorem for families of binary tree languages
and varieties of finite tree algebras is proved in Chapter 6. The first two
sections of this chapter are based on a joint paper with Steinby [47]. Finally,
a completeness property of Wilke’s functions is presented without proofs in
the last section. We have proved that term algebras over ranked alphabets
with at least seven constant symbols are affine-complete, and that the free
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tree algebras over finite alphabets containing at least seven labels are affine-
complete [43, 44].

The above mentioned results once again demonstrate the richness of the
theory of tree automata and tree languages and they also suggest some new
perspectives of the variety theory of string languages when words are viewed
as unary trees. This, from a variety theory viewpoint, confirms our belief
that not only trees are more than mere generalization of words, but also
words are particular cases of trees.

We have made an effort to make the dissertation self-contained (except
for the last chapter) for its expected readership. For basic notions of tree
automata and tree languages, [23, 56] are more than enough, and [15, 25]
provide the fundamental tools of universal algebra and term rewriting used
throughout the dissertation.

Although we have tried to use a uniform notation throughout the thesis,
some exceptions seemed inevitable. In particular, in Chapter 6 we have
preserved most of Wilke’s [60] notation, and thus many letters get meanings
different from the ones they have in the previous chapters. For the reader’s
convenience an Index of Notation is provided.

Preliminaries

Strings over a finite alphabet X are often regarded as elements of the free
monoid X∗ generated by X. Similarly, any tree considered here may be
viewed as an element of a term algebra. Also finite tree automata can be
defined as finite algebras. Therefore, universal algebra provides a natural
mathematical foundation for the theory of finite tree automata and recog-
nizable tree languages. Here we first recall some basic notions of algebras
and then we list formal definitions and concepts of trees as terms.

A ranked alphabet Σ is a finite set of function symbols each of which has a
unique non-negative integer arity. For any m ≥ 0, Σm denotes the elements
of Σ with arity m. In particular, Σ0 is the set of constant symbols of Σ. A Σ-
algebra is a structure A = (A,Σ) where A is a non-empty set in which every
symbol of Σ is realized, i.e., any c ∈ Σ0 is realized by a constant cA ∈ A,
and any f ∈ Σm for m > 0 is realized by an m-ary function fA : Am → A.
The algebra A = (A,Σ) is called finite if the set A is finite.

Recall that a binary relation on a set A is a subset θ ⊆ A×A. The fact
that (a, b) ∈ θ, for some a, b ∈ A, is often written as a θ b. The inverse of
the relation θ is θ−1 = {(b, a) | (a, b) ∈ A}, and if θ′ is another relation on
the set A, the composition of θ and θ′ is the relation

θ ◦ θ′ = {(a, c) | (a, b) ∈ θ & (b, c) ∈ θ′ for some b ∈ A}.
The diagonal relation on A, {(a, a) | a ∈ A}, and the universal relation
A× A are respectively denoted by ∆A and ∇A. The relation θ is called an
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equivalence on A if ∆A, θ
−1, θ◦θ ⊆ θ. If θ is an equivalence on A, the quotient

set A/θ is the set {a/θ | a ∈ A} where a/θ = {b ∈ A | a θ b} is the θ-class
of a. If A/θ is finite then θ is said to be of finite index or simply a finite
relation. Note that ∆A and ∇A are the least and the greatest equivalence
relations on A, respectively. For sets A and B, a mapping ϕ : A → B can
be viewed also as a special relation, a subset of A × B. The image ϕ(a)
of an a ∈ A is often written as aϕ. For subsets C ⊆ A and D ⊆ B the
image of C and the inverse image of D are Cϕ = {aϕ ∈ B | a ∈ C} and
Dϕ−1 = {a ∈ A | aϕ ∈ D}, respectively.

Fix a ranked alphabet Σ and let A = (A,Σ), B = (B,Σ) be algebras.
The algebra B is said to be a subalgebra of A, if B ⊆ A and every function

fB, for f ∈ Σ, is the restriction of fA to B. In particular, cB = cA for every
constant symbol c ∈ Σ0.

A mapping ϕ : A → B is called a homomorphism, if cAϕ = cB for any
c ∈ Σ0, and fA(a1, . . . , am)ϕ = fB(a1ϕ, . . . , amϕ) for every f ∈ Σm (m > 0)
and every a1, . . . , am ∈ A. The fact that ϕ is a homomorphism is expressed
by writing ϕ : A → B. The kernel of ϕ is the relation kerϕ = {(a, c) ∈
A × A | aϕ = cϕ}. A homomorphism is called a monomorphism if it is
injective, and is an epimorphism if it is surjective. An isomorphism is a
bijective homomorphism. Sometimes a homomorphism is called simply a
morphism. We say that B is a homomorphic image of A and write B ← A
when there exists an epimorphism from A onto B, and we write A ⊆ B when
there exists a monomorphism from A to B. We say that A divides B and
write A � B if for some algebra C = (C,Σ) there exist a monomorphism
ψ : C → B and an epimorphism ϕ : C → A. If there exists an isomorphism
between A and B, then A and B are isomorphic, and we write A ∼= B.

An equivalence relation θ on A is called a congruence on A, if for all
f ∈ Σm (m > 0) and all a1, . . . , am, b1, . . . , bm ∈ A, if a1 θ b1, . . . , am θ bm
then fA(a1, . . . , am) θ fA(b1, . . . , bm). It is easy to note that the kernel of any
homomorphism is a congruence. If θ is a congruence on A then the quotient
algebra is the structure A/θ = (A/θ,Σ) defined by cA/θ = cA/θ for any c ∈
Σ0, and fA/θ(a1/θ, . . . , am/θ) = fA(a1, . . . , am)/θ for every f ∈ Σm (m > 0)
and every a1, . . . , am ∈ A. Note that the condition of θ being a congruence
on A ensures us that the above operations are well-defined on A/θ. The
natural mapping θ\ : A → A/θ, a 7→ a/θ, is seen to be an epimorphism.
Note that ker θ\ = θ. The Homomorphism Theorem in universal algebra
states that if ϕ : A → B is an epimorphism, then A/ kerϕ ∼= B. This
theorem can be generalized as follow. For any congruence θ′ on B and any
homomorphism ϕ : A → B, the relation ϕ◦θ′◦ϕ−1 is a congruence on A. Now,
if ϕ is an epimorphism, then A/ϕ◦θ′◦ϕ−1 ∼= B/θ′. Note that by definition
ϕ ◦ ϕ−1 = kerϕ.

A mapping p : A→ A is called an elementary translation of A, if p(ξ) =
fA(a1, . . . , ai−1, ξ, ai+1, . . . , am) for some m > 0, f ∈ Σm, 1 ≤ i ≤ m and
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a1, . . . , ai−1, ai+1, . . . , am ∈ A, where ξ is a new variable ranging over A.
The set Tr(A) of translations of A is the smallest set of unary operations on
A that contains the identity map 1A : A→ A, a 7→ a, and all the elementary
translations of A, and is closed under the composition. It is easy to verify
that an equivalence θ on A is a congruence on A iff p◦θ◦p−1 ⊇ θ for every
translation p ∈ Tr(A).

The direct product A × B of A and B is the algebra (A × B,Σ) defined
by cA×B = (cA, cB) for any c ∈ Σ0, and

fA×B((a1, b1), . . . , (am, bm)) = (fA(a1, . . . , am), fB(b1, . . . , bm))
for all f ∈ Σm (m > 0) and a1, . . . , am ∈ A, b1, . . . , bm ∈ B. The following
facts can be easily verified for any algebras A and B, congruences θ and θ′

on A, and morphism ϕ : B → A.

1. If θ ⊆ θ′, then A/θ′ ← A/θ.
2. A/θ ∩ θ′ ⊆ A/θ ×A/θ′.
3. B/ϕ◦θ◦ϕ−1 � A/θ.

A class of finite Σ-algebras is called a (pseudo-)variety, if it is closed under
subalgebras, homomorphic images and direct products. The classes we call
variety here are sometimes called pseudo-variety to be distinguished from
the term “variety” which is defined to be a class of (not necessarily finite)
algebras closed under subalgebras, homomorphic images and (arbitrary, not
necessarily finite) direct products. Birkhoff’s theorem gives a logical charac-
terization for those classes. For the pseudo-varieties, called simply varieties
from now on, there exists an analogue characterization with ultimately de-
finability by equations (see e.g. [2]), though we will not touch this subject
in this dissertation. It is easy to see that the intersection of any class of
varieties is a variety. So, for a collection of Σ-algebras C, the intersection of
all varieties containing C is a variety, called the variety generated by C.

Now we review the theory of trees as terms. Roughly speaking, a tree is
a structured object that is branched from a root which stands in the highest
level and every node in the middle is either branched to other nodes or
stands as a leaf. For a formal definition let Σ be a ranked alphabet and X
be any finite set, called leaf alphabet. The set T(Σ, X) of ΣX-trees is defined
to be the smallest set containing Σ0 ∪X such that f(t1, . . . , tm) ∈ T(Σ, X)
whenever f ∈ Σm (m > 0) and t1, . . . , tm ∈ T(Σ, X). In this formalism
the leaves of ΣX-trees are labelled by symbols from Σ0 ∪X and the inner
nodes are labelled by the symbols in Σ with non-zero arities. Any subset of
T(Σ, X) is called a tree language.

The algebra T (Σ, X) = (T(Σ, X),Σ) is defined by cT (Σ,X) = c for any
c ∈ Σ0 and fT (Σ,X)(t1, . . . , tm) = f(t1, . . . , tm) for all f ∈ Σm (m > 0)
and t1, . . . , tm ∈ T(Σ, X). This is called the ΣX-term algebra, or simply
a term algebra. We note that T (Σ, X) is the free Σ-algebra generated by
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X, i.e., for any algebra A = (A,Σ), any mapping α : X → A can uniquely
be extended to a homomorphism αA : T (Σ, X) → A. A tree language
T ⊆ T(Σ, X) is said to be recognized by an algebra A = (A,Σ) when there
exist a homomorphism ϕ : T (Σ, X) → A and a subset F ⊆ A such that
Fϕ−1 = T . A tree language is called recognizable if a finite algebra recognizes
it. A ΣX-recognizer is a triple (A, α, F ) where A = (A,Σ) is a finite algebra,
α : X → A is a map, and F ⊆ A is a subset. The map α is called an initial
assignment, and αA : T (Σ, X) → A is its extension to a homomorphism.
The subset F ⊆ A is called the set of final states, and the tree language
recognized by (A, α, F ) is by definition {t ∈ T(Σ, X) | tαA ∈ F}.

Let ξ be a new symbol which does not appear in any ranked alphabet or
leaf alphabet considered here. The set of ΣX-contexts, denoted by C(Σ, X),
consists of the Σ(X∪{ξ})-trees in which ξ appears exactly once. For contexts
P,Q ∈ C(Σ, X) and tree t ∈ T(Σ, X), the context Q · P , the composition of
P and Q, results from P by replacing the special leaf ξ with Q, and the term
P (t), also denoted as t · P , results from P by replacing ξ with t. For a tree
language T ⊆ T(Σ, X) and context P ∈ C(Σ, X), the inverse translation of
T under P is P−1(T ) = {t ∈ T(Σ, X) | t · P ∈ T}.

We shall now outline the basic theory of varieties of recognizable tree
languages that is the general starting point of this work. For a tree lan-
guage T ⊆ T(Σ, X), the syntactic congruence ≈T of T [53] is defined by

t ≈T s ⇐⇒ ∀P ∈ C(Σ, X)
(
t · P ∈ T ↔ s · P ∈ T

)
(t, s ∈ T(Σ, X)).

It can be easily seen that the relation ≈T is really a congruence on T (Σ, X).
A tree language is recognizable iff its syntactic congruence is of finte index.
The syntactic algebra SA(T ) of T is the quotient Σ-algebra T (Σ, X)/ ≈T .
It can be shown that a finite algebra A recognizes a tree language T iff
SA(T ) � A. Thus, SA(T ) is the smallest agebra recognizing T . The fol-
lowing relations hold for any leaf alphabets X,Y , tree languages T, T ′ ⊆
T(Σ, X), homomorphism ϕ : T (Σ, Y )→ T (Σ, X), and context P ∈ C(Σ, X)
(see Propositions 3.3 and 3.4 in [53]).

1. ≈T(Σ,X)\T=≈T and SA(T(Σ, X) \ T ) ∼= SA(T ).
2. ≈T∩T ′ ⊇ ≈T ∩ ≈T ′ and SA(T ∩ T ′) ⊆ SA(T )× SA(T ′).
3. ≈P−1(T ) ⊇ ≈T and SA(P−1(T ))← SA(T ).
4. ≈Tϕ−1 ⊇ ϕ◦≈T◦ϕ−1 and SA(Tϕ−1) � SA(T ).
5. Moreover, if ϕ is an epimorphism, then ≈Tϕ−1

= ϕ◦ ≈T ◦ϕ−1 and
SA(Tϕ−1) ∼= SA(T ).

A family V = {V (Σ, X)} of recognizable tree languages is a mapping
which assigns to every leaf alphabet X a collection V (Σ, X) of recognizable
ΣX-tree languages. Similarly, a family Γ = {Γ(X)} of finite congruences
is a mapping which assigns to every leaf alphabet X a collection Γ(X) of
finite congruences on T (Σ, X). A variety of tree languages is a family of
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recognizable tree languages closed under Boolean operations (complements
and intersections), inverse translations and inverse morphisms. That is to
say, a family V = {V (Σ, X)} is a variety of tree languages, if for any
leaf alphabets X,Y , tree languages T, T ′ ⊆ T(Σ, X), homomorphism ϕ :
T (Σ, Y ) → T (Σ, X), and context P ∈ C(Σ, X), if T, T ′ ∈ V (Σ, X), then
T(Σ, X) \ T, T ∩ T ′, P−1(T ) ∈ V (Σ, X) and Tϕ−1 ∈ V (Σ, Y ). A variety of
congruences is a family of finite congruences Γ = {Γ(X)} such that for any
leaf alphabets X,Y and homomorphism ϕ : T (Σ, Y )→ T (Σ, X), whenever
θ, θ′ ∈ Γ(X) then θ ∩ θ′ ∈ Γ(X) and ϕ ◦ θ ◦ ϕ−1 ∈ Γ(Y ), and moreover, if ϑ
is another congruence on T (Σ, X) such that θ ⊆ ϑ, then ϑ ∈ Γ(X).

Let VFA(Σ), VTL(Σ), and VFC(Σ) denote the class of all varieties of
finite Σ-algebras, the class of all varieties of tree languages, and the class of
all varieties of congruences, respectively. These three classes are easily seen
to be complete lattices with respect to the inclusion (⊆) relation.

For a class K of finite Σ-algebras define the family Kt = {Kt(Σ, X)}
of tree languages and the family Kc = {Kc(Σ, X)} of congruences by, re-
spectively, Kt(Σ, X) = {T ⊆ T(Σ, X) | SA(T ) ∈ K} and Kc(Σ, X) = {θ |
T (Σ, X)/θ ∈ K} for any leaf alphabet X. For a family V = {V (Σ, X)}
of tree languages, let V a be the variety of finite Σ-algebras generated by
the collection {SA(T ) | T ∈ V (Σ, X)}, and let V c = {V c(Σ, X)} be the
family of finite congruences defined by setting for each leaf alphabet X,
V c(Σ, X) = {θ | θ ⊇≈T1 ∩ · · · ∩ ≈Tm for some T1, . . . , Tm ∈ V (Σ, X)}.
Finally, for a class Γ = {Γ(X)} of finite congruences, let Γa be the variety
of finite Σ-algebras generated by the collection {T (Σ, X)/θ | θ ∈ Γ(Σ, X)},
and let Γt = {Γt(Σ, X)} be the family of recognizable tree languages defined
by Γt(Σ, X) = {T ⊆ T(Σ, X) |≈T∈ Γ(Σ, X)} for any leaf alphabet X.

It can be proved that these operations map varieties to varieties, and are
isotone, i.e., for K,L ∈ VFA(Σ), V ,W ∈ VTL(Σ), and Γ,Ψ ∈ VFC(Σ),
we have Kt,Γt ∈ VTL(Σ), Kc,V c ∈ VFC(Σ) and V a,Γa ∈ VFA(Σ), and
if K ⊆ L, V ⊆ W and Γ ⊆ Ψ, then Kt ⊆ Lt, Kc ⊆ Lc, V a ⊆ W a, V c ⊆ W c,
Γa ⊆ Ψa, and Γt ⊆ Ψt. The variety theorem (Proposition 3.7 of [53]) states
that the lattices VFA(Σ), VTL(Σ) and VFC(Σ) are isomorphic with the
above mappings, i.e., Kta = K, Kca = K, V at = V , V ct = V , Γac = Γ, and
Γtc = Γ, and moreover these operations are compatible with each other, i.e.,
Kct = Kt, Ktc = Kc, V ca = V a, V ac = V c, Γta = Γa, and Γat = Γt for any
K ∈ VFA(Σ), V ∈ VTL(Σ), and Γ ∈ VFC(Σ).



Chapter 2

Many-sorted variety theorem

Many-sorted algebras have found their way into computer science through
abstract data type specifications. Many-sorted algebras and their specifica-
tions in terms of equations or other axioms are the mathematical fundament
of rigorous approaches to abstract data types in programming and specifi-
cation languages. It is widely believed that many-sorted algebras are the
right mathematical tools to explain what abstract data types are (see [16]).

It appears that Maibaum [29] was the first one to consider many-sorted
tree languages, while the idea of recognizable subsets of arbitrary algebras
goes back to Mezei and Wright [31]. Many-sorted trees are used also by
Engelfriet and Schmidt [18] in their study of the equational semantics of
context-free tree languages. Recognizable subsets of general many-sorted
algebras were studied by Courcelle [13, 14].

In this chapter, we consider varieties of recognizable subsets of many-
sorted finitely generated free algebras over a given variety, varieties of con-
gruences of such algebras, and varieties of finite many-sorted algebras. A
variety theorem that establishes bijections between the classes of these three
types of varieties is proved. For this, appropriate notions of many-sorted
syntactic congruences and algebras are needed. Indeed, by developing a
theory of varieties of recognizable subsets of free many-sorted algebras we
generalize the theories of [52, 53] and [1] to the many-sorted case.

In Section 2.1 we present some basic definitions and our notation for
many-sorted algebras. Also some more specialized notions relevant to our
work are introduced. The references [16, 28, 30] may be consulted for general
treatments of the theory of many-sorted algebras.

In Section 2.2 recognizable subsets of many-sorted algebras are consid-
ered. There are actually two types of these, recognizable sorted subsets
and the “pure” recognizable subsets considered in [14, 18, 29] in which all
elements are of some given sort. We mainly consider the former type in
this thesis. Also, syntactic congruences and syntactic algebras of subsets of
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many-sorted algebras are introduced, and it is shown that they enjoy all the
same general properties as their counterparts for monoids [17, 38] or term
algebras, or one-sorted algebras in general [1, 52, 53].

In Section 2.3 we define our varieties of recognizable sets and varieties
of congruences. For this a finite set of sorts S and variety V of some finite
S-sorted type Ω are fixed. A variety of recognizable V-sets consists then
of recognizable subsets of finitely generated free algebras over V. Similarly,
a variety of V-congruences consists of congruences of finite index on these
algebras. Finally, a V-variety of finite algebras is defined as a variety of
finite algebras contained in V. We define six mappings that transform va-
rieties of recognizable V-sets, varieties of V-congruences and V-varieties of
finite algebras to each other. Then we prove our Variety Theorem that es-
sentially says that these six mappings form three pairs of mutually inverse
isomorphisms between the complete lattices of these three kinds of varieties.

2.1 Many-sorted algebras

In what follows, S is always a non-empty set of sorts. We consider various
families of objects indexed by S. Such families are said to be S-sorted, or
just sorted. The sort of an object is usually shown as a subscript or in
parentheses (to avoid multiple subscripts). An S-sorted set A = 〈As〉s∈S
is an S-indexed family of sets; for each s ∈ S, As is the set of elements of
sort s in A, and we write it also as A(s). The basic set-theoretic notions
are defined for S-sorted sets in the natural sortwise manner. In particular,
for any S-sorted sets A = 〈As〉s∈S and B = 〈Bs〉s∈S , A ⊆ B means that
As ⊆ Bs for every s ∈ S, A∪B = 〈As∪Bs〉s∈S and A∩B = 〈As∩Bs〉s∈S , and
general sorted unions and intersections are defined similarly. The notation
∅ is used also for the S-sorted empty set 〈∅〉s∈S .

We shall also consider subsets of one given sort of sorted sets. With
any subset T ⊆ Au of some sort u ∈ S of an S-sorted set A = 〈As〉s∈S we
associate the sorted subset 〈T 〉 ⊆ A such that 〈T 〉u = T and 〈T 〉s = ∅ for
every s ∈ S, s 6= u.

A sorted relation θ = 〈θs〉s∈S on an S-sorted set A = 〈As〉s∈S is an
S-sorted family of relations such that for each s ∈ S, θs is a relation on
As. A sorted equivalence on A = 〈As〉s∈S is a sorted relation θ = 〈θs〉s∈S
where θs is an equivalence relation on As for each s ∈ S. If θ = 〈θs〉s∈S is
an equivalence on A, then the corresponding quotient set is the S-sorted set
A/θ = 〈As/θs〉s∈S , where As/θs = {a/θs | a ∈ As} (s ∈ S).

The sorted diagonal relation and the sorted universal relation on A =
〈As〉s∈S are ∆A = 〈∆A(s)〉s∈S and ∇A = 〈∇A(s)〉s∈S , respectively, where
∆A(s) = {(a, a) | a ∈ A(s)} and ∇A(s) = A(s)×A(s) for each s ∈ S.

A sorted mapping ϕ : A → B from an S-sorted set A = 〈As〉s∈S to an
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S-sorted set B = 〈Bs〉s∈S is an S-sorted family ϕ = 〈ϕs〉s∈S of mappings
ϕs : As → Bs (s ∈ S). The kernel of ϕ is the sorted equivalence kerϕ =
〈kerϕs〉s∈S on A. For any sorted subset H = 〈Hs〉s∈S of A, Hϕ denotes the
sorted subset 〈Hsϕs〉s∈S of B. Similarly, if H = 〈Hs〉s∈S is a sorted subset of
B, then Hϕ−1 denotes the sorted subset 〈Hsϕ

−1
s 〉s∈S of A. The composition

of two S-sorted mappings ϕ : A → B and ψ : B → C, where C = 〈Cs〉s∈S
is also an S-sorted set, is defined as the sorted mapping ϕψ : A → C such
that (ϕψ)s = ϕsψs for each s ∈ S. Here the mappings were composed
from left to right, as we shall do especially with homomorphisms. Hence,
ϕsψs : a 7→ (aϕs)ψs for all s ∈ S and a ∈ As.

Treating S as an alphabet, S∗ denotes the set of finite strings over S,
including the empty string e, and S+ is the set of non-empty strings over S.
An S-sorted signature Ω is a set of operation symbols each of which has been
assigned a type that is an element of S∗ × S. For any (w, s) ∈ S∗ × S, let
Ωw,s be the set of symbols of type (w, s), and Ω may be given by specifying
the non-empty sets Ωw,s. If f ∈ Ωw,s, then w is the domain type of f , and
s is its sort. In particular, every element of Ωe,s, for the empty string e, is
a constant symbol of sort s. The fact that f ∈ Ωw,s is expressed also by
writing f : w → s. For a finite S, a finite S-sorted signature is called an
S-sorted ranked alphabet. Later S is assumed to be finite and Ω is always
an S-sorted ranked alphabet. However, the following basic definitions and
facts do not depend on this assumption.

An Ω-algebra A = (A,Ω) consists of an S-sorted set A = 〈As〉s∈S , where
As 6= ∅ for every s ∈ S, equipped with constants and operations as follows:

(1) for each constant symbol c ∈ Ωe,s of sort s ∈ S, an element cA ∈ As
of sort s is specified;

(2) for any function symbol f ∈ Ωw,s with w ∈ S+ and s ∈ S, there is
an operation fA : Aw → As of type (w, s), domain type w and sort s.
Here Aw = As(1) × · · · ×As(m) for w = s(1) · · · s(m).

Such an algebra A is said to be S-sorted. For each s ∈ S, As is the set of
elements of A of sort s. The algebra A is trivial if every As (s ∈ S) is a
singleton set. We may write A = (〈As〉s∈S ,Ω) to emphasize the fact that
A is S-sorted. However, when we speak about the Ω-algebras A = (A,Ω),
B = (B,Ω) and C = (C,Ω), it will usually be assumed that A = 〈As〉s∈S ,
B = 〈Bs〉s∈S and C = 〈Cs〉s∈S .

An Ω-algebra B = (B,Ω) such that B ⊆ A is a subalgebra of A = (A,Ω),
and this we may express by writing B ⊆ A, if

(1) cB = cA whenever c ∈ Ωe,s for some s ∈ S, and
(2) fB = fA|Bw for any f ∈ Ωw,s with w ∈ S+ and s ∈ S.

A sorted equivalence θ = 〈θs〉s∈S on A is a congruence on A = (A,Ω) if
a1 θs(1) b1, . . . , am θs(m) bm ⇒ fA(a1, . . . , am) θs fA(b1, . . . , bm),
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whenever f : s(1) · · · s(m) → s and a1, b1 ∈ As(1), . . . , am, bm ∈ As(m). The
corresponding quotient algebra A/θ = (A/θ,Ω) is defined by setting

(1) cA/θ = cA/θs for any c ∈ Ωe,s, and
(2) fA/θ(a1/θs(1), . . . , am/θs(m)) = fA(a1, . . . , am)/θs for any sorted func-

tion symbol f : s(1) . . . s(m)→ s and any a1 ∈ As(1), . . . , am ∈ As(m).

Since θ is a congruence, the operations fA/θ are well-defined.
A sorted mapping ϕ : A → B is a homomorphism from A = (A,Ω) to

B = (B,Ω), and we express this by writing ϕ : A → B, if
(1) cAϕs = cB whenever c ∈ Ωe,s for some s ∈ S, and
(2) fA(a1, . . . , am)ϕs = fB(a1ϕs(1), . . . , amϕs(m)) for any function symbol

f : s(1) · · · s(m)→ s and any a1 ∈ As(1), . . . , am ∈ As(m).

A homomorphism ϕ is a monomorphism, an epimorphism or an isomor-
phism, if every ϕs (s ∈ S) is injective, surjective or bijective, respectively. If
there exists an epimorphism A → B, then B is an image of A, and we write
B ← A. If there is an isomorphism ϕ : A → B, the algebras are isomorphic,
A ∼= B in symbols. An Ω-algebra A divides an Ω-algebra B, and we write
A � B, if A is an image of a subalgebra of B. We shall write A ⊆ B also
when A is isomorphic to a subalgebra of B. We observe that A � B when
there exist an Ω-algebra C, a monomorphism ϕ : C → B and an epimorphism
ψ : C → A.

The natural map corresponding to a sorted equivalence θ = 〈θs〉s∈S on
a sorted set A is the sorted map θ\ : A→ A/θ, where θ\s : As → As/θs, a 7→
a/θs, for each s ∈ S. It is easy to verify that if θ is a congruence on an
Ω-algebra A, then θ\ is an epimorphism from A onto A/θ. Moreover, the
Homomorphism Theorem extends in a straightforward manner to many-
sorted algebras as follows (cf. [30], for example).

Proposition 2.1.1 If ϕ : A → B is a homomorphism of Ω-algebras, then
kerϕ is a congruence on A and ψ : A/ kerϕ → B, a/ kerϕs 7→ aϕs, is a
monomorphism such that (kerϕ)\ψ = ϕ. If ϕ is an epimorphism, then ψ is
an isomorphism. �

Next we introduce the many-sorted version of a notion that has proved
very useful for dealing with congruences.

Let A = (A,Ω) be an Ω-algebra. For any pair s, s′ ∈ S of sorts, an
elementary s, s′-translation is any mapping As → As′ of the form

α(ξs) = fA(a1, . . . aj−1, ξs, aj+1 . . . , am),
where m ≥ 1, f : s(1) . . . s(m)→ s′, 1 ≤ j ≤ m, s(j) = s, and ai ∈ As(i) for
every i 6= j. Here and later, ξs is a variable of sort s that does not appear
in the other alphabets considered.

Let ETr(A, s, s′) denote the set of all elementary s, s′-translations of A.
The S × S-sorted set Tr(A) = 〈Tr(A, s, s′)〉s,s′∈S of all translations of A is
now defined inductively by the following clauses:
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(1) ETr(A, s, s′) ⊆ Tr(A, s, s′) for all s, s′ ∈ S;
(2) for each s ∈ S, the identity map 1A(s) : A(s)→ A(s) is in Tr(A, s, s);
(3) if α(ξs) ∈ Tr(A, s, s′) and β(ξs′) ∈ Tr(A, s′, s′′), for some s, s′, s′′ ∈ S,

then β(α(ξs)) ∈ Tr(A, s, s′′).

For any s, s′ ∈ S, the elements of Tr(A, s, s′) are the s, s′-translations of A.
The following lemma is an immediate generalization of the corresponding

fact about one-sorted algebras (see e.g. [10, 11, 15]).

Lemma 2.1.2 Let A = (A,Ω) be an Ω-algebra. Every congruence θ =
〈θs〉s∈S on A is invariant with respect to all translations of A, that is to say,
a θs b implies α(a) θs′ α(b) for all s, s′ ∈ S, a, b ∈ As and α(ξs) ∈ Tr(A, s, s′).
On the other hand, a sorted equivalence θ on A is a congruence if it is
invariant with respect to every elementary translation of A. �

The following generalization of a lemma from the one-sorted case [52, 53]
is frequently needed.

Lemma 2.1.3 Let ϕ : A → B be a homomorphism of Ω-algebras from A =
(A,Ω) to B = (B,Ω). For any s, s′ ∈ S and every α(ξs) in Tr(A, s, s′), there
exists a translation αϕ(ξs) ∈ Tr(B, s, s′) such that α(a)ϕs′ = αϕ(aϕs) for
every a ∈ As. If ϕ is an epimorphism, then for all s, s′ ∈ S and every β(ξs)
in Tr(B, s, s′) there exists an α(ξs) ∈ Tr(A, s, s′) such that β = αϕ.

Proof. Because the claim clearly holds for the identity translations and all
other non-elementary translations are products of elementary translations,
it suffices to note that for any elementary s, s′-translation

α(ξs) = fA(a1, . . . aj−1, ξs, aj+1 . . . , am)
with f : s(1) . . . s(m)→ s′ and s(j) = s, we may choose

αϕ(ξs) = fB(a1ϕs(1), . . . aj−1ϕs(j−1), ξs, aj+1ϕs(j+1) . . . , amϕs(m)).
If ϕ is surjective, then every elementary translation of B can be obtained
this way, which also then holds for all translations of B. �

Translations of an Ω-algebra A = (A,Ω) and their inverses are applied
to subsets of a given sort and to sorted subsets as follows. Let α(ξs) be a
translation in Tr(A, s, s′) for some s, s′ ∈ S. For any u ∈ S and T ⊆ Au, let

• α(T ) = {α(a) | a ∈ T} (⊆ As′) if u = s, and α(T ) = ∅ if u 6= s;
• α−1(T ) = {a ∈ As | α(a) ∈ T} if u = s′, and α−1(T ) = ∅ if u 6= s′.

Furthermore, for any sorted subset L = 〈Ls〉s∈S of A, we set

• α(L) = 〈Ku〉u∈S , where Ks′ = α(Ls), and Ku = ∅ for each u 6= s′;
• α−1(L) = 〈Ku〉u∈S , where Ks = α−1(Ls′), and Ku = ∅ for each u 6= s.

The direct product of two Ω-algebras A = (A,Ω) and B = (B,Ω) is the
Ω-algebra A× B = (A×B,Ω), where
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(1) A×B = 〈As ×Bs〉s∈S ,
(2) cA×B = (cA, cB) for any s ∈ S and c ∈ Ωe,s, and
(3) fA×B((a1, b1), . . . , (am, bm)) = (fA(a1, . . . , am), fB(b1, . . . , bm)) for

any a1 ∈ As(1), b1 ∈ Bs(1), . . . , am ∈ As(m), bm ∈ Bs(m) and any func-
tion symbol f : s(1) . . . s(m)→ s.

The direct product A1 × · · · × An of any finite family A1, . . . ,An, or the
direct product

∏
i∈I Ai of a general family Ai (i ∈ I) of Ω-algebras, are

defined correspondingly.
If ϕ : A → B is a sorted mapping from an S-sorted set A = 〈As〉s∈S to

an S-sorted set B = 〈Bs〉s∈S and θ = 〈θs〉s∈S is a sorted equivalence on B,
then ϕ ◦ θ ◦ ϕ−1 is the sorted equivalence on A defined by the condition

a1 (ϕ ◦ θ ◦ ϕ−1)s a2 ⇔ a1ϕs θs a2ϕs (s ∈ S, a1, a2 ∈ As).
In the following lemma we note a few basic facts about quotient algebras.

Lemma 2.1.4 Let A = (A,Ω) and B = (B,Ω) be Ω-algebras, θ, θ′ be con-
gruences on A, ρ be a congruence on B, and let ϕ : A → B be a homomor-
phism. Then the following hold.

(1) If θ ⊆ θ′, then A/θ′ ← A/θ.
(2) A/θ ∩ θ′ ⊆ A/θ ×A/θ′.
(3) The relation ϕ◦ρ◦ϕ−1 is a congruence on A, and A/ϕ◦ρ◦ϕ−1 � B/ρ.

If ϕ is an epimorphism, then A/ϕ ◦ ρ ◦ ϕ−1 ∼= B/ρ

Proof. Statements (1) and (2) are direct generalizations of well-known facts.
In the many-sorted case they follow, for example, from Theorem 3.4.20 and
Lemma 4.1.5 of [30].

Let us prove (3). If a (ϕ ◦ ρ ◦ϕ−1)s b, for some s ∈ S and a, b ∈ As, then
aϕs ρs bϕs. By Lemma 2.1.3, for any s′ ∈ S and every α ∈ Tr(A, s, s′), there
is an αϕ ∈ Tr(B, s, s′) such that αϕ(dϕs) = α(d)ϕs′ for every d ∈ As. Since
αϕ(aϕs) ρs′ αϕ(bϕs) by Lemma 2.1.2, we also have α(a)ϕs′ ρs′ α(b)ϕs′ , that
is to say, α(a) (ϕ◦ρ◦ϕ−1)s′ α(b). Hence, ϕ◦ρ◦ϕ−1 is a congruence relation
on A by Lemma 2.1.2. It is now easy to see that ψ : A/(ϕ ◦ ρ ◦ϕ−1)→ B/ρ
is a monomorphism if we define

ψs : As/(ϕ ◦ ρ ◦ ϕ−1)s → Bs/ρs, a/(ϕ ◦ ρ ◦ ϕ−1)s 7→ aϕs/ρs,
for each s ∈ S. Finally, we note that if ϕ is surjective, then so is ψ. �

The class operators S, H, P and Pf are defined exactly as in the one-
sorted case: for any class K of Ω-algebras and any Ω-algebra A,

(1) A ∈ S(K) iff A is isomorphic to a subalgebra of a member of K,
(2) A ∈ H(K) iff A is an image of some member of K,
(3) A ∈ P(K) iff A is isomorphic to the direct product of a family of

algebras in K, and
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(4) A ∈ Pf(K) iff A is isomorphic to the direct product of a finite family
of algebras in K.

A class K of Ω-algebras is a variety if S(K),H(K),P(K) ⊆ K. Birkhoff’s
well-known theorem [6] by which a class of algebras is definable by equations
iff it is a variety, holds also for many-sorted algebras (cf. Section 5 of [30]).

A class K of finite Ω-algebras is called a variety of finite Ω-algebras, an
Ω-VFA for short, if it is closed under subalgebras, homomorphic images,
and finite direct products, i.e., if S(K),H(K),Pf(K) ⊆ K. It is easy to
show that a class K of finite Ω-algebras is an Ω-VFA iff A ∈ K whenever
A � A1× . . .×An for some n ≥ 0 and A1, . . . ,An ∈ K. When we deal with
varieties of finite Ω-algebras, both S and Ω are assumed to be finite.

Let X = 〈Xs〉s∈S be an S-sorted alphabet disjoint from Ω. The S-sorted
set TΩ(X) = 〈TΩ(X, s)〉s∈S of Ω-terms with variables in X is defined induc-
tively by:

(1) Ωe,s ∪Xs ⊆ TΩ(X, s) for every s ∈ S, and
(2) f(t1, . . . , tm) ∈ TΩ(X, s) for any function symbol f : s1 . . . sm → s and

terms t1 ∈ TΩ(X, s1), . . ., tm ∈ TΩ(X, sm).

The alphabet X is said to be full for Ω if TΩ(X, s) 6= ∅ for every sort s ∈ S.
Note that a given TΩ(X, s) may be non-empty even when Xs = Ωe,s = ∅. If
X = 〈Xs〉s∈S is full for Ω, then the ΩX-term algebra TΩ(X) = (TΩ(X),Ω)
is defined in the natural way:

(1) cTΩ(X) = c for any s ∈ S and c ∈ Ωe,s, and
(2) fTΩ(X)(t1, . . . , tm) = f(t1, . . . , tm) whenever m > 0, f : s1 . . . sm → s

and t1 ∈ TΩ(X, s1), . . ., tm ∈ TΩ(X, sm).

Of course, TΩ(X) is freely generated by X over the class of all Ω-algebras,
that is to say, for any Ω-algebra A = (A,Ω), any sorted mapping α : X → A
has a unique extension to a homomorphism αA : TΩ(X)→ A.

In a more general setting, if V is a class of Ω-algebras, an Ω-algebra
F = (〈Fs〉s∈S ,Ω) is freely generated over V by a sorted subset G ⊆ F , if
F ∈ V, F is generated by G, and for any A = (A,Ω) in V, any sorted
mapping ϕ0 : G → A can be extended to a homomorphism ϕ : F → A. If
such an F exists, it is determined uniquely up to isomorphism by V and G,
and we denote it FV(G) = (FV(G),Ω) with FV(G) = 〈FV(G, s)〉s∈S .

Let Ω be an S-sorted ranked alphabet and let X be an S-sorted alphabet
disjoint from Ω. For each s ∈ S, let ξs be again a special symbol of sort s.
The S×S-sorted set CΩ(X) = 〈CΩ(X, s, s′)〉s,s′∈S of ΩX-contexts is defined
inductively by the conditions

(1) ξs ∈ CΩ(X, s, s) for each s ∈ S, and
(2) f(t1, . . . , tj−1, p, tj+1 . . . , tm) ∈ CΩ(X, s, s′) for s, s′, s1, . . . , sm ∈ S,

m ≥ 1, f : s1 . . . sm → s′, 1 ≤ j ≤ m, p ∈ CΩ(X, s, sj), and terms
ti ∈ TΩ(X, si) where i 6= j.
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The composition p · q = q(p) of two ΩX-contexts p ∈ CΩ(X, s, s′) and
q ∈ CΩ(X, s′, s′′) (for some s, s′, s′′ ∈ S) is the ΩX-context in CΩ(X, s, s′′)
obtained from q when ξs′ is replaced with p.

Let A = (A,Ω) be any Ω-algebra. Every translation of A is represented
in a natural way by an ΩA-context of a matching type:

(1) an elementary translation α(ξs) = fA(a1, . . . aj−1, ξs, aj+1 . . . , am) is
represented by the ΩA-context f(a1, . . . aj−1, ξs, aj+1 . . . , am),

(2) the identity map 1A(s) : A(s)→ A(s) is represented by ξs, and
(3) if α(ξs) ∈ Tr(A, s, s′) and β(ξs′) ∈ Tr(A, s′, s′′) are represented by the

ΩA-contexts p(ξs) ∈ CΩ(A, s, s′) and q(ξs′) ∈ CΩ(A, s′, s′′), respec-
tively, then β(α(ξs)) is represented by q(p(ξs)) ∈ CΩ(A, s, s′′).

That a translation α(ξs) is represented by a context p(ξs) means that α is
the polynomial function (cf. [10], for example) defined by p in A, when p is
interpreted as a polynomial symbol with ξs as the only variable.

2.2 Syntactic congruences and algebras

An equivalence θ on a set A saturates a subset L of A if L is the union of
some θ-classes, and θ is said to be of finite index if it has a finite number of
equivalence classes. Mezei and Wright [31] call a subset L of an algebra A
recognizable if it is saturated by a congruence of finite index on A. Clearly, L
is recognizable if and only if there exist a finite algebra B, a homomorphism
ϕ : A → B and a subset H of B such that L = Hϕ−1. We use this condition,
where B may be viewed as a “recognizer” of L, for defining recognizability in
many-sorted algebras. There are two natural types of recognizable subsets of
a sorted algebra: the recognizable sorted subsets and the recognizable subsets
of a given sort.

In what follows, S is always a finite set of sorts and Ω is an S-sorted
ranked alphabet. An S-sorted set A = 〈As〉s∈S is said to be finite if every
As (s ∈ S) is finite, and similarly, an Ω-algebra A = (A,Ω) is finite if
A = 〈As〉s∈S is finite.

Definition 2.2.1 A sorted subset L ⊆ A of an Ω-algebra A = (A,Ω) is
recognizable if there exist a finite Ω-algebra B = (B,Ω), a homomorphism
ϕ : A → B and a sorted subset H of B such that L = Hϕ−1, and we say
that B recognizes L. Let Rec(A) be the set of all recognizable subsets of A.

For any s ∈ S, a subset T of As is said to be recognizable in A if there
exist a finite Ω-algebra B = (B,Ω), a homomorphism ϕ : A → B and a
subset H of Bs such that T = Hϕ−1

s . Let Rec(A, s) denote the set of all
such subsets of As. We call such sets pure recognizable sets.
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The recognizable tree languages of sort s ∈ S considered by Maibaum
[29] are the pure recognizable subsets of the term algebra TΩ(∅) of sort s,
i.e., the elements of Rec(TΩ(∅), s). Courcelle [13, 14] extends this notion to
any S-sorted algebra A = (〈As〉s∈S ,Ω), without assuming the finiteness of
S or Ω, by calling a subset T ⊆ As recognizable if there exist a locally finite
Ω-algebra B = (B,Ω), a homomorphism ϕ : A → B and a subset H of Bs
such that T = Hϕ−1

s ; an algebra B = (〈Bs〉s∈S ,Ω) is locally finite if every
Bs is finite (s ∈ S). Since we assume that S is finite, this “locally finite”
means here just “finite”.

A sorted equivalence θ = 〈θs〉s∈S on an S-sorted set A = 〈As〉s∈S is said
to saturate a sorted subset L = 〈Ls〉s∈S of A if every Ls is the union of some
θs-classes (s ∈ S), and θ is of finite index if every θs (s ∈ S) is of finite
index. The following lemma is an obvious generalization of the above fact.

Lemma 2.2.2 A sorted subset of an Ω-algebra A is recognizable iff it is
saturated by a congruence on A of finite index. Similarly, a subset T ⊆ Au
of some sort u ∈ S is recognizable iff it is saturated by θu for some congruence
θ = 〈θs〉s∈S on A of finite index. �

Next we present a few closure properties that are well-known for recog-
nizable subsets of one-sorted algebras.

Proposition 2.2.3 Let A = (A,Ω) and B = (B,Ω) be any Ω-algebras.

(1) ∅, A ∈ Rec(A).
(2) If K,L ∈ Rec(A), then K ∪ L,K ∩ L,K − L ∈ Rec(A).
(3) If L ∈ Rec(A) and α ∈ Tr(A, s, s′) for some s, s′ ∈ S, then α−1(L)

belongs to Rec(A).
(4) If ϕ : A → B is a homomorphism and L ∈ Rec(B), then Lϕ−1 belongs

to Rec(A).

Proof. Assertion (1) is trivial, and (2) can be proved as usual by defining
the direct product of any two finite algebras recognizing K and L.

For (3), we recall first that α−1(L)s = α−1(Ls′) and α−1(L)s′′ = ∅ for
every s′′ 6= s. Assume now that L = Hϕ−1, where ϕ : A → C is a homo-
morphism to a finite algebra Ω-algebra C = (C,Ω), and H ⊆ C. By Lemma
2.1.3 there is a translation αϕ ∈ Tr(C, s, s′) such that α(a)ϕs′ = αϕ(aϕs)
for every a ∈ Ls. Now it is easy to see that α−1(L) = Gϕ−1 for the sorted
subset G of C defined in such a way that Gs = α−1

ϕ (Hs′) and Gs′′ = ∅ for
every s′′ 6= s.

To prove (4), assume that L = Hψ−1, where ψ : B → C is a homo-
morphism to a finite algebra Ω-algebra C = (C,Ω) and H ⊆ C. Then
Lϕ−1 = H(ϕψ)−1 ∈ Rec(A) as claimed. �
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Let us clarify here the relationship between the two notions of recogniz-
able subsets, recognizable sorted subsets and pure recognizable subsets.

The following fact can be derived directly from Definition 2.2.1.

Lemma 2.2.4 Let A = (A,Ω) be an S-sorted algebra. For any s ∈ S and
T ⊆ As, T ∈ Rec(A, s) iff 〈T 〉 ∈ Rec(A). �

The forward direction of the following proposition is again a direct con-
sequence of Definition 2.2.1, and the converse part follows from Lemma 2.2.4
and Proposition 2.2.3(2).

Proposition 2.2.5 A sorted subset L = 〈Ls〉s∈S of an S-sorted algebra
A = (A,Ω) is recognizable iff Ls ∈ Rec(A, s) for every s ∈ S. �

We shall now present a theory of syntactic congruences and syntactic al-
gebras for S-sorted algebras similar to those known for semigroups, monoids
(cf. [17, 38, 40]) or general one-sorted algebras (cf. [1, 52, 53]).

Definition 2.2.6 The syntactic congruence ≈L = 〈≈Ls 〉s∈S of a sorted sub-
set L of an Ω-algebra A = (A,Ω) is defined by

a ≈Ls b ⇔ (∀s′ ∈ S)(∀α ∈ Tr(A, s, s′))(α(a) ∈ Ls′ ↔ α(b) ∈ Ls′)
for every s ∈ S and a, b ∈ As.

The following basic property of syntactic congruences can be verified
exactly as in the one-sorted case.

Lemma 2.2.7 The syntactic congruence ≈L of any sorted subset L of an
Ω-algebra A = (A,Ω) is the greatest congruence on A that saturates L. �

Of course, we have also the following Nerode-Myhill type theorem.

Proposition 2.2.8 For any sorted subset L of an Ω-algebra A = (A,Ω),
the following are equivalent:

(1) L ∈ Rec(A);
(2) L is saturated by a congruence on A of finite index;
(3) ≈L is of finite index.

Proof. If there exist a finite Ω-algebra B = (B,Ω), a homomorphism
ϕ : A → B and a sorted subset H of B such that L = Hϕ−1, then kerϕ
is a congruence on A of finite index saturating L. On the other hand, if L
is saturated by a congruence θ on A of finite index, then L is recognized by
the finite Ω-algebra A/θ. Hence, (1) and (2) are equivalent. Conditions (2)
and (3) are equivalent by Lemma 2.2.7. �

Also the following facts can be proved similarly as their counterparts in
the one-sorted theory ([53]). Note that K and L are always sorted subsets.
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Proposition 2.2.9 Let A = (A,Ω) and B = (B,Ω) be Ω-algebras.
(1) ≈A−L = ≈L, for every L ⊆ A.
(2) ≈K ∩ ≈L ⊆ ≈K∩L, for every K,L ⊆ A.
(3) ≈L ⊆ ≈α−1(L), for every L ⊆ A and translation α(ξs) ∈ Tr(A, s, s′).
(4) If ϕ : A → B is a homomorphism, then ϕ◦≈L◦ϕ−1 ⊆ ≈Lϕ−1

for every
L ⊆ B. If ϕ is an epimorphism, then ϕ◦≈L◦ϕ−1 = ≈Lϕ−1

. �

For any sorted subset L of an Ω-algebra A = (A,Ω), let A/L = 〈As/L〉s∈S ,
where As/L = As/≈Ls for each sort s ∈ S. Moreover, for any s ∈ S and
any a ∈ As, let a/L be a shorthand for a/≈Ls .

Definition 2.2.10 The syntactic algebra A/L = (A/L,Ω) of a subset L of
an Ω-algebra A = (A,Ω) is the quotient algebra A/≈L, and the correspond-
ing canonical homomorphism ϕL = 〈ϕLs 〉s∈S , where for each s ∈ S,

ϕLs : As → As/L, a 7→ a/L, (a ∈ As),
is called the syntactic homomorphism of L.

It is clear that any sorted subset L of an Ω-algebra A = (A,Ω) is recog-
nized by its syntactic algebra. Indeed, L = LϕL(ϕL)−1 for the syntactic
homomorphism ϕL : A → A/L. It follows from Lemma 2.2.7 that A/L is in
the following sense the least algebra recognizing L.

Lemma 2.2.11 A sorted subset L of an Ω-algebra A is recognizable iff the
syntactic algebra A/L is finite. An Ω-algebra B recognizes L iff A/L � B.�

Proposition 2.2.12 Let A = (A,Ω) and B = (B,Ω) be any Ω-algebras.
(1) A/(A− L) = A/L, for any L ⊆ A.
(2) A/K ∩ L � A/K ×A/L, for any K,L ⊆ A.
(3) A/α−1(L) � A/L, for any L ⊆ A, s, s′ ∈ S and α(ξs) ∈ Tr(A, s, s′).
(4) A/Lϕ−1 � B/L, for any homomorphism ϕ : A → B and any L ⊆ B.

Moreover, if ϕ is an epimorphism, then A/Lϕ−1 ∼= B/L.

Proof. Assertions (1) and (3) follow immediately by the corresponding parts
of Proposition 2.2.9 and Lemma 2.1.4. For (2) it suffices to note that

A/K ∩ L← A/(≈K ∩ ≈L) ⊆ A/K ×A/L
by Proposition 2.2.9(2) and Lemma 2.1.4.
To prove (4), let us first assume that ϕ is an epimorphism and show that

ψs : As/Lϕ−1 → Bs/L, a/Lϕ
−1 7→ aϕs/L, (s ∈ S, a ∈ As)

defines an isomorphism ψ = 〈ψs〉s∈S between A/Lϕ−1 and B/L. First we
verify that ψ is well-defined and injective: for each s ∈ S and any a, a′ ∈ As,

(a/L)ψs = (a′/L)ψs ⇔ aϕs ≈Ls a′ϕs
⇔ (∀s′)(∀β)[β(aϕs) ∈ Ls′ ↔ β(a′ϕs) ∈ Ls′ ]
⇔ (∀s′)(∀α)[αϕ(aϕs) ∈ Ls′ ↔ αϕ(a′ϕs) ∈ Ls′ ]
⇔ (∀s′)(∀α)[α(a)ϕs′ ∈ Ls′ ↔ α(a′)ϕs′ ∈ Ls′ ]
⇔ (∀s′)(∀α)[α(a) ∈ Ls′ϕ−1

s′ ↔ α(a′) ∈ Ls′ϕ−1
s′ ]

⇔ a/Lϕ−1 = a′/Lϕ−1,
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where s′ ranges over S, α over Tr(A, s, s′) and β over Tr(B, s, s′).
Consider now a homomorphism ϕ : A → B that is not necessarily onto, and
let C = (〈AsϕsϕLs 〉s∈S ,Ω) be the subalgebra of B/L obtained as the image of
B under the homomorphism ϕϕL : A → B/L. Then η : A → C, a 7→ aϕϕL,
is an epimorphism, and hence A/Lϕ−1ηη−1 ∼= C/Lϕ−1η. However, this
implies A/Lϕ−1 � B/L since Lϕ−1ηη−1 = Lϕ−1 and C ⊆ B/L. �

Lemma 2.2.13 If ϕ : A → B is a homomorphism of Ω-algebras and L ⊆ B,
then for every s ∈ S,

ϕs◦≈Ls ◦ϕ−1
s ⊆

⋂
{≈β

−1(L)ϕ−1

s | β ∈ Tr(B, s, s′), s′ ∈ S},
and if ϕ is an epimorphism, equality holds.

Proof. Let ρ =
⋂
{≈β

−1(L)ϕ−1

s | β ∈ Tr(B, s, s′), s′ ∈ S}. Parts (3) and (4)
of 2.2.9 yield for every β ∈ Tr(B, s, s′),

ϕs◦ ≈Ls ◦ϕ−1
s ⊆ ϕs◦ ≈β

−1(L)
s ◦ϕ−1

s ⊆ ≈β
−1(L)ϕ−1

s .
Hence ϕs◦ ≈Ls ◦ϕ−1

s ⊆ ρ. Assume now that ϕ is surjective. The con-
verse inclusion is then obtained by the following chain of implications, where
a, a′ ∈ As, s′ and s′′ range over S, β and γ are translations of B, and (∀β)s,s′
is a shorthand for (∀β ∈ Tr(B, s, s′)) etc.:

a ρ a′ ⇒ (∀s′)(∀β)s,s′ [a ≈
β−1(L)ϕ−1

s a′]
⇒ (∀s′)(∀β)s,s′ [aϕs ≈

β−1(L)
s a′ϕs]

⇒ (∀s′, s′′)(∀β)s,s′(∀γ)s,s′′ [γ(aϕs) ∈ β−1(L)s′′ ↔ γ(a′ϕs) ∈ β−1(L)s′′ ]
⇒ (∀s′)(∀β)s,s′(∀γ)s,s[γ(aϕs) ∈ β−1(Ls′)↔ γ(a′ϕs) ∈ β−1(Ls′)]
⇒ (∀s′)(∀β)s,s′(∀γ)s,s[β(γ(aϕs)) ∈ Ls′ ↔ β(γ(a′ϕs)) ∈ Ls′ ]
⇒ (∀s′)(∀β)s,s′ [β(aϕs) ∈ Ls′ ↔ β(a′ϕs) ∈ Ls′ ]
⇒ aϕs ≈Ls a′ϕs
⇒ a ϕs◦ ≈Ls ◦ϕ−1

s a′.

Here we used also the fact that β−1(L)s′′ = ∅ for every s′′ 6= s. �

Let us now present the natural generalizations of some basic facts known
for monoids [17, 38] and algebras in general in the one-sorted case [52, 53].

Lemma 2.2.14 Let L = 〈Ls〉s∈S be a sorted subset of an Ω-algebra A =
(A,Ω). For any s ∈ S and a ∈ As,

a/L =
⋂
{α−1(Ls′) | α(as) ∈ Ls′} \

⋃
{α−1(Ls′) | α(as) /∈ Ls′},

where s′ ranges over S and α over Tr(A, s, s′). �

Lemma 2.2.15 Any congruence θ on an algebra A = (A,Ω) is the inter-
section of some syntactic congruences. In particular,

θ =
⋂
{≈〈a/θ〉| s ∈ S, a ∈ As}.

�
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Let us call an Ω-algebra A syntactic, if A ∼= B/L for some Ω-algebra B
and some sorted subset L of B. A sorted subset D of an Ω-algebra A is
disjunctive if ≈D = ∆A.

Proposition 2.2.16 An Ω-algebra A is syntactic if and only if it has a
disjunctive subset. �

Subdirect products of Ω-algebras are defined (cf. [30], Section 4.1, or [28],
p. 159) exactly as for one-sorted algebras, and by generalizing in an obvious
way a well-known theorem of Birkhoff (cf. [10], for example), we may say
that an Ω-algebra A = (A,Ω) is subdirectly irreducible if the intersection of
all non-trivial congruences on A is the diagonal relation ∆A. By applying
Lemma 2.2.15 to the diagonal relation we get the following result.

Corollary 2.2.17 Every subdirectly irreducible Ω-algebra is syntactic. �

Since it is clear that also varieties of many-sorted algebras are gener-
ated by their subdirectly irreducible members, Corollary 2.2.17 implies the
following important lemma which follows also directly from Lemma 2.2.15:
A ⊆

∏
{A/ ≈{a}| a ∈ A} for any finite A = (A,Ω) because we already have

∆A =
⋂
{≈{a}| a ∈ A}.

Lemma 2.2.18 Every Ω-VFA is generated by syntactic algebras. Hence,
if K is an Ω-VFA and A any finite Ω-algebra, then A ∈ K iff A divides
the product A1 × · · · × An for some n ≥ 0 and some syntactic algebras
A1, . . . ,An ∈ K. �

2.3 The Variety Theorem

Let S and Ω be again a finite set of sorts and an S-sorted ranked alphabet,
respectively. We shall consider varieties of recognizable subsets of finitely
generated free algebras over a given variety V of Ω-algebras. If V is the
class of all Ω-algebras, we are actually dealing with varieties of many-sorted
tree languages. In what follows, we call finite S-sorted alphabets full for Ω
simply full alphabets, and X = 〈Xs〉s∈S and Y = 〈Ys〉s∈S are always such
full alphabets.

The free algebra FV(X) = (FV(X),Ω) exists for every full alphabet
X, and we call the recognizable subsets of FV(X) recognizable V-sets. The
syntactic algebra FV(X)/L of a sorted subset L of FV(X) is denoted simply
SA(L). It is clear that SA(L) ∈ V.

We shall also need the following fact that can be proved similarly as its
one-sorted counterpart [17, 52, 53].
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Lemma 2.3.1 Let A be a finite algebra in V and let X be a full alphabet
such that for some generating set G = 〈Gs〉s∈S of A, |Gs| ≤ |Xs| for every
s ∈ S. Then A is syntactic iff A ∼= SA(L) for some L ∈ Rec(FV(X)). �

A family of recognizable V-sets is a mapping R that assigns to each full
alphabet X a set R(X) ⊆ Rec(FV(X)) of recognizable V-sets. We write
then R = {R(X)}X with the understanding that X ranges over all full
alphabets. The inclusion relation and the basic set-operations are defined
for families of recognizable V-sets by the natural componentwise conditions.
For example, if R1 and R2 are any families of recognizable V-sets, then
R1 ⊆ R2 iff R1(X) ⊆ R2(X) for every X.

For any X and L ⊆ FV(X), the complement of L is FV(X) \ L.

Definition 2.3.2 A family of recognizable V-sets R = {R(X)}X is a va-
riety of recognizable V-sets, a V-VRS for short, if for all full alphabets X
and Y , the following hold.

(1) R(X) 6= ∅,
(2) K,L ∈ R(X) implies K ∩ L,FV(X) \ L ∈ R(X),
(3) if L ∈ R(X), then α−1(L) ∈ R(X) for every α ∈ Tr(FV(X)), and
(4) if L ∈ R(Y ), then Lϕ−1 ∈ R(X) for every ϕ : FV(X)→ FV(Y ).

Let VRS(V) denote the class of all varieties of recognizable V-sets.

It is clear that the intersection of any family of varieties of recognizable
V-sets is again a V-VRS, and hence (VRS(V),⊆) is a complete (in fact,
algebraic) lattice.

If L = 〈Ls〉s∈S is a sorted subset of any algebra A = (A,Ω) and s ∈ S
is any sort, then 〈Ls〉 = 1−1

A(s)(L) where 1A(s) is the identity map on A(s).
Applied to the algebras FV(X), this observation yields the following fact.

Lemma 2.3.3 Let R = {R(X)}X be a V-VRS. If L = 〈Ls〉s∈S ∈ R(X)
for some X, then 〈Ls〉 ∈ R(X) for every s ∈ S. �

From Lemma 2.3.3 and Lemma 2.2.14 we get directly the following fact.

Lemma 2.3.4 If R = {R(X)}X is a V-VRS and L ∈ R(X) for some X,
then 〈a/L〉 ∈ R(X) for any s ∈ S and any a ∈ FV (X, s). �

For any full alphabet X, let FCon(FV(X)) denote the set of all congru-
ences on FV(X) of finite index. Such congruences are called V-congruences.
A family of V-congruences is a map Γ that assigns to each X a set Γ(X) ⊆
FCon(FV(X)). We represent such a family in the form Γ = {Γ(X)}X .

Definition 2.3.5 A family of V-congruences Γ = {Γ(X)}X is a variety of
V-congruences, a V-VFC for short, if for all X and Y ,
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(1) Γ(X) 6= ∅,
(2) if θ, θ′ ∈ Γ(X), then θ ∩ θ′ ∈ Γ(X),
(3) if θ ∈ Γ(X) and θ ⊆ θ′, then θ′ ∈ Γ(X), and
(4) if θ ∈ Γ(Y ), then ϕ ◦ θ ◦ ϕ−1 ∈ Γ(X) for any ϕ : FV(X)→ FV(Y ).

Let VFC(V) denote the class of all varieties of V-congruences.

In other words, a variety of V-congruences is a family of filters of the
congruences (closed under intersections and supersets) which is closed under
inverse homomorphisms. It is again easy to see that (VFC(V),⊆) is an
algebraic lattice.

Let S, Ω and V be as in the previous section. By definition, a variety
of finite V-algebras, a V-VFA for short, is a variety of finite Ω-algebras
contained in V. Let VFA(V) be the class of all V-VFAs. We shall prove
a Variety Theorem that establishes a triple of bijective correspondences be-
tween all varieties of recognizable V-sets, all varieties of finite V-algebras,
and all varieties of V-congruences. The proof is similar to those of various
other Variety Theorems, and in particular to the one of [53]. We however
present a rather detailed proof.

Let us now introduce the six mappings that will yield the Variety The-
orem in the form of three pairs of mutually inverse isomorphisms between
the three complete lattices (VFA(V),⊆), (VRS(V),⊆) and (VFC(V),⊆).

Definition 2.3.6 For any V-VFA K, V-VRS R, and V-VFC Γ, let

(1) Kr be the family of recognizable V-sets such that for each X,
Kr(X) = {L ⊆ FV(X) | SA(L) ∈ K},

(2) Kc be the family of V-congruences such that for each X,
Kc(X) = {θ ∈ FCon(FV(X)) | FV(X)/θ ∈ K},

(3) Ra be the V-VFA generated by the syntactic algebras SA(L) where
L ∈ R(X) for some X,

(4) Rc be the family of V-congruences such that for eachX,Rc(X) is the set
of all congruences θ in FCon(FV(X)) such that θ ⊇ ≈L1 ∩ · · · ∩ ≈Ln

holds for some L1, . . . , Ln ∈ R(X),
(5) Γa be the V-VFA generated by all algebras FV(X)/θ such that θ belongs

to Γ(X) for some X, and let
(6) Γr be the family of recognizable V-sets such that for each X,

Γr(X) = {L ⊆ FV(X) | ≈L∈ Γ(X)}.

We note that these operations map varieties to varieties and are isotone.

Lemma 2.3.7 For any K ∈ VFA(V), R ∈ VRS(V) and Γ ∈ VFC(V),

(1) Ra,Γa ∈ VFA(V),
(2) Kr,Γr ∈ VRS(V), and
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(3) Kc,Rc ∈ VFC(V).

Moreover, each of the mappings K 7→ Kr, K 7→ Kc, R 7→ Ra, R 7→ Rc,
Γ 7→ Γa and Γ 7→ Γr is inclusion-preserving.

Proof. By definition, Ra and Γa are V-VFA’s. The families Kr and Γr

are V-VRS’s by Propositions 2.2.12 and 2.2.9. Finally, Lemmas 2.1.4 and
2.2.13, and Proposition 2.2.9 imply that Kc and Rc are V-VFC’s. �

We shall show that the six mappings introduced above form three pairs of
mutually inverse isomorphisms between the complete lattices (VFA(V),⊆),
(VRS(V),⊆) and (VFC(V),⊆). Since we already know that all the maps
are isotone, it suffices to show that they are pairwise inverses of each other.

Proposition 2.3.8 The lattices (VFA(V),⊆) and (VRS(V),⊆) are iso-
morphic as

(1) Kra = K for every K ∈ VFA(V), and
(2) Rar = R for every R ∈ VRS(V).

Proof. It suffices to prove (1) and (2).
Since Kra is generated by syntactic algebras belonging to K, the in-

clusion Kra ⊆ K is obvious. For the converse inclusion, let us consider
any syntactic algebra A ∈ K. By Lemma 2.3.1 there exists an X such
that A ∼= SA(L) for some L ∈ Rec(FV(X)). Then L ∈ Kr(X) and hence
A ∈ Kra. This implies K ⊆ Kra because, by Lemma 2.2.18, K is generated
by syntactic algebras.

The inclusion R ⊆ Rar is obvious: if L ∈ R(X) for some X, then
SA(L) ∈ Ra and hence L ∈ Rar(X). Assume then that L ∈ Rar(X) for
some X. Then SA(L) ∈ Ra implies that SA(L) � SA(L1) × · · · × SA(Lk)
for some k ≥ 1, some full alphabets Xi = 〈Xi(s)〉s∈S and sets Li ∈ R(Xi)
(where i = 1, . . . , k). For each i = 1, . . . , k, let ϕi denote the syntactic
homomorphisms ϕLi : FV(Xi)→ SA(Li). Then there is a homomorphism

η : FV(X1)× · · · × FV(Xk) −→ SA(L1)× · · · × SA(Lk)
such that for every i = 1, . . . , k, ηπi = τiϕi, where

πi : SA(L1)× · · · × SA(Lk) −→ SA(Li),
and

τi : FV(X1)× · · · × FV(Xk) −→ FV(Xi)
are the respective projection functions. By Lemma 2.2.11 there exist a
homomorphism ϕ : FV(X) → SA(L1) × · · · × SA(Lk) and a subset H of
SA(L1) × · · · × SA(Lk) such that L = Hϕ−1. Since η is an epimorphism,
there is a homomorphism ψ : FV(X) → FV(X1) × · · · × FV(Xk) such that
ψη = ϕ. Because H is finite, L =

⋃
u∈H uϕ

−1 is the union of finitely many
sets uϕ−1 with u = (u1, . . . , uk) ∈ SA(L1) × · · · × SA(Lk). For each such
u ∈ H, uϕ−1 =

⋂
{ui(ϕπi)−1 | 1 ≤ i ≤ k} =

⋂
{uiϕ−1

i (ψτi)−1 | 1 ≤ i ≤ k}.
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By Lemma 2.3.4, uiϕ−1
i ∈ R(Xi) for each i ≤ k, and thus L ∈ R(X). �

Lemma 2.3.9 For any V-VFC Γ and any finite algebra A ∈ V, A ∈ Γa

iff there exist a finite set X and an epimorphism ϕ : FV(X)→ A such that
kerϕ ∈ Γ(X).

Proof. If A ∈ Γa, then A � FV(X1)/θ1 × · · · × FV(Xk)/θk for some full
alphabets X1, . . . , Xk and congruences θ1 ∈ Γ(X1), . . . , θk ∈ Γ(Xk) where
k ≥ 1. This means that for some algebra B there exist an epimorphism
η : B → A and a monomorphism ϕ : B → FV(X1)/θ1×· · ·×FV(Xk)/θk. The
algebras FV(Xi)/θi are finite members of V and hence there is for someX an
epimorphism ψ : FV(X)→ B. By setting (a1, . . . , ak)χ = (a1/θ1, . . . , ak/θk)
we define an epimorphism

χ : FV(X1)× · · · × FV(Xk) −→ FV(X1)/θ1 × · · · × FV(Xk)/θk.
For each i = 1, . . . , k, let πi : FV(X1)× · · · × FV(Xk)→ FV(Xi) be the i-th
projection, and let ω : FV(X)→ FV(X1)× · · · × FV(Xk) be the homomor-
phism such that ωχ = ψϕ. Then ψη : FV(X)→ A is an epimorphism, and
kerψη ⊇ kerψϕ = kerωχ =

⋂
{ωπi ◦ θi ◦ (ωπi)−1 | 1 ≤ i ≤ k} shows that

kerψη ∈ Γ(X).
The converse implication is immediately clear by the definition of Γa. �

Proposition 2.3.10 The lattices (VFA(V),⊆) and (VFC(V),⊆) are iso-
morphic as

(1) Kca = K for every V-VFA K, and
(2) Γac = Γ for every V-VFC Γ.

Proof. (1) The inclusion K ⊆ Kc is straightforward. For the opposite inclu-
sion, suppose A ∈ Kca. Then by Lemma 2.3.9 there is an X and an epimor-
phism ϕ : FV(X) → A such that kerϕ ∈ Kc, and thus FV(X)/ kerϕ ∼= A
by Proposition 2.1.1, which is the case exactly when A ∈ K.

(2) Consider any X and θ ∈ FCon(FV(X)). If θ ∈ Γac(X), then by
Lemma 2.3.9, there exist a Y and an epimorphism ψ : FV(Y ) → FV(X)/θ
such that kerψ ∈ Γ(Y ). Since ψ is surjective, there is for any s ∈ S and every
x ∈ Xs an element txs ∈ FV(Y )s such that txsψs = x/θs. If ϕ : FV(X) →
FV(Y ) is the homomorphism such that xϕ = txs for all s ∈ S and x ∈ Xs,
then ϕψ = θ\, where θ\ : FV(X)→ FV(X)/θ is the canonical epimorphism.
Hence θ = kerϕψ = ϕ ◦ (kerψ) ◦ ϕ−1 ∈ Γ(X). The converse inclusion is
obvious: if θ ∈ Γ(X), then FV(X)/θ ∈ Γa implies θ ∈ Γac. �

Propositions 2.3.8 and 2.3.10 already show that the lattices (VRS(V),⊆)
and (VFC(V),⊆) are isomorphic, but the following composition laws imply
also that the mappings R 7→ Rc and Γ 7→ Γr form a pair of mutually inverse
isomorphisms between them.
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Proposition 2.3.11 For any V-VFA K, V-VRS R, and V-VFC Γ,

(1) Kcr = Kr,
(2) Rac = Rc, and
(3) Γra = Γa.

Proof. For (1) it suffices to note that
L ∈ Kr(X) ⇔ SA(L) ∈ K ⇔ ≈L∈ Kc(X) ⇔ L ∈ Kcr(X),

for any X and L ⊆ FV(X).
To prove (2), let us consider any X and FCon(FV(X)). If θ ∈ Rc(X),

then ≈L1 ∩ · · · ∩ ≈Lk ⊆ θ for some k ≥ 1 and L1, · · · , Lk ∈ R(X). This
implies that FV(X)/θ ∈ Ra since FV(X)/θ � SA(L1)× · · · × SA(Lk), and
therefore θ ∈ Rac.

If θ ∈ Rac(X), then FV(X)/θ � SA(L1) × · · · × SA(Lk) for some full
alphabets X1, · · · , Xk and sorted sets L1 ∈ R(X1), · · · , Lk ∈ R(Xk), where
k > 0. Hence, there is an Ω-algebra B such that there exist an epimorphism
ψ : B → FV(X)/θ and a monomorphism η : B → SA(L1) × · · · × SA(Lk).
We may also assume that there is an epimorphism ϕ : FV(X) → B such
that ϕψ = θ\ (if not, we replace B with a suitable subalgebra). For each
i = 1, . . . , k, let πi be the i-th projection from FV(X1)× · · · ×FV(Xk) onto
FV(Xi), and let

π : FV(X1)× · · · × FV(Xk) −→ SA(L1)× · · · × SA(Lk)
be defined by (t1, . . . , tk)πs = (t1/L1, . . . , tk/Lk) for all sorts s ∈ S and all
terms t1 ∈ FV(X1, s), . . . , tk ∈ FV(Xk, s). Since π clearly is surjective, we
may define a homomorphism γ : FV(X)→ FV(X1)×· · ·×FV(Xk) for which
γπ = ϕη. Then
θ = kerϕψ ⊇ kerϕη = ker γπ =

⋂
{γπi◦ ≈Li ◦(γπi)−1 | 1 ≤ i ≤ k},

and hence θ ∈ Rc(X).
To prove (3), consider any finite algebra A = (A,Ω). Now, A belongs to

Γa iff A � FV(X1)/θ1×· · ·×FV(Xk)/θk, for some full alphabets X1, . . . , Xk

and some θ1 ∈ Γ(X1), . . . , θk ∈ Γ(Xk) (k ≥ 1). Since any Γ(X) is generated
by syntactic congruences by Lemma 2.2.15, we can assume that each θi is the
syntactic congruence of some Li ⊆ FV(Xi), and then Li belongs to Γr(Xi),
and so A ∈ Γa iff A ∈ Γra. �

So far, we have shown that the lattices (VFA(V),⊆) and (VRS(V),⊆)
are isomorphic, also the lattices (VFA(V),⊆) and (VFC(V),⊆) are isomor-
phic. So we get the following result.

Proposition 2.3.12 The lattices (VRS(V),⊆) and (VFC(V),⊆) are iso-
morphic as

(1) Rcr = R for every R ∈ VRS(V), and
(2) Γrc = Γ for every Γ ∈ VFC(V).



Saeed Salehi, Varieties of tree languages 27

Proof. By using the previous three propositions we can see that Rcr =
Racr = Rar = R for every R ∈ VRS(V). Similarly, Γrc = Γrac = Γac = Γ
for every Γ ∈ VFC(V). �

Let us note that Proposition 2.3.12 could be obtained also directly in
a similar way as the analogous facts are proved in [1] (Lemma 2.15 and
Proposition 3.8).

Lemma 2.3.13 For any V-VRS R and any congruence θ of finite index
on FV(X), θ is in Rc(X) iff all θ-classes are in R(X).

Proof. By Lemma 2.2.15, if all θ-classes are in R(X), then θ ∈ Rc(X).
For the converse, suppose θ ∈ Rc(X). So there are T (1), . . . , T (k) ∈ R(X)
(k ≥ 1) such that θ ⊇ ≈T (1) ∩ · · · ∩ ≈T (k)

. Then it can be easily shown that
every θ-class is a Boolean combination of some T (n)-classes (n ≤ k):

a/θ =
⋃
b∈a/θ(b/T

(1) ∩ · · · ∩ b/T (k)).
By Lemma 2.2.14, b/T (n) ∈ R(X) for all n ≤ k, hence a/θ ∈ R(X). �

Now, an alternative proof of Proposition 2.3.12 is as follows.

Proof. The inclusion R ⊆ Rcr of (1) is obvious. For the opposite inclusion,
suppose T ∈ Rcr(X) for some X. Then ≈T∈ Rc(X), and so by Lemma
2.3.13, every ≈T -class is in R(X). Since T is the union of some ≈T -classes,
then T ∈ R(X). Again the inclusion Γ ⊆ Γrc of (2) is clear. For the opposite,
take a θ ∈ Γrc(X) for some X. By Lemma 2.3.13, every θ-class a/θ belongs
to Γr(X). Then the syntactic congruences ≈a/θ of those θ-classes are in
Γ(X). By Lemma 2.2.15, θ is the intersection of these syntactic congruences
of θ-classes. Thus θ ∈ Γ(X). �

We may sum up the results of this section as follows.

Proposition 2.3.14 (Variety Theorem) The mappings

VFA(V)→ VRS(V), K 7→ Kr, VRS(V)→ VFA(V), R 7→ Ra,
VFA(V)→ VFC(V), K 7→ Kc, VFC(V)→ VFA(V), Γ 7→ Γa, and
VRS(V)→ VFC(V), R 7→ Rc, VFC(V)→ VRS(V), Γ 7→ Γr,

form three pairs of isomorphisms that are inverses of each other between the
lattices (VFA(V),⊆), (VRS(V),⊆), and (VFC(V),⊆). Moreover, Kcr =
Kr, Krc = Kc, Rca = Ra, Rac = Rc, Γra = Γa, and Γar = Γr, for any
K ∈ VFA(V), R ∈ VRS(V), and Γ ∈ VFC(V). �





Chapter 3

Positive varieties of tree
languages

Roughly speaking, a variety of tree languages is a family of tree languages
closed under finite Boolean operations (complements, finite intersections and
finite unions), inverse translations and inverse morphisms. However, there
are also some interesting families of tree languages that do not possess all
of these closure properties. Some of those families are so-called positive va-
rieties of tree languages which are families of tree languages closed under
finite positive Boolean operations (intersections and unions), inverse trans-
lations and inverse morphisms. One example is the family of finite tree
languages. These families can not be characterized by algebras, but there
is a characterization for them by richer structures, namely by ordered alge-
bras. The theory of ordered algebras is a useful and interesting area in itself.
Actually, ordered algebras play an important role in theoretical computer
science, as Bloom and Wright [8] put it “[e]ver since Scott popularized their
use in [51], ordered algebras have been used in many places in theoretical
computer science”. Here we prove a Variety Theorem for positive varieties
of tree languages and varieties of ordered algebras. This result is inspired by
Pin’s positive variety theorem [39] which established a bijective correspon-
dence between positive varieties of string languages and varieties of ordered
semigroups; see also [24, 41].

In Section 3.1 we review some basic notions of ordered algebras, ideals
and quotient ordered algebras.

In Section 3.2 we introduce positive varieties of tree languages and prove
a variety theorem for these varieties and varieties of finite ordered algebras.

In Section 3.3 we extend the positive variety theorem to generalized va-
rieties. A generalized family of tree languages is a mapping that assigns a
set of recognizable ΣX-tree languages to any ranked alphabet Σ and any
leaf alphabet X. A generalized positive variety, is a generalized family of
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tree languages closed under the positive Boolean operations, inverse trans-
lations, and inverse generalized morphisms. A generalized variety of finite
ordered algebras is a mapping that assigns a class of finite ordered alge-
bras over Σ for any ranked alphabet Σ, and is closed under generalized
subalgebras, generalized homomorphic images and generalized finite direct
products. Our generalized positive variety theorem establishes a bijective
correspondence between generalized positive varieties of tree languages and
generalized varieties of finite ordered algebras.

The theory will also be illustrated by some examples.

3.1 Ordered algebras

In this section, after reviewing the terminology of ordered sets and ordered
algebras, we define the notions of ideals, quotient ordered algebras, and
syntactic ordered algebras, cf. [7].

A binary relation on a setA is a quasi-order if it is reflexive and transitive,
an order if it is reflexive, anti-symmetric and transitive, and an equivalence
if it is reflexive, symmetric and transitive; cf. Preliminaries in Chapter 1.
We note that quasi-orders have also been called “pre-orders”, and reflexive,
anti-symmetric, and transitive relations are often called partial orders. If
the union of an order with its inverse is the universal relation, then we call
it linear order; this is what some authors call “total order”.

For a quasi-order 4 on a set A, the relation θ = 4 ∩ 4−1 can be shown
to be an equivalence relation on A, called the equivalence relation of 4, and
the relation 6 defined on the quotient set A/θ by a/θ 6 b/θ ⇐⇒ a 4 b, is
a well-defined order on A/θ. This order 6 on A/θ is called the order induced
by the quasi-order 4.

Let Σ be a ranked alphabet. An ordered Σ-algebra is a structure A =
(A,Σ,6) where (A,Σ) is an algebra and 6 is an order on A compatible
with the operations of A, that is to say, for any f ∈ Σm (m > 0) and any
elements a1, . . . , am, b1, . . . , bm ∈ A, whenever a1 6 b1, . . . , am 6 bm then
fA(a1, . . . , am) 6 fA(b1, . . . , bm). We note that any algebra (A,Σ) in the
classical sense is an ordered algebra (A,Σ,∆A) in which the order relation
is equality.

Let us agree that A and B denote the ordered algebras (A,Σ,6) and
(B,Σ,6′), respectively.

The ordered algebra B is an order subalgebra of A, if (B,Σ) is a subal-
gebra of (A,Σ) and 6′ is the restriction of 6 to B.

A mapping ϕ : A → B is an order morphism if cAϕ = cB for any
c ∈ Σ0, fA(a1, . . . , am)ϕ = fB(a1ϕ, . . . , amϕ) for any f ∈ Σm (m > 0)
and a1, . . . , am ∈ A, and moreover it is order preserving: for any a, b ∈ A
if a 6 b then aϕ 6′ bϕ. In that case we write ϕ : A → B. An order
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morphism ϕ : A → B is an order epimorphism if it is surjective, and then
B is an order epimorphic image of A, in notation B ← A. If B is an order
epimorphic image of an order subalgebra of A, then B is said to divide A, in
notation B � A. If ϕ is injective then it is an order monomorphism. When
ϕ is bijective and its inverse is also an order morphism, then it is an order
isomorphism. We write A ∼= B when A and B are order isomorphic, and
write A ⊆ B when A is isomorphic to a subalgebra of B.

The direct product of A and B is the structure (A×B,Σ,6 × 6′) where
(A × B,Σ) is the usual direct product of the algebras (A,Σ) and (B,Σ),
and the relation 6 × 6′ is defined on A × B by (a, b) 6 × 6′ (c, d) ⇐⇒
a 6 c & b 6′ d for (a, b), (c, d) ∈ A× B. It is easy to see that the structure
(A×B,Σ,6 × 6′) is an ordered algebra and it is denoted by A× B.

A variety of finite ordered algebras is a class of finite ordered algebras
closed under order subalgebras, order epimorphic images, and direct prod-
ucts. The abbreviation VFOA stands for “variety of finite ordered algebras”.

Definition 3.1.1 A quasi-order on the ordered algebra A = (A,Σ,6) is a
quasi-order 4 on the set A such that 4 ⊇ 6, and for any f ∈ Σm (m > 0)
and any a1, . . . , am, b1, . . . , bm ∈ A, fA(a1, . . . , am) 4 fA(b1, . . . , bm) holds
whenever a1 4 b1, . . . , am 4 bm.

Let 4 be a quasi-order on A. The relation θ = 4 ∩ 4−1 is a congruence
on (A,Σ) and so, the quotient structure (A/θ,Σ) is a Σ-algebra. Moreover,
the relation ≤ defined on A/θ by a/θ ≤ b/θ iff a 4 b for a, b ∈ A is a
well-defined order. Moreover, the structure (A/θ,Σ,≤) can be shown to be
an ordered algebra. It can be noticed that quasi-orders on ordered algebras
play the same role as congruences for ordinary algebras.

Definition 3.1.2 For a quasi-order 4 on A, the quotient of A under 4 is
the structure A/4 = (A/θ,Σ,≤) where θ = 4 ∩ 4−1 is the Σ-congruence
induced by 4 and ≤ is the order induced by 4.

Lemma 3.1.3 Let ϕ : B → A be an order morphism. If 4 is a quasi-order
on A, then the relation ϕ◦4 ◦ϕ−1 is a quasi-order on B such that for all
b, d ∈ B, b ϕ◦ 4 ◦ϕ−1 d ⇐⇒ bϕ 4 dϕ. Moreover, if θ is the congruence
on A induced by 4, then the congruence on B induced by ϕ◦ 4 ◦ϕ−1 is
ϕ ◦ θ ◦ ϕ−1. �

Proposition 3.1.4 Let A = (A,Σ,6) and B = (B,Σ,6′) be two ordered
algebras, 4 be a quasi-order on B, and ϕ : A → B be an order morphism.

(1) The image of A, Aϕ = (Aϕ,Σ,6′′) where 6′′ is the restriction of
6′ to Aϕ, is an order subalgebra of B.

(2) A/ϕ◦ 4 ◦ϕ−1 ∼= Aϕ/4′ where 4′ is the restriction of 4 to Aϕ.
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(3) If ϕ is an order epimorphism then A/ϕ◦ 4 ◦ϕ−1 ∼= B/4.

Proof. The statement (1) is straightforward and (3) follows from (2). For
(2) we let θ = 4 ∩ 4−1 and note that ψ : A/ϕ◦ 4 ◦ϕ−1 → Aϕ/4′ defined
by (a/ϕ ◦ θ ◦ ϕ−1)ψ = aϕ/θ for a ∈ A, is an order isomorphism. �

The particular case of the Proposition 3.1.4 when 4 = 6′ is of interest:
then we have θ = ∆B and ϕ ◦ θ ◦ ϕ−1 = ker ϕ, hence we get the homomor-
phism theorem for ordered algebras, namely A/ker ϕ ∼= Aϕ. Similar results
for semigroups can be found in [27].

Proposition 3.1.5 Let A = (A,Σ,6) be an ordered algebra, and 4,4′ be
two quasi-orders on A.

(1) If 4 ⊆ 4′ then A/4′ ← A/4.

(2) The relation 4 ∩ 4′ is a quasi-order on A and A/4 ∩ 4′ is an order
subalgebra of A/4 × A/4′ . �

Recall the notion of Tr(A) the set of translations of an algebra A =
(A,Σ) from the Preliminaries in Chapter 1. The composition of translations
p and q is denoted by q · p, that is (q · p)(a) = p(q(a)) for all a ∈ A. We note
that the set Tr(A) equipped with the composition operation is a monoid,
called the translation monoid of A. For an ordered algebra A = (A,Σ,6) a
subset I ⊆ A is an ideal of A, in notation I EA, if a 6 b ∈ I implies a ∈ I
for every a, b ∈ A. We note that ideals can be empty, i.e., ∅ E A. For any
a ∈ A, (a] = {b ∈ A | b 6 a} is the ideal of A generated by a.

Definition 3.1.6 The syntactic quasi-order 4I of an ideal I of an ordered
algebra A is defined by

a 4I b⇐⇒
(
∀p ∈ Tr(A)

)(
p(b) ∈ I ⇒ p(a) ∈ I

)
(a, b ∈ A).

The syntactic ordered algebra of I is the quotient ordered algebra SOA(I) =
A/4I , also denoted by A/I (cf. [39]).

We note that for any ideal I, 4I is a quasi-order onA and the equivalence
relation ≈I of 4I is the syntactic congruence of I in the classical sense (see
e.g. [52, 53]): a ≈I b ⇐⇒ (∀p ∈ Tr(A))(p(a) ∈ I ⇔ p(b) ∈ I).

It is known that the syntactic congruence of I is the greatest congruence
that saturates I ([52, 53]). Correspondingly, the syntactic quasi-order of I
is the greatest quasi-order on A that satisfies a 4 b ∈ I ⇒ a ∈ I for all
a, b ∈ A.

Trivially, any subset I ⊆ A of the ordered algebra A = (A,Σ,∆A) is an
ideal of A. The following is essentially Lemma 3.2 of [53]; cf. Lemma 2.1.3
in Chapter 2.
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Proposition 3.1.7 Let A = (A,Σ,6) and B = (B,Σ,6′) be two ordered
algebras, and ϕ : A → B be an order morphism. The mapping ϕ induces a
monoid morphism Tr(A) → Tr(B), p 7→ pϕ, such that p(a)ϕ = pϕ(aϕ) for
all a ∈ A. Moreover, if ϕ is an order epimorphism then the induced map is
a monoid epimorphism.

Proof. For any elementary translation p = fA(a1, . . . , ξ, . . . , am) of A where
f ∈ Σm (m > 0) and a1, . . . , am ∈ A, the unary function pϕ on B defined
by b 7→ fB(a1ϕ, . . . , b, . . . , amϕ) is an elementary translation of B, and if
ϕ is surjective then every elementary translation of B is of this form. The
mapping p 7→ pϕ can be inductively extended to all translations by setting
(1A)ϕ = 1B and (p · q)ϕ = pϕ · qϕ. This extension is well-defined and the
identity pϕ(aϕ) = p(a)ϕ obviously holds for any a ∈ A and p ∈ Tr(A). �

For a subset D ⊆ A and a translation p ∈ Tr(A), the inverse translation
of D under p is p−1(D) = {a ∈ A | p(a) ∈ D}, and for an order morphism
ϕ : B → A, the inverse image of D under ϕ is Dϕ−1 = {b ∈ B | bϕ ∈ D}.

Positive Boolean operations are intersection and union of sets, while
Boolean operations also include the complement operation. It can be easily
proved that for ordered algebras A and B, ideals I, JEA, KEB, translation
p ∈ Tr(A), and order morphism ϕ : A → B, the sets I ∩ J, I ∪ J, p−1(I) and
Kϕ−1 are ideals of A. This is formulated in the following lemma whose
proof is straightforward (cf. [39]). Note that the complement of an ideal is
not necessarily an ideal.

Lemma 3.1.8 The collection of all ideals of a fixed ordered algebra is closed
under positive Boolean operations, inverse translations and inverse order
morphisms. �

Proposition 3.1.9 Let A = (A,Σ,6) and B = (B,Σ,6′) be ordered alge-
bras, I, J EA, K E B be ideals, p ∈ Tr(A) be a translation, and ϕ : A → B
be an order morphism. Then the following inclusions hold:

(1) 4I∩J ,4I∪J ⊇ 4I ∩ 4J ;

(2) 4p−1(I) ⊇ 4I ;

(3) 4Kϕ−1 ⊇ ϕ◦4K ◦ϕ−1, and if ϕ is an order epimorphism then the
equality holds: 4Kϕ−1 = ϕ◦4K ◦ϕ−1.

Proof. The statements (1) and (2) are obvious. For (3) assume (a, b) ∈
ϕ◦4K ◦ϕ−1 for some a, b ∈ A. Then aϕ 4K bϕ. Hence, for any p ∈ Tr(A),
if p(b) ∈ Kϕ−1 then p(b)ϕ ∈ K what means pϕ(bϕ) ∈ K. This implies now
pϕ(aϕ) ∈ K, i.e., p(a)ϕ ∈ K, and so p(a) ∈ Kϕ−1.

Therefore a 4Kϕ−1 b, and hence ϕ◦ 4K ◦ϕ−1 ⊆4Kϕ−1 . When ϕ is
surjective, we note that by Proposition 3.1.7 every translation q ∈ Tr(B)
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is of the form pϕ for some p ∈ Tr(A). Thus in this case the inclusion
4Kϕ−1 ⊆ ϕ◦4K ◦ϕ−1 holds, whence 4Kϕ−1 = ϕ◦4K ◦ϕ−1. �

Combining Propositions 3.1.9, 3.1.5 and 3.1.4 we get the following corollary.

Corollary 3.1.10 For any ordered algebras A and B, ideals I, J E A and
K E B, translation p ∈ Tr(A), and order morphism ϕ : A → B,

(1) SOA(I ∩ J),SOA(I ∪ J) � SOA(I)× SOA(J);

(2) SOA(p−1(I))← SOA(I);

(3) SOA(Kϕ−1) � SOA(K) and, moreover, if ϕ is an order epimor-
phism, then SOA(Kϕ−1) ∼= SOA(K). �

Here we consider some examples of ordered algebras and prove some of
their elementary properties which will be used later.

For an algebra A = (A,Σ), the translation semigroup TrS(A) of A con-
sists of the elementary translations fA(a1, . . . , ξ, . . . , am), where f ∈ Σm

(m > 0) and a1, . . . , am ∈ A, and their compositions. We note that TrS(A)
does not automatically include the identity translation 1A : A→ A.

Definition 3.1.11 An ordered algebra A = (A,Σ,6) is n-nilpotent (n ≥ 0)
if p1 · · · pn(a) 6 b holds for all a, b ∈ A and all p1, . . . , pn ∈ TrS(A).

An ordered algebra A is called n-conilpotent (n ≥ 0) if b 6 p1 · · · pn(a)
holds for all a, b ∈ A and all p1, . . . , pn ∈ TrS(A).

An ordered algebra is called (co)nilpotent if it is n-(co)nilpotent for some
n ≥ 0.

The classes of all nilpotent Σ-algebras and conilpotent Σ-algebras are
denoted by Nil(Σ) and coNil(Σ), respectively.

An element a0 ∈ A is a trap of A, if p(a0) = a0 holds for any p ∈ Tr(A).

Lemma 3.1.12 Every n-(co)nilpotent ordered algebra A = (A,Σ,6) has a
unique trap which is the least (greatest) element of the algebra.

Proof. We prove only the nilpotent case. For every p1, . . . , pn, q1, . . . , qn in
TrS(A) and a, b ∈ A we have

p1 · · · pn(a) 6 q1 · · · qn(b) 6 p1 · · · pn(a).
Thus p1 · · · pn(a) = q1 · · · qn(b), and let a0 be this element. Clearly we have
p(a0) = a0 for every p ∈ TrS(A) and a0 6 a for every a ∈ A. So, a0 is the
unique trap of A which is the least element. �

Proposition 3.1.13 Class Nil(Σ) of all nilpotent ordered Σ-algebras and
class coNil(Σ) of all conilpotent ordered Σ-algebras are VFOA.
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Proof. It can be easily seen that the class of n-nilpotent ordered algebras is
closed under order subalgebras and direct products. To see that it is closed
under order epimorphic images, let A = (A,Σ,6) and B = (B,Σ,6′) be two
ordered algebras such that A is n-nilpotent and let ϕ : A → B be an order
epimorphism. Let b, d ∈ B be two elements and q1, . . . , qn ∈ TrS(B). There
are a, c ∈ A such that b = aϕ and d = cϕ, and by Proposition 3.1.7, there
are p1, . . . , pn ∈ TrS(A) such that (pj)ϕ = qj for all j = 1, . . . , n. It follows
from p1 · · · pn(a) 6 c that p1 · · · pn(a)ϕ 6′ cϕ, so (p1)ϕ · · · (pn)ϕ(aϕ) 6′ cϕ,
and thus q1 · · · qn(b) 6′ d holds. Hence, B is n-nilpotent.

Finally, the claim that Nil(Σ) is a VFOA follows from the fact that an
n-nilpotent ordered algebra is an (n+ 1)-nilpotent ordered algebra as well.

By a dual argument one can show that coNil(Σ) is a VFOA. �

A semigroup is called n-nilpotent if it contains a zero element and the
product of every n elements is zero. It is called nilpotent if it is n-nilpotent
for a natural n.

Lemma 3.1.14 If A = (A,Σ,6) is an order n-nilpotent or n-conilpotent
algebra, then the translation semigroup TrS(A) is a nilpotent semigroup.

Proof. For every p1, . . . , pn, q1, . . . , qn ∈ TrS(A) and a ∈ A we have
p1 · · · pn(a) 6 q1 · · · qn(a) 6 p1 · · · pn(a).

Thus p1 · · · pn = q1 · · · qn, so p1 · · · pn ∈ TrS(A) is the zero element of TrS(A)
and the product of every n elements of this semigroup is zero. �

3.2 Positive variety theorem

Recall the notions of ΣX-terms and ΣX-contexts from the Preliminaries
in Chapter 1. Note that C(Σ, X) forms a monoid with respect to the
composition operation, and that t · (Q · P ) = (t · Q) · P holds for all
P,Q ∈ C(Σ, X), t ∈ T(Σ, X). There is a bijective correspondence be-
tween C(Σ, X) and the translations of the term algebra T (Σ, X) in a nat-
ural way: an elementary context P = f(t1, . . . , ξ, . . . , tm) corresponds to
P T (Σ,X) = fT (Σ,X)(t1, . . . , ξ, . . . , tm), and the composition P ·Q of the con-
texts P and Q corresponds to the composition P T (Σ,X) · QT (Σ,X) of trans-
lations.

Every tree language T ⊆ T(Σ, X) can be regarded as an ideal of the or-
dered algebra T (Σ, X) = (T(Σ, X),Σ,=). Thus one can define the syntactic
quasi-order 4T of T as the syntactic quasi-order of an ideal by Definition
3.1.6. We note that it satisfies the following for any t, s ∈ T(Σ, X)

t 4T s ⇐⇒ (∀P ∈ C(Σ, X))
(
s · P ∈ T ⇒ t · P ∈ T

)
.

The corresponding equivalence relation ≈T=4T ∩ 4−1
T of 4T is the syntac-

tic congruence of T :
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t ≈T s ⇐⇒ (∀P ∈ C(Σ, X))
(
t · P ∈ T ⇔ s · P ∈ T

)
.

The syntactic ordered algebra of T is SOA(T ) = (T(Σ, X)/≈T ,Σ,6T ), where
6T the order induced by 4T satisfies the following for t, s ∈ T(Σ, X),

t/≈T 6T s/≈T ⇐⇒ t 4T s.
The syntactic morphism of T is the mapping ϕT : T (Σ, X) → SOA(T )

defined by tϕT = t/≈T for t ∈ T(Σ, X).
It can be easily seen that not every ordered algebra is the syntactic or-

dered algebra of a tree language. However, these syntactic ordered algebras
can be characterized as follows (cf. [53] Proposition 3.6).

Proposition 3.2.1 A finite ordered algebra A = (A,Σ,6) is order isomor-
phic to the syntactic ordered algebra of a tree language if and only if there
exists an ideal I EA such that 4I = 6.

Proof. First, suppose A ∼= SOA(T ) for some tree language T . Then the
subset I = {t/≈T | t ∈ T} is an ideal of SOA(T ) and 4I = 6T .

Conversely, suppose 4I=6 holds for some ideal IEA. Let the morphism
ϕ : T (Σ, A) → A be the unique extension of the identity map 1A : A→ A.
Since ϕ is an epimorphism 4Iϕ−1 = ϕ◦ 4I ◦ϕ−1 by Proposition 3.1.9(3).
So, Proposition 3.1.4 implies T (Σ, A)/4Iϕ−1

∼= A/4I , and since 4I = 6 by
assumption, then SOA(Iϕ−1) ∼= A. �

Let Σ be a ranked alphabet, X be a leaf alphabet, and A = (A,Σ,6)
be an ordered algebra. A tree language T ⊆ T(Σ, X) is recognized by A if
there exists an ideal I E A and a Σ-morphism ϕ : T (Σ, X) → A such that
T = Iϕ−1.

Proposition 3.2.2 For a tree language T ⊆ T(Σ, X) and an ordered alge-
bra A = (A,Σ,6), SOA(T ) � A if and only if T is recognized by A.

Proof. Suppose T = Iϕ−1 for a morphism ϕ : T (Σ, X) → A and an ideal
I EA. Let the ordered Σ-algebra B be the ϕ-image of T (Σ, X), and define
the mapping ψ : B → SOA(T ) by (tϕ)ψ = t/≈T for t ∈ T(Σ, X). We show
that tϕ 6 sϕ implies t 4T s for all t, s ∈ T(Σ, X). This also proves that ψ
is well-defined. Suppose tϕ 6 sϕ, then tϕ 4I sϕ since 6 ⊆ 4I . Now, for
any translation p ∈ Tr(A),
p(s) ∈ T ⇒ p(s)ϕ ∈ I ⇒ pϕ(sϕ) ∈ I ⇒ pϕ(tϕ) ∈ I ⇒ p(t)ϕ ∈ I ⇒ p(t) ∈ T,
so t 4T s. It can also be seen that ψ is a Σ-morphism. Thus ψ is an order
epimorphism, and hence SOA(T )← B ⊆ A.

Now suppose that SOA(T )← B ⊆ A holds for an ordered algebra B and
let ψ : B → SOA(T ) be an order epimorphism. There exists a Σ-morphism
ϕ : T (Σ, X) → A such that (xϕ)ψ = x/≈T for every x ∈ X ∪ Σ0. By
induction on t it can be shown that tϕψ = t/≈T holds for every t ∈ T(Σ, X).
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The set {t/≈T∈ SOA(T ) | t ∈ T}ψ−1 is an ideal of B. If I is the ideal of A
generated by this set, then T = Iϕ−1. �

From Proposition 3.2.2 it follows that the syntactic ordered algebra of a tree
language is the least ordered algebra which recognizes the tree language.

Let us recall that for a tree language T ⊆ T(Σ, X), a context P in
C(Σ, X), and a Σ-morphism ϕ : T (Σ, Y )→ T (Σ, X), the inverse translation
of T under P is P−1(T ) = {t ∈ T(Σ, X) | t · P ∈ T}, and the inverse
morphism of T under ϕ is Tϕ−1 = {t ∈ T(Σ, Y ) | tϕ ∈ T}.

The following is an immediate consequence of Corollary 3.1.10.

Corollary 3.2.3 For tree languages T, T ′ ⊆ T(Σ, X), context P ∈ C(Σ, X),
and Σ-morphism ϕ : T (Σ, Y )→ T (Σ, X),

(1) SOA(T ∩ T ′),SOA(T ∪ T ′) � SOA(T )× SOA(T ′);

(2) SOA(P−1(T ))← SOA(T );

(3) SOA(Tϕ−1) � SOA(T ) and moreover, when ϕ is surjective then
SOA(Tϕ−1) ∼= SOA(T ). �

Let Σ be a fixed ranked alphabet. Let us recall that a class of finite
ordered Σ-algebras is a variety (of finite ordered algebras) if it is closed
under order subalgebras, order epimorphic images, and finite direct prod-
ucts. In what follows we consider families of recognizable tree languages
V = {V (Σ, X)}, where for any leaf alphabet X, V (Σ, X) is a set of recog-
nizable ΣX-tree languages.

Definition 3.2.4 A positive variety of tree languages is a family of recog-
nizable tree languages closed under finite positive Boolean operations (fi-
nite intersections and finite unions), inverse translations and inverse mor-
phisms. That is to say, a family V = {V (Σ, X)} of recognizable tree lan-
guages, is a positive variety of tree languages, a PVTL for short, if for
any leaf alphabets X,Y , tree languages T, T ′ ⊆ T(Σ, X), homomorphism
ϕ : T (Σ, Y )→ T (Σ, X), and context P ∈ C(Σ, X), if T, T ′ ∈ V (Σ, X), then
T ∪ T ′, T ∩ T ′, P−1(T ) ∈ V (Σ, X) and also Tϕ−1 ∈ V (Σ, Y ).

For any PVTL V = {V (Σ, X)} always ∅,T(Σ, X) ∈ V (Σ, X) holds,
since ∅ is the empty union of tree languages, and T(Σ, X) is the empty
intersection of tree languages.

Definition 3.2.5 For a variety of finite ordered algebras K, let the indexed
family Kt = {Kt(X)} be the family of tree languages whose syntactic or-
dered algebras are in K, that is

Kt(X) = {T ⊆ T(Σ, X) | SOA(T ) ∈ K}.
For a positive variety of tree languages V , let V a be the variety of finite
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ordered algebras generated by syntactic ordered algebras of tree languages
in V , that is to say V a is the VFOA generated by the class

{SOA(T ) | T ∈ V (X) for a leaf alphabet X}.

By Corollary 3.2.3, for a variety of finite ordered algebras K, the family
Kt is a positive variety of tree languages.

Lemma 3.2.6 (1) The operations K 7→ Kt and V 7→ V a are monotone,
i.e., if K ⊆ L and V ⊆ W , then Kt ⊆ Lt and V a ⊆ W a.

(2) V ⊆ V at, and Kta ⊆ K.

Proof. The statement (1) and the inclusion V ⊆ V at are obvious. In order
to prove Kta ⊆ K, we note that if A ∈ Kta then for some T1, . . . , Tn in
Kt, A � SOA(T1) × · · · × SOA(Tn) holds, what by definition means that
SOA(Tj) ∈ K for every j, and hence A ∈ K. �

The following was proved for classical algebras in [48].

Lemma 3.2.7 For any finite ordered algebra A = (A,Σ,6), there are tree
languages T1, . . . , Tm recognizable by A such that

A ⊆ SOA(T1)× · · · × SOA(Tm).

Proof. Let A = (A,Σ,6) be a finite ordered algebra, and suppose the epi-
morphism ψ : T (Σ, A) → A is obtained by extending the identity mapping
1A : A→ A. Recall that for any a ∈ A, (a] = {b ∈ A | b 6 a} is the ideal of
A generated by a. By Corollary 3.1.10(3), SOA((a]ψ−1) ∼= A/(a] for every
a ∈ A. We show A ⊆

∏
a∈AA/(a]. This will finish the proof since (a]ψ−1

is recognizable by A. Define φ : A →
∏
a∈AA/(a] by uφ =

(
u/≈(a]

)
a∈A

for u ∈ A. Clearly φ is an order morphism. It suffices to show that φ is
injective. Suppose uφ = vφ for u, v ∈ A. Then u/≈(a]= v/≈(a] for every
a ∈ A. In particular, u/≈(u]= v/≈(u] and u/≈(v]= v/≈(v], which imply
v ∈ (u] and u ∈ (v], respectively. So, u 6 v and v 6 u, whence u = v. �

Corollary 3.2.8 (1) Every VFOA is generated by syntactic ordered algebras
of some tree languages.

(2) For any PVTL V and any finite ordered algebra A, if every tree
language recognizable by A belongs to V , then A ∈ V a. �

Lemma 3.2.9 For every variety of finite ordered algebras K, K ⊆ Kta.

Proof. By Corollary 3.2.8(1), it is enough to show that the syntactic ordered
algebras of tree languages that belong to K are in Kta. Suppose that for a
tree language T , SOA(T ) ∈ K. Then T is in Kt by definition, so SOA(T )
belongs to Kta which finishes the proof. �

The essential part of the positive variety theorem is the following.
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Lemma 3.2.10 For every positive variety of tree languages V , V at ⊆ V .

Proof. If T ∈ V at(X), then there are leaf alphabets X1, . . . , Xn and tree
languages T1 ∈ V (X1), . . . , Tn ∈ V (Xn) such that SOA(T ) divides the prod-
uct A = A1 × · · · × An where Aj = (Aj ,Σ,6j) = SOA(Tj) for j = 1, . . . , n.
Thus, by Proposition 3.2.2, T is recognized by A, and so there is an order
morphism ϕ : T (Σ, X) → A and an ideal I E A such that T = Iϕ−1. For
any n-tuple a = (a1, . . . , an) ∈

∏
iAi we have

(
a
]

= (a1]×· · ·×(an]. Let ϕj :
T (Σ, X) → Aj be the composition of ϕ with the j-th projection mapping∏
iAi → Aj . Then T = Iϕ−1 =

⋃
a∈I(a]ϕ−1 =

⋃
(a1,...,an)∈I

⋂
j≤n(aj ]ϕ−1

j .

It is now enough to show (aj ]ϕ−1
j ∈ V (X) for every 1 ≤ j ≤ n. Fix a

j ≤ n. Let ψj = ϕTj : T (Σ, Xj) → Aj be the syntactic morphism of
Tj . One can construct a Σ-morphism χj : T (Σ, X) → T (Σ, Xj) such that
χjψj = ϕj . Then (aj ]ϕ−1

j = (aj ]ψ−1
j χ−1

j and, since V is closed under
inverse morphisms, for showing (aj ]ϕ−1

j ∈ V (X) it suffices to show that
(aj ]ψ−1

j ∈ V (Xj). Choose a t ∈ T(Σ, Xj) such that aj = tψj . We show
(aj ]ψ−1

j =
⋂
{P−1(Tj) | P ∈ C(Σ, Xj), P (t) ∈ Tj}.

The intersection on the righthand side is finite since Tj is recognizable.
For any s ∈ T(Σ, Xj), we have that s ∈ (aj ]ψ−1

j iff sψj 6j aj = tψj , i.e.,
s 4Tj t, what by definition means that P (t) ∈ Tj implies P (s) ∈ Tj for any
P ∈ C(Σ, Xj). This is further equivalent to s ∈ P−1(Tj) whenever P (t) ∈ Tj
for any P ∈ C(Σ, Xj), what finally means

s ∈
⋂
{P−1(Tj) | P ∈ C(Σ, Xj), P (t) ∈ Tj}.

From Tj ∈ V (Xj) and the fact that V is closed under inverse translations
and positive Boolean operations, it follows that (aj ]ψ−1

j ∈ V (Xj). There-
fore, (aj ]ϕ−1

j belongs to V (X) for all j, and thus T ∈ V (X). �

Summing up, we have shown the following.

Proposition 3.2.11 (Positive Variety Theorem) The variety opera-
tions K 7→ Kt and V 7→ V a are mutually inverse lattice isomorphisms
between the class of all varieties of finite ordered algebras and the class of all
positive varieties of recognizable tree languages, i.e., V at = V and Kta = K.

�

Let us consider some families of tree languages and provide some in-
stances for Positive Variety Theorem (Proposition 3.2.11).

Definition 3.2.12 A tree language T ⊆ T(Σ, X) is cofinite if either T = ∅
or its complement T(Σ, X) \ T is finite. The family of cofinite ΣX-tree
languages is denoted by Cof(Σ, X), and CofΣ = {Cof(Σ, X)} is the family
of cofinite tree languages for all leaf alphabets X. Similarly, Fin(Σ, X) is the
family of finite ΣX-tree languages, and FinΣ = {Fin(Σ, X)} is the family of
finite tree languages for all leaf alphabets X.
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Proposition 3.2.13 A tree language T ⊆ T(Σ, X) is cofinite if and only
if it can be recognized by a finite nilpotent ordered algebra. Similarly, a tree
language is finite if and only if it can be recognized by a finite conilpotent
ordered algebra.

Proof. We show the cofinite case, a dual proof works for the finite case.
Suppose T ⊆ T(Σ, X) is cofinite. If T = ∅ then there is nothing to

prove. Otherwise there exists an n ∈ N such that P1 · · ·Pn(t) ∈ T holds for
all P1, . . . , Pn ∈ C(Σ, X)\{ξ} and t ∈ T(Σ, X). Therefore, P1 · · ·Pn(t) 4T s
holds for all P1, . . . , Pn ∈ C(Σ, X)\{ξ} and all t, s ∈ T(Σ, X). This immedi-
ately implies that the syntactic algebra SOA(T ) of T satisfies p1 · · · pn(a) 6T

b for all p1, . . . , pn ∈ TrS(SOA(T )) and all a, b ∈ SOA(T ). Thus, SOA(T ) is
an n-nilpotent ordered algebra.

Conversely, suppose that a tree language T ⊆ T(Σ, X) is recognized by
an n-nilpotent ordered algebra A = (A,Σ,6). Let ϕ : T(Σ, X) → A be an
order morphism and I E A be an ideal such that T = Iϕ−1. The mapping
ϕ∗ : C(Σ, X) \ {ξ} → TrS(A) obtained by setting

f(t1, . . . , ξ, . . . , tm)ϕ∗ = fA(t1ϕ, . . . , ξ, . . . , tmϕ)
for all function symbols f ∈ Σm (m > 0) and trees t1, . . . , tm ∈ T(Σ, X), and
(P ·Q)ϕ∗ = Pϕ∗ ·Qϕ∗, is a semigroup morphism which satisfies Pϕ∗(tϕ) =
P (t)ϕ for all t ∈ T(Σ, X), P ∈ C(Σ, X) \ {ξ}. Since A is an n-nilpotent
ordered algebra, then p1 · · · pn(a) ∈ I holds for all p1, . . . , pn ∈ TrS(A) and
a ∈ A. In particular, P1ϕ∗ · · ·Pnϕ∗(tϕ) ∈ I holds for all P1, . . . , Pn ∈
C(Σ, X) \ {ξ} and t ∈ T(Σ, X). The statement P1ϕ∗ · · ·Pnϕ∗(tϕ) ∈ I is
equivalent to P1 · · ·Pn(t)ϕ ∈ I and P1 · · ·Pn(t) ∈ Iϕ−1 = T . It follows that
T is cofinite. �

Corollary 3.2.14 Families CofΣ and FinΣ are PVTL and moreover the
identities CofΣ = Nil(Σ)t and FinΣ = coNil(Σ)t hold.

Proof. This follows immediately from Propositions 3.2.13, 3.1.13 and 3.2.11.
However, it can be verified directly that the families of finite and cofinite
tree languages are closed under finite unions and intersections, inverse trans-
lations and inverse morphisms. �

3.3 Generalized positive variety theorem

Generalized varieties of tree languages and generalized varieties of finite al-
gebras were introduced by Steinby [54] who proved a generalized variety
theorem for these classes. A variety of finite algebras is a class of finite al-
gebras over a fixed ranked alphabet, and subalgebras, homomorphic images
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and direct products are defined for algebras over the same ranked alphabet.
These notions can be generalized for algebras over different ranked alpha-
bets. A generalized variety of finite algebras is a class of finite algebras (over
any ranked alphabet) that satisfies certain closure properties. Similarly, a
generalized variety of tree languages is defined. In this section we generalize
our Positive Variety Theorem (Proposition 3.2.11) to generalized positive va-
rieties of tree languages and generalized varieties of finite ordered algebras.
This will be used for another variety theorem in Chapter 5 which gives a
characterization for families of tree languages definable by syntactic ordered
monoids. The following definition is the ordered version of Definitions 3.1,
3.2, 3.3, 3.14 from [54].

Definition 3.3.1 Suppose that A = (A,Σ,6) and B = (B,Ω,6′) are or-
dered algebras.

(a) The ordered algebra B is said to be an order g-subalgebra of A, in
notation B ⊆g A, if B ⊆ A, Ωm ⊆ Σm for all m ≥ 0, fB is the restriction of
fA to B for every f ∈ Ω, and 6′ is the restriction of 6 to B.

(b) An assignment is a mapping κ : Σ → Ω such that κ(Σm) ⊆ Ωm for
all m ≥ 0. An order g-morphism from A to B is a pair (κ, ϕ) where the
mapping κ : Σ→ Ω is an assignment and ϕ : A→ B is an order preserving
mapping satisfying fA(a1, . . . , am)ϕ = (fκ)B(a1ϕ, . . . , amϕ) for any m ≥ 0,
f ∈ Σm, and a1, . . . , am ∈ A. Note that by “ϕ : A→ B is order preserving”
we mean that a 6 b implies aϕ 6′ bϕ for all a, b ∈ A. If both κ and ϕ are
surjective, then (κ, ϕ) is an order g-epimorphism, and in that case we write
B ←g A meaning that B is an order g-epimorphic image of A. When B is an
order g-epimorphic image of an order g-subalgebra of A, we write B �g A.
When both κ and ϕ are bijective and (κ−1, ϕ−1) is an order g-morphism,
(κ, ϕ) is an order g-isomorphism, and B ∼=g A means that B and A are order
g-isomorphic.

(c) Let Σ1, . . . ,Σn and Γ be ranked alphabets. The product Σ1×· · ·×Σn

is a ranked alphabet such that (Σ1 × · · · ×Σn)m = Σ1
m × · · · ×Σn

m for every
m ≥ 0. For any assignment κ : Γ→ Σ1 × · · · ×Σn and any finite number of
ordered algebras A1 = (A1,Σ1,61), . . . ,An = (An,Σn,6n), the κ-product
of A1, . . . ,An is the ordered Γ-algebra

κ(A1, . . . ,An) = (A1 × · · · ×An,Γ,61 × · · ·× 6n)
defined by the following identities for any c ∈ Γ0, f ∈ Γm (m > 0) and
ai = (ai1, . . . , ain) ∈ A1 × · · · ×An (i ≤ n),

(1) cκ(A1,...,An) = (cA1
1 , . . . , cAn

n ) where cκ = (c1, . . . , cn),
(2) fκ(A1,...,An)(a1, . . . ,am) = (fA1

1 (a11, . . . , am1), . . . , fAn
n (a1n, . . . , amn))

where fκ = (f1, . . . , fn), and
(3) a1 61 × · · ·× 6n a2 ⇐⇒ a11 61 a21 & . . . & a1n 6n a2n.

Without specifying the assignment κ, such algebras are called g-products.
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A generalized variety of finite ordered algebras, a gVFOA for short, is
a mapping K = {K(Σ)} which assigns a class of finite ordered Σ-algebras
K(Σ) to any ranked alphabet Σ, and is closed under order g-subalgebras,
order g-epimorphic images, and g-products.

Proposition 3.3.2 Suppose that A = (A,Σ,6) and B = (B,Ω,6′) are
ordered algebras, 4 is a quasi-order on B and (κ, ϕ) : A → B is an order
g-morphism. Then

(1) the image of A, A(κ, ϕ) = (Aϕ,Σκ,6′′) where 6′′ is the restriction of
6′ to Aϕ, is an order g-subalgebra of B,

(2) ϕ◦4 ◦ϕ−1 is a quasi-order on A and A/ϕ◦4 ◦ϕ−1 ∼=g Aϕ/4′, where
4′ is the restriction of 4 to Aϕ, and

(3) if ϕ is an order g-epimorphism, then A/ϕ◦4◦ϕ−1 ∼=g B/4. �

The proof is a direct generalization of that of Proposition 3.1.4.
Also, many of the already presented results have their “generalized”

counterparts with slightly different proofs. For example, a result analo-
gous to Proposition 3.1.9 can be proved. As a corollary, it follows that
for any g-morphism (κ, ϕ) : T (Ω, Y ) → T (Σ, X) and tree language T ⊆
T(Σ, X), SOA(Tϕ−1) �g SOA(T ) holds, and if (κ, ϕ) is a g-epimorphism
then SOA(Tϕ−1) ∼=g SOA(T ).

Let Σ and Ω be ranked alphabets, X be a leaf alphabet, and A =
(A,Ω,6) be an ordered algebra. A tree language T ⊆ T(Σ, X) is said to
be g-recognized by A if there exist an ideal I EA and an order g-morphism
(κ, ϕ) : T (Σ, X)→ A such that T = Iϕ−1. Similarly to Proposition 3.2.2, it
can be proved that a tree language T is g-recognized by A if SOA(T ) �g A.
Contrary to Proposition 3.2.2, the converse of this statement is not true in
general, for more details see the definition of reduced syntactic algebra in
Section 6 of [54].

Definition 3.3.3 A family of recognizable tree languages V = {V (Σ, X)},
where V (Σ, X) consists of recognizable ΣX-tree languages for any ranked
alphabet Σ and leaf alphabet X, is said to be a generalized positive variety
of tree languages, abbreviated by gPVTL, if it is closed under finite positive
Boolean operations (finite intersections and unions), inverse translations,
and inverse g-morphisms.

Definition 3.3.4 Let K = {K(Σ)} be a gVFOA. Define the family Kt =
{Kt(Σ, X)} to be the family of tree languages whose syntactic ordered al-
gebras are in K, that is Kt(Σ, X) = {T ⊆ T(Σ, X) | SOA(T ) ∈ K(Σ)}.

For a gPVTL V = {V (Σ, X)}, let V a = {V a(Σ)} be the gVFOA gen-
erated by the class {SOA(T ) | T ∈ V (Σ, X) for some Σ, X}.
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It can be proved similarly to Lemmas 3.2.6, 3.2.9 and Corollary 3.2.8 (or
Proposition 6.13 of [53]) that every gVFOA is generated by syntactic ordered
algebras of some tree languages and that if every tree language recognizable
by a finite ordered algebra A belongs to a gPVTL V , then A ∈ V a.

Proposition 3.3.5 (Generalized Positive Variety Theorem) The op-
erations K 7→ Kt and V 7→ V a are mutually inverse lattice isomorphisms
between the class of all gVFOA’s and the class of gPVTL’s, i.e., V at = V
and Kta = K.

Proof. The facts that for a gVFOA K the family Kt is a gPVTL and that
the mappings K 7→ Kt and V 7→ V a are monotone, as well as the relations
V ⊆ V at and Kta = K, can be proved in a way similar to the proofs of the
corresponding claims in Section 3.2. We show only the inclusion V at ⊆ V .

Suppose T ∈ V at(Σ, X). There are ranked alphabets Σ1, . . . ,Σn, leaf al-
phabets X1, . . . , Xn and languages T1 ∈ V (Σ1, X1), . . . , Tn ∈ V (Σn, Xn), for
some n > 0, such that SOA(T ) �g κ(SOA(T1), . . . ,SOA(Tn)) for a ranked
alphabet Γ and an assignment κ : Γ→ Σ1×· · ·×Σn. Let Aj = SOA(Tj) for
j = 1, . . . , n. Then T is g-recognized by κ(A1, . . . ,An), and which means
that there are an order g-morphism (λ, ϕ) : T (Σ, X) → κ(A1, . . . ,An) and
an ideal I E κ(A1, . . . ,An) such that T = Iϕ−1. Let ϕj : T(Σ, X)→ Aj be
the composition of ϕ with the j-th projection function

∏
iAi → Aj , and let

λj : Σ → Σj be the composition of λκ : Σ → Σ1 × · · · × Σn with the j-th
projection function Σ1 × · · · × Σn → Σj . Then (λj , ϕj) : T (Σ, X) → Aj is
an order g-morphism, and similarly to the proof of Lemma 3.2.10,

T = Iϕ−1 =
⋃

a∈I(a]ϕ−1 =
⋃

(a1,...,an)∈I
⋂
j≤n(aj ]ϕ−1

j .

For showing T ∈ V (Σ, X) it suffices to show that (aj ]ϕ−1
j ∈ V (Σ, X) for

every j ≤ n. Fix a j ≤ n. Let ψj = ϕTj : T (Σj , Xj)→ Aj be the syntactic
morphism of Tj . One can construct a g-morphism (λj , χj) : T (Σ, X) →
T (Σj , Xj) such that χjψj = ϕj . Then (aj ]ϕ−1

j = (aj ]ψ−1
j χ−1

j , and since
V is closed under inverse g-morphisms, for showing (aj ]ϕ−1

j ∈ V (Σ, X)
it is enough to show (aj ]ψ−1

j ∈ V (Σj , Xj). It was shown in the proof of
Lemma 3.2.10 that (aj ]ψ−1

j =
⋂
{P−1(Tj) | P ∈ C(Σj , Xj), P (t) ∈ Tj} for

some t ∈ T(Σj , Xj). Hence, from Tj ∈ V (Σj , Xj) and the fact that V is
closed under inverse translations and positive Boolean operations, it follows
that (aj ]ψ−1

j ∈ V (Σj , Xj). Therefore, (aj ]ϕ−1
j ∈ V (Σ, X) for all j, thus

T ∈ V (Σ, X). �

The examples of families of recognizable tree languages and classes of
finite ordered algebras in the previous sections do not heavily depend on
their ranked alphabets. Here we will see that the collection of those varieties
for various ranked alphabets form generalized varieties.
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Let Nil = {Nil(Σ)} and coNil = {coNil(Σ)} be the class of all nilpotent
ordered algebras and conilpotent ordered algebras, where Σ ranges over all
ranked alphabets, and Cof = {Cof(Σ, X)} and Fin = {Fin(Σ, X)} be the
family of all cofinite and finite tree languages for all ranked alphabets Σ and
leaf alphabets X.

Proposition 3.3.6 Classes Nil and coNil are gVFOA, families Cof and
Fin are gPVTL, and Cof = Nilt, Fin = coNilt.

Proof. That Cof and Fin are gPVTL can be verified directly: the families
are closed under the positive Boolean operations, inverse translations and
inverse g-morphisms. Similarly, classes Nil and coNil can be proved to be
gVFOA. Moreover, from Proposition 3.2.13 it follows that Cof = Nilt and
Fin = coNilt. �

It can be shown that an ordered algebra A = (A,Σ,6) is conilpotent
iff the ordered algebra Ad = (A,Σ,6−1) is nilpotent. Here we will see
that it is not an accident that finite tree languages are characterizable by
ordered conilpotent algebras, and cofinite tree languages are characterizable
by ordered nilpotent algebras.

Definition 3.3.7 The dual of an ordered algebraA = (A,Σ,6) is the struc-
ture Ad = (A,Σ,6−1).

It is easy to see that if A is an ordered algebra then the structure Ad is
an ordered algebra as well.

Lemma 3.3.8 For any ordered Σ-algebras A and B,

(1) (Ad)d = A;
(2) A ⊆ B ⇐⇒ Ad ⊆ Bd;
(3) A ← B ⇐⇒ Ad ← Bd;
(4) (A× B)d ∼= Ad × Bd. �

The proof is straightforward. So is the proof of the following lemma.
Denote the complement T(Σ, X) \ T of a subset T ⊆ T(Σ, X) by T d.

Lemma 3.3.9 For any ordered algebra A = (A,Σ,6) and any tree language
T ⊆ T(Σ, X),

(1) if I ⊆ A, then I EA ⇐⇒ A \ I EAd;
(2) T is recognized by A ⇐⇒ T d is recognized by Ad;
(3) SOA(T d) ∼= SOA(T )d. �
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For a VFOA K, let Kd = {Ad | A ∈ K}, and for a PVTL V define
the family V d = {V d(X)} by V d(X) = {T d | T ∈ V (X)}. We note
that Sd ∩ T d = (S ∪ T )d, Sd ∪ T d = (S ∩ T )d, P−1(T d) = P−1(T )d and
T dϕ−1 = (Tϕ−1)d for any tree languages S, T ⊆ T(Σ, X), any context
P ∈ C(Σ, X) and any morphism ϕ : T (Σ, Y ) → T (Σ, X). The following
proposition immediately follows from the previous lemmas.

Proposition 3.3.10 For any VFOA K and PVTL V , the class Kd is a
VFOA and the family V d is a PVTL.
Moreover, (Kd)t = (Kt)d and (V d)a = (V a)d. �

Informally speaking, the proposition states that the operations of inver-
sion and complementation generate new VFOA’s and PVTL’s respectively,
and are compatible with each other. This can also be done and verified for
generalized varieties (gVFOA’s and gPVTL’s) in a very similar way. For
example, we have Find = Cof and coNild = Nil.





Chapter 4

Definability by monoids

Syntactic monoids of tree languages were introduced by Thomas [58] as a
useful structure for studying recognizable tree languages. As an example,
aperiodic tree languages were characterized by aperiodic monoids in [58].
Syntactic monoids were further studied by K. Salomaa [48], and a differ-
ent formalism based on essentially the same concept was studied by Nivat
and Podelski [32]. As tree languages with different ranked alphabets may
have the same syntactic monoid, one immediately gets the impression that
syntactic monoids are weaker structures than syntactic algebras. Here this
impression will be explicitly confirmed in the context of variety theory.

In this chapter we prove a Variety Theorem that establishes a bijec-
tive correspondence between general varieties of tree languages definable by
syntactic monoids and varieties of finite monoids. This solves a relatively
long-standing open problem, the most recent references to which are made
by Ésik [19] as “No variety theorem is known in the semigroup [monoid]
approach” (page 759), and by Steinby [54] as “there are no general criteria
for deciding whether or not a given gVTL [general variety of tree languages]
can or cannot be defined by syntactic monoids” (page 41). The question
was also implicitly mentioned in the last section of Wilke’s paper [60]. It
was already known that any family of tree languages definable by syntactic
monoids is a (generalized) variety of tree languages (see e.g. [54]), though
not every variety of tree languages is definable by syntactic monoids; one
example is the family of reverse definite tree languages (see [60]).

To establish a correspondence between varieties of tree languages and
varieties of finite monoids, we add three more closure properties to the def-
inition of a generalized tree language variety [54].

In Section 4.1 we characterize the classes of algebras which can be defined
by translation monoids, and in Section 4.2 a characterization for families of
recognizable tree languages definable by syntactic monoids is given. The
semigroup variant of the theory is dealt with in Section 4.3.
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Here we fix some notation used throughout the chapter. A variety of
finite monoids, abbreviated by VFM, is a class of finite monoids closed
under submonoids, homomorphic images, and finite direct products. For
contexts P,Q ∈ C(Σ, X) and a tree t ∈ T(Σ, X), the context Q · P , the
composite of P and Q, results from P by replacing the special leaf ξ with
Q, and the tree t ·P results from P by replacing ξ with t. Let us recall that
C(Σ, X) is a monoid with respect to the composition operation, and ξ is the
unit element. Moreover t · (Q · P ) = (t ·Q) · P holds for all P,Q ∈ C(Σ, X),
t ∈ T(Σ, X). Let A = (A,Σ) be an algebra. Every elementary context

P = f(a1, . . . , ξ, . . . , am) ∈ C(Σ, A),
where f ∈ Σm and a1, . . . , am ∈ A, induces an elementary translation on
A defined by PA(a) = fA(a1, . . . , a, . . . , am) for each a ∈ A. The functions
induced by compositions of such elementary contexts are defined by setting
(Q·P )A(a) = PA(QA(a)) for any two contexts P and Q and any a ∈ A. Note
that two different contexts may induce the same translation. Recall that the
set Tr(A) of translations of A is a monoid with composition as the operation,
called the translation monoid of A, which is also denoted by Tr(A). We note
that Tr(A) includes the identity translation ξA = 1A. The composition of
translations p and q is denoted by q · p, that is (q · p)(a) = p(q(a)) for all
a ∈ A (cf. Section 5 of [54]).

We recall from the Preliminaries that for a tree language T ⊆ T(Σ, X),
the syntactic congruence ≈T of T is defined by

t ≈T s ⇐⇒ ∀P ∈ C(Σ, X)
(
t · P ∈ T ↔ s · P ∈ T

)
(t, s ∈ T(Σ, X)).

The syntactic algebra SA(T ) of T is the quotient Σ-algebra T (Σ, X)/≈T
(see Definition 5.9 of [54]). The syntactic monoid congruence ∼T of T on
the monoid C(Σ, X) is defined by
P ∼T Q ⇐⇒ ∀R ∈ C(Σ, X)∀t ∈ T(Σ, X)

(
t · P ·R ∈ T ↔ t ·Q ·R ∈ T

)
for P,Q ∈ C(Σ, X), and the syntactic monoid SM(T ) of T is the quotient
monoid C(Σ, X)/∼T (cf. [58] or Definition 10.1 of [54]).

Remark 4.0.11 It was shown in [48] that the translation monoid of the
syntactic algebra of a tree language is isomorphic to the syntactic monoid of
the tree language, i.e., Tr(SA(T )) ∼= SM(T ) for every tree language T . See
also Proposition 5.2.2 in Chapter 5 below.

Let Σ and Ω be ranked alphabets, and X and Y be leaf alphabets. A
tree homomorphism is a mapping ϕ : T(Σ, X) → T(Ω, Y ) determined by
some mappings ϕX : X → T(Ω, Y ), and ϕm : Σm → T(Ω, Y ∪ {ξ1, . . . , ξm})
for all such m ≥ 0 that Σm 6= ∅, and the ξi’s are new variables, inductively
as follows:

(1) xϕ = ϕX(x) for x ∈ X, cϕ = ϕ0(c) for c ∈ Σ0, and
(2) f(t1, . . . , tn)ϕ = ϕn(f)[ξ1 ← t1ϕ, . . . , ξn ← tnϕ] for each f ∈ Σn

(n ≥ 1) and any t1, . . . , tn ∈ T(Σ, X), where each ξi is replaced with tiϕ (for
any i = 1, . . . ,m); cf. [54], page 7.
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A tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) is called regular if for
every f ∈ Σm (m ≥ 1), each ξ1, . . . , ξm appears exactly once in ϕm(f).

The unique extension ϕ∗ : C(Σ, X) → C(Ω, Y ) of a regular tree ho-
momorphism ϕ to contexts is obtained by setting ϕ∗(ξ) = ξ (cf. [54],
Proposition 10.3).1 We note that the identities (Q · P )ϕ∗ = Qϕ∗ · Pϕ∗ and
(t ·Q · P )ϕ = tϕ ·Qϕ∗ · Pϕ∗ hold for all P,Q ∈ C(Σ, X) and t ∈ T(Σ, X).

4.1 Algebras definable by translation monoids

The notions of subalgebra, homomorphism, and direct product are defined as
usual in universal algebra, whereas for their generalizations, g-subalgebra, g-
homomorphism, and generalized product, are defined for algebras which are
not necessarily of the same type. We recall the following definitions from
[54], Definitions 3.1, 3.2, 3.3, 3.14.

Definition 4.1.1 Let A = (A,Σ) and B = (B,Ω) be finite algebras.
(i) The algebra B is a g-subalgebra of A, if B ⊆ A, Ωm ⊆ Σm for all

m ≥ 0, and for every g ∈ Ωm, gB is the restriction of gA to B. When B is a
g-subalgebra of A we write B ⊆g A.

(ii) An assignment is a mapping κ : Σ→ Ω such that κ(Σm) ⊆ Ωm holds
for all m ≥ 0.

A g-morphism from A to B is a pair (κ, ϕ), where κ : Σ → Ω is an
assignment and ϕ : A → B is a mapping satisfying fA(a1, . . . , am)ϕ =
(fκ)B(a1ϕ, . . . , amϕ) for any m ≥ 0, f ∈ Σm, and a1, . . . , am ∈ A. If both
κ and ϕ are surjective, then (κ, ϕ) is called a g-epimorphism, and in that
case we write B ←g A (B is a g-epimorphic image of A). When B is a
g-epimorphic image of a g-subalgebra of A, we write B �g A. When both
κ and ϕ are bijective, (κ, ϕ) is called a g-isomorphism, and B ∼=g A means
that B and A are g-isomorphic.

(iii) Let Σ1, . . . ,Σn,Γ be ranked alphabets. The product Σ1 × · · · ×
Σn is a ranked alphabet such that (Σ1 × · · · × Σn)m = Σ1

m × · · · × Σn
m

for every m ≥ 0. For any assignment κ : Γ → Σ1 × · · · × Σn, and any
algebras A1 = (A1,Σ1), . . . ,An = (An,Σn), the κ-product of A1, . . . ,An is
the algebra κ(A1, . . . ,An) = (A1 × · · · ×An,Γ) defined by
(1) cκ(A1,...,An) = (cA1

1 , . . . , cAn
n ) for c ∈ Γ0, where cκ = (c1, . . . , cn),

(2) fκ(A1,...,An)(a1, . . . ,am) = (fA1
1 (a11, . . . , am1), . . . , fAn

n (a1n, . . . , amn))
for f ∈ Γm (m > 0) and ai = (ai1, . . . , ain) ∈ A1 × · · · × An, where

fκ = (f1, . . . , fn).
Without specifying the assignment κ, such algebras are called g-products.

1Indeed any tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) can be extended to a mapping
eϕ : C(Σ, X) → T(Ω, Y ∪{ξ}) by setting ξ eϕ = ξ, but if ϕ is not regular, the range of eϕ may
not be C(Ω, Y ). Hence the regularity of ϕ is needed for the existence of the extension ϕ∗,
see also Example 4.2.7.
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In the notations ⊆g,←g,�g, and ∼=g, the subscript g is dropped when A
and B are over the same ranked alphabet Σ, and the assignment κ : Σ→ Σ
is the identity map.

The abbreviation gVFA stands for general variety of finite algebras which
is a class of finite algebras, of all finite types, closed under g-sub-algebras,
g-epimorphic images, and g-products (Definition 4.3 of [54]).

It is easy to see that a class K is a gVFA, if for any A1, . . . ,An ∈ K, any
g-product κ(A1, . . . ,An), and any algebra A, if A �g κ(A1, . . . ,An) then
A ∈ K (cf. Corollary 4.8 of [54]).

Definition 4.1.2 For a VFM M, Ma is the class of all finite algebras whose
translation monoid is in M, i.e., A ∈Ma ⇔ Tr(A) ∈M for any A.

A class of finite algebras K is said to be definable by translation monoids,
if there is a VFM M such that Ma = K.

By Proposition 10.8 of [54], a class of finite algebras definable by trans-
lation monoids is a gVFA. In fact, any such class can be proved to be a
d-variety of finite algebras (see page 758 of [19]). An algebraic character-
ization of the classes of finite algebras definable by translation monoids is
given in Proposition 4.1.7 below.

Definition 4.1.3 Let A be a finite algebra. With each translation p in
Tr(A) we associate a unary function symbol p. Let ΛA = {p | p ∈ Tr(A)} be
the unary ranked alphabet formed by these symbols and let the ΛA-algebra
A% = (Tr(A),ΛA) be defined by pA

%
(q) = q · p for all p, q ∈ Tr(A).

The following lemmas are needed for characterizing the definability by
translation monoids (cf. [35, 36] for similar results for unary algebras).

Lemma 4.1.4 For any finite algebra A, Tr(A) ∼= Tr(A%).

Proof. The elementary translations of A% are of the form pA
%
(ξ) where

p ∈ Tr(A), and clearly qA
%
(ξ) · pA%

(ξ) = q · pA%
(ξ) for all q, p ∈ Tr(A).

For the identity translation 1A of A the translation 1A
A%

(ξ) is the iden-
tity translation of A%. This means that Tr(A%) = {pA%

(ξ) | p ∈ Tr(A)}.
Moreover, pA

%
(ξ) 6= qA

%
(ξ) whenever p 6= q, since pA

%
(ξ) = qA

%
(ξ) im-

plies p = 1A · p = pA
%
(1A) = qA

%
(1A) = 1A · q = q. Hence, the mapping

Tr(A)→ Tr(A%), p 7→ pA
%
(ξ) is a monoid isomorphism. �

Lemma 4.1.5 Let A = (A,Σ) and B = (B,Ω) be two finite algebras.

(1) If Tr(A) � Tr(B), then A% �g B%.
(2) Tr(A)× Tr(B) ∼= Tr(κ(A%,B%)) for some g-product κ(A%,B%).
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Proof. (1) Suppose Tr(A) ← M ⊆ Tr(B) for some monoid M . Let ΛM =
{p ∈ ΛB | p ∈ M}. Then clearly M = (M,ΛM ) ⊆g B%, where M is
defined by pM(q) = q · p (p, q ∈ M). Let ϕ : M → Tr(A) be a monoid
epimorphism. Define the assignment κ : ΛM → ΛA by qκ = qϕ for all
q ∈ M . It is clear that κ is surjective and for all q, r ∈ M ⊆ Tr(B),
qB

%
(r)ϕ = (r · q)ϕ = rϕ · qϕ = qϕA

%
(rϕ) = (qκ)A

%
(rϕ). Hence (κ, ϕ) :M→

A% is a g-epimorphism. Thus A% ←gM⊆g B%.
(2) Let Γ = {〈p, q〉 | p ∈ Tr(A), q ∈ Tr(B)} be a set of unary function
symbols, and define the assignment κ : Γ → ΛA × ΛB by 〈p, q〉κ = (p, q).
Let P = κ(A%,B%) be the corresponding g-product of A% and B%. We
show that Tr(P) = {〈p, q〉P(ξ) | p ∈ Tr(A), q ∈ Tr(B)}. Firstly, we note
that if 1A and 1B are the identity translations of A and B respectively,
then 〈1A, 1B〉

P
(ξ) is the identity translation of P. Secondly, by the defi-

nition of κ-products, for all p, p′ ∈ Tr(A), q, q′ ∈ Tr(B), 〈p, q〉P(p′, q′) =
(pA

%
(p′), qB

%
(q′)) = (p′ · p, q′ · q). So, if 〈p, q〉P(ξ) = 〈p′, q′〉P(ξ) then (p, q) =

(1A ·p, 1B ·q) = 〈p, q〉P(1A, 1B) = 〈p′, q′〉P(1A, 1B) = (1A ·p′, 1B ·q′) = (p′, q′).
So, 〈p, q〉P(ξ) 6= 〈p′, q′〉P(ξ), when p 6= p′ or q 6= q′. Finally, we show that
the set {〈p, q〉P(ξ) | p ∈ Tr(A), q ∈ Tr(B)} is closed under the composition
of translations. For all p, p′, p′′ ∈ Tr(A), q, q′, q′′ ∈ Tr(B),

〈p′, q′〉P · 〈p, q〉P(p′′, q′′) = 〈p, q〉P(p′′ · p′, q′′ · q′)
=

(
(p′′ · p′) · p, (q′′ · q′) · q

)
=

(
p′′ · (p′ · p), q′′ · (q′ · q)

)
= 〈p′ · p, q′ · q〉P(p′′, q′′).

It follows that 〈p′, q′〉P(ξ) · 〈p, q〉P(ξ) = 〈p′ · p, q′ · q〉P(ξ). Thus, the mapping
Tr(A)× Tr(B)→ Tr(P), (p, q) 7→ 〈p, q〉P(ξ), is a monoid isomorphism. �

Since g-products of g-products are g-isomorphic to a g-product of the
original algebras (Lemma 4.2 of [54]), Lemma 4.1.5(2) can be generalized as
follows.

Lemma 4.1.6 For any algebras A1, . . . ,An (n > 0) there exists a g-product
κ(A%1, . . . ,A

%
n) such that Tr(A1)× · · · × Tr(An) ∼= Tr(κ(A%1, . . . ,A

%
n)). �

Now we can present our characterization of the classes of finite algebras
that are definable by translation monoids.

Proposition 4.1.7 Any class of finite algebras K is definable by translation
monoids iff it is a gVFA such that A ∈ K iff A% ∈ K, for any A.



52 Chapter 4, Definability by monoids

Proof. Suppose K = Ma for a VFM M. Then by Lemma 4.1.4 for any
algebra A, Tr(A) ∼= Tr(A%), so

A ∈ K⇔ Tr(A) ∈M⇔ Tr(A%) ∈M⇔ A% ∈ K.
For the converse, suppose the gVFA K satisfies A ∈ K ⇔ A% ∈ K for
any finite algebra A. Let M be the VFM generated by {Tr(A) | A ∈ K}.
We show that K = Ma. Obviously K ⊆ Ma. For the opposite inclusion,
let B ∈ Ma. So, there are A1, . . . ,Am ∈ K such that Tr(B) divides the
product Tr(A1) × · · · × Tr(Am). By Lemma 4.1.6, Tr(B) � Tr(P), and
hence B% �g P% by Lemma 4.1.5 (1), for some g-product P of A%1, . . . ,A

%
m.

We have A%1, . . . ,A
%
m ∈ K, and so P ∈ K, hence P% ∈ K. Since P% ∈ K,

also B% ∈ K, which implies that B ∈ K. Thus Ma ⊆ K. �

Remark 4.1.8 The proof of Proposition 4.1.7 also yields the fact that for
any gVFA K definable by translation monoids, the class {Tr(A) | A ∈ K}
is a variety of finite monoids.

Another characterization of the classes of finite algebras definable by trans-
lation monoids which follows from Lemmas 4.1.4 and 4.1.5 is the following.

Proposition 4.1.9 Any class of finite algebras K is definable by translation
monoids iff it is a gVFA such that for all finite algebras A and B, if A ∈ K
and Tr(A) ∼= Tr(B) then B ∈ K. �

4.2 Tree languages definable by monoids

A general variety of tree languages (abbreviated by gVTL) is a family of
recognizable tree languages closed under all Boolean operations, inverse
translations, and inverse g-morphisms; see Definition 7.1 of [54], also De-
finition 3.3.1 in Chapter 3.

Definition 4.2.1 For a VFM M, let Mt be the family of all recognizable
tree languages whose syntactic monoids are in M, that is to say for any tree
language T ⊆ T(Σ, X), T ∈Mt(Σ, X)⇔ SM(T ) ∈M holds.

A family of recognizable tree languages V is said to be definable by
syntactic monoids if there is a VFM M such that Mt = V .

Steinby has shown that for any VFM M, Mt is a gVTL ([54], Proposition
10.3). His proof can be applied to show that Mt is also closed under in-
verse images of regular tree homomorphisms. The general varieties of tree
languages closed under inverse (arbitrary) tree homomorphisms are studied
by Ésik [19] who characterized them by their syntactic theories. Theorem
14.2 of [19] establishes a correspondence between so-called d-varieties ([19],
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page 758) of finite algebras and general tree language varieties closed under
inverse tree homomorphisms. However, those varieties may not be definable
by syntactic monoids.

Example 4.2.2 Let Def1 = {Def1(Σ, X)} be the family of 1-definite tree
languages, i.e., T ∈ Def1(Σ, X) iff for all ΣX-trees t and s, root(t) = root(s)
and t ∈ T imply s ∈ T , where root(t) is the root symbol of t. It is a gVTL
([54]) closed under inverse strict tree homomorphisms (see Subsection 11.1
of [19], and Section 4.3 below). Let Σ = Σ2 = {f, g}, X = {x, y}, and
T = {x} ∪ {f(t1, t2) | t1, t2 ∈ T(Σ, X)}. Clearly T ∈ Def1(Σ, X). It can
easily be shown that the syntactic monoid of T consists of an identity element
and two right zeros. This is also the syntactic monoid of the language T ′

of the ΣX-trees whose leftmost leaves are x, by Example 10.4 of [54]. Since
T ′ 6∈ Def1(Σ, X), then Def1 is not definable by syntactic monoids.

This actually shows that the gVTL of all definite tree languages is not
definable by syntactic monoids, since T ′ is not k-definite for any k ≥ 1.

Remark 4.2.3 In [33] it is claimed that the variety of definite tree lan-
guages can be characterized by the property that all the non-identity idem-
potents of their syntactic monoids are right zeros (left zeros in the formalism
of [33]). This clearly stands in conflict with the above Example 4.2.2.

Indeed, it can be shown that Theorem 1 of [33] does not hold. When the
syntactic semigroup of a tree language is defined as the syntactic monoid
with the identity element removed, the authors clearly overlook the possi-
bility that the identity element may be obtained also as the product of some
non-identity elements, and the proof of the theorem of [33] holds in just one
direction. A concrete example showing that the equality between lines 9 and
10 on page 189 does not necessarily hold, can be obtained by considering
the tree language T ′ of our Example 4.2.2.

It can also be noted that the class of all finite monoids whose non-identity
idempotents are right zeros, is not a VFM2. Finally, in Example 4.3.5 below
we shall see that a more appropriate definition of the syntactic semigroup
and omitting trees that in a sense correspond to the empty word, does not
save the result of [33].

We shall characterize the general varieties of tree languages that are defin-
able by syntactic monoids by requiring them to satisfy two more conditions
in addition to being closed under inverse regular tree homomorphisms.

2One can show that the class is not closed under direct products, for example let
M1 = {e, f} consist of two right-zero idempotents, and let M2 = {1, a} be the monoid in
which 1 is the identity element and a · a = 1. Then (e, 1) ∈ M1 × M2 is a non-identity
idempotent but is not right-zero, since (f, a) · (e, 1) = (e, a) 6= (e, 1).
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Definition 4.2.4 A regular tree homomorphism ϕ : T(Σ, X) → T(Ω, Y )
is said to be full with respect to a tree language T ⊆ T(Ω, Y ), if for every
context Q ∈ C(Ω, Y ) and every tree s ∈ T(Ω, Y ), there are P ∈ C(Σ, X)
and t ∈ T(Σ, X), such that Q ∼T Pϕ∗ and s ≈T tϕ hold.

Recall that for an equivalence relation θ on a set A, the quotient set of
A under θ is denoted by A/θ, and a/θ = {b ∈ A | a θ b} is the equivalence
θ-class containing a ∈ A.

Remark 4.2.5 At first glance it seems that verifying the fullness of ϕ with
respect to T requires checking the existence of P ∈ C(Σ, X) and t ∈ T(Σ, X)
for all (infinitely many) Q ∈ C(Ω, Y ) and s ∈ T(Ω, Y ) such that Q ∼T Pϕ∗
and s ≈T tϕ hold. In fact it is decidable for a recognizable T to check
whether or not ϕ is full with respect to T : let ϕT : T(Ω, Y )→ T(Ω, Y )/≈T ,
tϕT = t/≈T and λT : C(Ω, Y )→ C(Ω, Y )/∼T , PλT = P/∼T be the natural
morphisms. Then the tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) is full
with respect to T iff both the mappings ϕϕT : T(Σ, X)→ T(Ω, Y )/≈T and
ϕ∗λ

T : C(Σ, X)→ C(Ω, Y )/∼T are surjections.

Lemma 4.2.6 If ϕ : T(Σ, X) → T(Ω, Y ) is a regular tree homomorphism
and T ⊆ T(Ω, Y ), then SM(Tϕ−1) � SM(T ), and if ϕ is full with respect to
T , then SM(Tϕ−1) ∼= SM(T ).

Proof. We note that ϕ∗ : C(Σ, X)→ C(Ω, Y ) is a monoid homomorphism.
Let S = C(Σ, X)ϕ∗ be the range of ϕ∗, and let µ be the restriction of ∼T
to S. Then S/µ is a submonoid of C(Ω, Y )/∼T . We show that Pϕ∗ µQϕ∗
implies P ∼Tϕ−1

Q for all P,Q ∈ C(Σ, X).
Suppose Pϕ∗ µQϕ∗ and take arbitrary t ∈ T(Ω, Y ) and R ∈ C(Ω, Y ). Then

t · P ·R ∈ Tϕ−1 ⇔ tϕ · Pϕ∗ ·Rϕ∗ ∈ T
⇔ tϕ ·Qϕ∗ ·Rϕ∗ ∈ T
⇔ t ·Q ·R ∈ Tϕ−1,

that is P ∼Tϕ−1
Q. So the mapping ψ : S/µ → C(Σ, X)/∼Tϕ−1

defined by
(Pϕ∗/µ)ψ = P/∼Tϕ−1

is well-defined and surjective. It is also a monoid ho-
momorphism, since (Pϕ∗/µ ·Qϕ∗/µ)ψ = ((P ·Q)ϕ∗/µ)ψ = (P ·Q)/∼Tϕ−1

=
P/∼Tϕ−1 ·Q/∼Tϕ−1

= (Pϕ∗/µ)ψ · (Qϕ∗/µ)ψ for all P,Q ∈ C(Σ, X). Hence
SM(Tϕ−1)← S/µ ⊆ SM(T ) thus SM(Tϕ−1) � SM(T ).

Now, suppose ϕ is full with respect to T . We show P ∼Tϕ−1
Q ⇐⇒

Pϕ∗ ∼T Qϕ∗ for any P,Q ∈ C(Σ, X). Clearly, Pϕ∗ ∼T Qϕ∗ implies
P ∼Tϕ−1

Q. For the converse, suppose P ∼Tϕ−1
Q, and take arbitrary

R′ ∈ C(Ω, Y ), and t′ ∈ T(Ω, Y ). There are R ∈ C(Σ, X) and t ∈ T(Σ, X)
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such that Rϕ∗ ∼T R′ and tϕ ≈T t′. Hence

t′ · Pϕ∗ ·R′ ∈ T ⇔ tϕ · Pϕ∗ ·Rϕ∗ ∈ T
⇔ (t · P ·R)ϕ ∈ T
⇔ t · P ·R ∈ Tϕ−1

⇔ t ·Q ·R ∈ Tϕ−1

⇔ tϕ ·Qϕ∗ ·Rϕ∗ ∈ T
⇔ t′ ·Qϕ∗ ·R′ ∈ T,

which shows that Pϕ∗ ∼T Qϕ∗. Hence P ∼Tϕ−1
Q ⇐⇒ Pϕ∗ ∼T Qϕ∗,

and since the function ϕ∗ : C(Σ, X)→ C(Ω, Y ) is a monoid homomorphism,
the mapping C(Σ, X)/∼Tϕ−1→ C(Ω, Y )/∼T , P/∼Tϕ−1 7→ (Pϕ∗)/∼T is a
monoid isomorphism between SM(Tϕ−1) and SM(T ). �

In the following example we show that the regularity condition on ϕ in
the previous lemma can not be relaxed.

Example 4.2.7 Define the ranked alphabets Ω = Ω2 = {f} and Σ = Σ1 =
{g, h}, and the leaf alphabet X = {u, v, w}. Let (Z3,+) be the cyclic group
of order 3. Define χ : T(Ω, X) → Z3 inductively by uχ = 0, vχ = 1,
wχ = 2, and f(t, s)χ = tχ+ sχ. Let T = {0}χ−1. It is easy to see that the
syntactic monoid of T consists of the ∼T -classes of the elementary contexts
f(u, ξ), f(v, ξ), f(w, ξ), and in fact SM(T ) ' (Z3,+).

Define the tree homomorphisms ϕ,ψ : T(Σ, X) → T(Ω, X) by ϕX(x) =
ψX(x) = x for x ∈ X, and ϕ1(g) = ψ1(g) = f(v, ξ1), ϕ1(h) = f(ξ1, ξ1), and
ψ1(h) = u. These tree homomorphisms are not regular: ξ1 appears twice in
ϕ1(h) and does not appear at all in ψ1(h).

We show that neither SM(Tϕ−1) nor SM(Tψ−1) can divide SM(T ). The
following identities can be verified by straightforward computations:

i. (v · h(ξ) · g(ξ))ϕχ = 0, (v · g(ξ) · h(ξ))ϕχ = 1, and
ii. (v · h(ξ) · g(ξ))ψχ = 1, (v · g(ξ) · h(ξ))ψχ = 0.

So, (h(ξ) ·g(ξ), g(ξ) ·h(ξ)) 6∈∼Tϕ−1
,∼Tψ−1

which proves that SM(Tϕ−1) and
SM(Tψ−1) are not commutative.

Remark 4.2.8 Let C be the variety of finite commutative monoids. By
Example 4.2.7, the gVTL Ct is not closed under inverse non-regular tree
homomorphisms; cf. Proposition 4.2.14. So, Ct is not definable by syntactic
theories [19]. On the other hand, by Example 4.2.2, the family of definite tree
languages is not definable by syntactic monoids, even though it is definable
by syntactic theories, cf. [19] Subsection 11.1.

Thus, “definability by syntactic theories” and “definability by syntactic
monoids” are not comparable to each other, although both are weaker than
“definability by syntactic algebras”.
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Lemma 4.2.9 Let A = (A,Σ) be a finite algebra, and X be a leaf alphabet
disjoint from A. For any tree language L ⊆ T(ΛA, X) recognized by A%,
there exist a regular tree homomorphism ϕ : T(ΛA, X) → T(Σ, X ∪ A),
and a tree language T ⊆ T(Σ, X ∪ A) such that L = Tϕ−1, and T can be
recognized by a finite power An where n = |A|.

Proof. Let α : X → Tr(A) be an initial assignment for A% and F ⊆ Tr(A)
be a subset such that L = {t ∈ T(ΛA, X) | tαA% ∈ F}. Define the tree homo-
morphism ϕ : T(ΛA, X)→ T(Σ, X ∪A) by ϕX(x) = x for all x ∈ X, and for
every p ∈ Tr(A) choose a ϕ1(p) ∈ C(Σ, A) such that ϕ1(p)A = p. Obviously
ϕ is a regular tree homomorphism. Suppose that A = {a1, . . . , an}. Let
F ′ = {(p(a1), . . . , p(an)) ∈ An | p ∈ F}, and define the initial assignment
β : X ∪A→ An for An by xβ =

(
(xα)(a1), . . . , (xα)(an)

)
for all x ∈ X, and

aβ = (a, . . . , a) ∈ An for all a ∈ A. Let T be the subset of T(Σ, X∪A) recog-
nized by (An, β, F ′). We show that L = Tϕ−1. Every tree w in T(ΛA, X) is
of the form w = p1

(
p2

(
. . . pk(x) . . .

))
for some p1, . . . , pk ∈ Tr(A) (k ≥ 0)

and x ∈ X. For such a tree w, wαA
%

= xα · pk · . . . · p2 · p1, and
(wϕ)βA

n
= (xα · pk · . . . · p2 · p1(a1), . . . , xα · pk · . . . · p2 · p1(an)).

So, wϕ ∈ T ⇔ (wϕ)βA
n ∈ F ′

⇔ for some p ∈ F, p(a) = xα · pk · . . . · p2 · p1(a) for all a ∈ A
⇔ xα · pk · . . . · p2 · p1 ∈ F
⇔ wαA

% ∈ F
⇔ w ∈ L. �

Lemma 4.2.10 Let A = (A,Σ) be a finite algebra and X be a leaf alphabet
disjoint from A ∪ Σ. For any tree language T ⊆ T(Σ, X) recognized by A
there exists a unary ranked alphabet Λ, and a regular tree homomorphism
ϕ : T(Λ, X ∪ Σ0) → T(Σ, X) such that ϕ is full with respect to T , and for
every z ∈ X∪Σ0, Tϕ−1∩T(Λ, {z}) can be recognized as a subset of T(Λ, {z})
by A%.

Proof. Let B = (B,Σ) be the syntactic algebra of T . Then B � A. Suppose
T = {t ∈ T(Σ, X) | tβB ∈ F}, where β : X → B is an initial assignment
and F ⊆ B. Since B is the minimal tree automaton recognizing T , it is
generated by β(X). The mapping β : X → B can uniquely be extended
to a monoid homomorphism βc : C(Σ, X)→ C(Σ, B). Since B is generated
by β(X), the mapping C(Σ, X)→ Tr(B), Q 7→ βc(Q)B is surjective. Define
the tree homomorphism ϕ : T(ΛB, X ∪Σ0)→ T(Σ, X) by ϕX(x) = x for all
x ∈ X ∪ Σ0, and for every q ∈ Tr(B) choose a ϕ1(q) = Q ∈ C(Σ, X) such
that βc(Q)B = q. Note that ϕ is a regular tree homomorphism. It remains
to show that ϕ is full with respect to T and that for every z ∈ X ∪ Σ0,
Lz = Tϕ−1 ∩ T(Λ, {z}) can be recognized as a subset of T(Λ, {z}) by B%.
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This will finish the proof since Tr(B) � Tr(A) follows from B � A by Lemma
10.7 of [54], and so B% � A% by Lemma 4.1.5, which implies that also Lz
can be recognized by A%.

First, we show that ϕ is full with respect to T . If Q ∈ C(Σ, X), then
q(ξ)ϕ∗ ∼T Q holds for q = βc(Q)B ∈ Tr(B). By induction on the height of t
we show that for any t ∈ T(Σ, X) there is an s ∈ T(ΛB, X ∪ Σ0) such that
t ≈T sϕ. If t = x ∈ X ∪ Σ0, then sϕ ≈T t for s = t. If t = t′ · P for some
P ∈ C(Σ, X) and t′ ∈ T(Σ, X) such that the height of t′ is less than the
height of t, then by the induction hypothesis there is an s′ ∈ T(ΛB, X ∪Σ0)
such that t′ ≈T s′ϕ. Also, for some p ∈ Tr(B), p(ξ)ϕ∗ ∼T P holds. If
s = p(s′), then sϕ = s′ϕ · p(ξ)ϕ∗ ≈T t′ · P = t.

Secondly, we show that Lz is recognized by B% for a fixed z ∈ X ∪ Σ0.
Define the initial assignment α : {z} → Tr(B) for B% by zα = 1B, where 1B
is the identity translation of B, and let Fz = {q ∈ Tr(B) | q(zβB) ∈ F}. We
prove that (B%, α, Fz) recognizes Lz. Every w ∈ T(ΛB, {z}) is of the form
w = q1

(
q2

(
. . . qh(z) . . .

))
for some q1, . . . , qh ∈ Tr(B) (h ≥ 0). For such a

tree w, wαB
%

= 1B · qh · . . . · q2 · q1, and (wϕ)βB = qh · . . . · q2 · q1(zβB). Thus

w ∈ Lz ⇔ wϕ ∈ T ⇔ (wϕ)βB ∈ F
⇔ qh · . . . · q2 · q1(zβB) ∈ F
⇔ qh · . . . · q2 · q1 ∈ Fz
⇔ wαB

% ∈ Fz.

So, Lz = {w ∈ T(Λ, {z}) | wαB% ∈ Fz}. �

We end the section by proving a Variety Theorem for tree languages and
syntactic monoids, and presenting some examples that justify the proposi-
tion (another interesting example is presented in [37]). Before presenting
the main theorem we note two remarks.

Remark 4.2.11 Let Λ be a unary ranked alphabet. For every leaf alphabet
X and every subset Y ⊆ X, C(Λ, Y ) = C(Λ, X) and the relation ∼T for a
tree language T ⊆ T(Λ, Y ) on C(Λ, Y ) is the same relation ∼T on C(Λ, X)
when T is viewed as a subset of T(Λ, X).

So, if a family of tree languages V = {V (Σ, X)} is definable by syntactic
monoids, then for every unary ranked alphabet Λ, and any leaf alphabets
X and Y , if Y ⊆ X then V (Λ, Y ) ⊆ V (Λ, X).

For a family of recognizable tree languages V , let V a be the gVFA gen-
erated by the class {SA(T ) | T ∈ V (Σ, X), for some Σ, X}; cf. Definition
3.3.4 in Chapter 3.

Remark 4.2.12 The Generalized Variety Theorem, [54] Proposition 9.15,
includes the following statements (cf. Proposition 3.3.5, Chapter 3):
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(1) For any gVTL V , the class V a satisfies the following equivalence for
any tree language T ⊆ T(Σ, X): T ∈ V (Σ, X)⇔ SA(T ) ∈ V a.

(2) For any gVFA K there is a unique gVTL V such that V a = K.

Remark 4.2.13 By Propositions 6.13 and 5.8(b) of [54] it follows that every
finite algebra can be represented as a subdirect product of the syntactic
algebras of some tree languages that are recognizable by the algebra (see
also Lemma 3.2.7 in Chapter 3). This implies that for any gVTL V and
any finite algebra A, if every tree language recognizable by A belongs to V ,
then A ∈ V a.

Proposition 4.2.14 A family of recognizable tree languages V is definable
by syntactic monoids iff V is a gVTL that is closed under inverse regular
tree homomorphisms and satisfies the following conditions:
(1) For every unary ranked alphabet Λ, and any leaf alphabets X and Y , if
Y ⊆ X then V (Λ, Y ) ⊆ V (Λ, X).
(2) For any regular tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) which is
full with respect to a tree language T ⊆ T(Ω, Y ), if Tϕ−1 ∈ V (Σ, X) then
T ∈ V (Ω, Y ).

Proof. For any VFM M, Mt satisfies the conditions of Proposition 4.2.14
by Lemma 4.2.6, Remark 4.2.11, and the facts mentioned at the beginning of
the section. For the converse, suppose the gVTL V satisfies the conditions
of the proposition. We may complete the proof by showing that V a satisfies
the condition of Proposition 4.1.7. Indeed, Proposition 4.1.7 implies then
that there exists a VFM M such that V a = Ma, and then

T ∈ V ⇔ SA(T ) ∈ V a ⇔ Tr(SA(T )) ∈M⇔ SM(T ) ∈M
holds for every tree language T by Remarks 4.2.12 and 4.0.11, which proves
that V = Mt. So, all we have to show is that A ∈ V a ⇐⇒ A% ∈ V a for
any finite algebra A.

Let A = (A,Σ) be in V a. By Lemma 4.2.9, any subset L ⊆ T(ΛA, X)
recognized by A% can be written as L = Tϕ−1, where ϕ : T(ΛA, X) →
T(Σ, X ∪ A) is a regular tree homomorphism, and T is a tree language
recognized by some power An of A. Then An ∈ V a implies that T ∈
V (Σ, X ∪ A), and hence L = Tϕ−1 ∈ V (ΛA, X). This holds for every tree
language L recognizable by A%, so A% ∈ V a by Remark 4.2.13.

Now, suppose A% ∈ V a for some algebra A = (A,Σ), and that T ⊆
T(Σ, X) is recognizable by A. By Lemma 4.2.10, there is a unary ranked
alphabet Λ and a regular tree homomorphism ϕ : T(Λ, X ∪ Σ0)→ T(Σ, X)
full with respect to T such that for every z ∈ X∪Σ0, Lz = Tϕ−1∩T(Λ, {z})
can be recognized by A% as a subset of T(Λ, {z}). So, Lz ∈ V (Λ, {z}), and
thus Lz ∈ V (Λ, X ∪Σ0). Hence Tϕ−1 =

⋃
z∈X∪Σ0

Lz ∈ V (Λ, X ∪Σ0). Since
ϕ is full with respect to T , then we get T ∈ V (Σ, X). This holds for every
tree language T recognizable by A, hence A ∈ V a by Remark 4.2.13. �
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Example 4.2.15 It was shown in Example 4.2.2 that Def1 is not definable
by syntactic monoids. Here we show that it does not satisfy condition (2) of
Proposition 4.2.14. Let Σ, X, T, T ′ be as in Example 4.2.2. Define the regular
tree homomorphism ϕ : T(Σ, X)→ T(Σ, X), by ϕX(x) = x, ϕX(y) = y, and
ϕ2(f) = f(x, f(ξ1, ξ2)), ϕ2(g) = g(y, g(ξ1, ξ2)). Now ϕ is full with respect
to T ′ since for any t ∈ T(Σ, X), if t ∈ T ′ then f(y, x)ϕ ≈T ′ t, and if t 6∈ T ′
then g(y, x)ϕ ≈T ′ t. Similarly, for P ∈ C(Σ, X), if the leftmost leaf of P is
x then f(y, ξ)ϕ∗ ∼T

′
P , if the leftmost leaf of P is y then g(y, ξ)ϕ∗ ∼T

′
P ,

and if the leftmost leaf of P is ξ then ξϕ∗ ∼T
′
P . Clearly T ′ϕ−1 = T , since

for any t ∈ T(Σ, X), the leftmost leaf of tϕ is x iff either t = x or the root
of t is f . By Example 4.2.2, T ′ϕ−1 = T ∈ Def1, but T ′ 6∈ Def1.

Example 4.2.16 The family of nilpotent tree languages Nil = {Nil(Σ, X)},
which consists of the finite and cofinite tree languages, is a gVFA (see [54],
Example 7.5). Let Λ = Λ1 = {f} be a unary ranked alphabet and X =
{x, y} be a leaf alphabet. Then T = {f(y), f(f(y)), f(f(f(y))), . . .} belongs
to Nil(Λ, {y}) but T 6∈ Nil(Λ, X). Hence, Nil does not satisfy condition (1)
of Proposition 4.2.14, so it is not definable by syntactic monoids.

Example 4.2.17 Let Ap = {Ap(Σ, X)} be the family of aperiodic tree
languages. It was shown to be a gVTL in Example 7.8 of [54]. It is also
known that Ap is definable by the variety of aperiodic (syntactic) monoids,
see [58]. The argument of Example 7.8 in [54] showing that Ap is closed
under inverse g-morphisms can be applied to show that Ap is in fact closed
under inverse regular tree homomorphisms. It is also straightforward to see
that Ap satisfies condition (1) of Proposition 4.2.14. We show that it also
satisfies condition (2). Suppose the mapping ϕ : T(Σ, X) → T(Ω, Y ) is a
regular tree homomorphism full with respect to some T ⊆ T(Ω, Y ) such
that Tϕ−1 ∈ Ap(Σ, X). There is an n such that for all t ∈ T(Σ, X) and all
P,Q ∈ C(Σ, X), t·Pn ·Q ∈ Tϕ−1 ⇔ t·Pn+1 ·Q ∈ Tϕ−1. For any s ∈ T(Ω, Y )
and any R,U ∈ C(Ω, Y ), there are t ∈ T(Σ, X) and P,Q ∈ C(Σ, X) such
that tϕ ≈T s, Pϕ∗ ∼T R, and Qϕ∗ ∼T U . So,

s ·Rn · U ∈ T ⇔ tϕ · Pnϕ∗ ·Qϕ∗ ∈ T ⇔ t · Pn ·Q ∈ Tϕ−1 ⇔
⇔ t · Pn+1 ·Q ∈ Tϕ−1 ⇔ tϕ · Pn+1ϕ∗ ·Qϕ∗ ∈ T ⇔ s ·Rn+1 · U ∈ T,

which shows that T ∈ Ap(Ω, Y ).

4.3 Definability by semigroups

In this section we show how to modify the above results as to yield charac-
terizations of varieties of finite algebras definable by translation semigroups
and of varieties of tree languages definable by syntactic semigroups. We
also compare the definability by monoids and definability by semigroups
with each other.
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The translation semigroup of an algebra is defined to be the smallest set
of unary functions on the algebra that contains the elementary translations
and is closed under composition. The difference between the translation
monoid and the translation semigroup of an algebra is that the latter does
not automatically contain the identity translation, although it may be in-
cluded as an elementary translation or as a composition of some elementary
translations.

Denote the translation semigroup of an algebra A = (A,Σ) by TrS(A)
and let ΛA be as in Definition 4.1.3 except that Tr(A) is replaced with
TrS(A). We associate with A a new symbol IA that does not appear in the
set A ∪ Σ ∪ TrS(A). Define the ΛA-algebra Aς = (TrS(A) ∪ {IA},ΛA) by
pA

ς
(q) = q · p and pA

ς
(IA) = p for all p, q ∈ TrS(A).

Lemma 4.3.1 For any finite algebras A = (A,Σ) and B = (B,Ω),
(1) TrS(A) ∼= TrS(Aς);
(2) if TrS(A) � TrS(B), then Aς �g Bς ; and
(3) TrS(A)× TrS(B) ∼= Tr(κ(Aς ,Bς)) for some g-product κ(Aς ,Bς).

Moreover, for any k ≥ 1 and algebras A1, . . . ,Ak, there is a g-product P of
Aς1, . . . ,A

ς
k such that TrS(A1)× · · · × TrS(Ak) ∼= TrS(P).

Proof. The statements (1) and (3) can be proved similarly as their coun-
terparts in Lemmas 4.1.4, 4.1.5, and 4.1.6 just by replacing the identity
translation 1A (and 1B) with IA (with IB). We prove (2):

Suppose that a semigroup S satisfies TrS(A) ← S ⊆ TrS(B), and let
ΛS = {p ∈ ΛB | p ∈ S}. Then clearly S = (S ∪ {IB},ΛM ) ⊆g Bς if the
interpretation of p ∈ ΛS in S is defined by pS(q) = q · p and pS(IB) = p
for p, q ∈ S. Suppose ϕ : S → TrS(A) is a semigroup epimorphism. Define
the assignment κ : ΛS → ΛA by qκ = qϕ for all q ∈ S. It is clear that κ is
surjective and for all q, r ∈ S ⊆ TrS(B),

(
qB

ς
(r)

)
ϕ = (r · q)ϕ = rϕ · qϕ =

qϕA
ς
(rϕ) = (qκ)A

ς
(rϕ). Hence (κ, ϕ̃) : S → Aς defined by sϕ̃ = sϕ for

s ∈ S and IBϕ̃ = IA, is a g-epimorphism. Thus A% ←g S ⊆g B%. �

The following characterization of the class of finite algebras definable by
translation semigroups can be proved similarly as Proposition 4.1.7.

Proposition 4.3.2 A class of finite algebras K is definable by translation
semigroups iff it is a gVFA such that A ∈ K iff Aς ∈ K for any A. �

Recall that we always assume Σ 6= Σ0. A tree language T ⊆ T(Σ, X)
is called trivial if T ⊆ Σ0 ∪ X. The sets of non-trivial ΣX-trees and non-
trivial ΣX-contexts are defined by T+(Σ, X) = T(Σ, X) \ (Σ0 ∪ X) and
C+(Σ, X) = C(Σ, X) \ {ξ}, respectively. Any subset of T+(Σ, X) is called
a trivial-free tree language. For a tree language T ⊆ T(Σ, X) the syntactic
semigroup of T is, by definition, the quotient semigroup C+(Σ, X)/∼T where
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∼T is restricted to C+(Σ, X). For a trivial tree language T , the syntactic
semigroup of T is the trivial semigroup consisting of a zero element, while its
syntactic monoid consists of a zero element and an identity element. Since
the trivial semigroup belongs to every variety of finite semigroups, any family
of tree languages definable by syntactic semigroups should contain all these
trivial tree languages. So, it is reasonable to consider +–varieties of tree
languages (cf. [19] Section 11).

A regular tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) is called strict,
if ϕm(f) is not trivial for any f ∈ Σm with m > 0, and ϕX(X), ϕ0(Σ0) ⊆
Y ∪ Ω0 (cf. Definition 11.1 of [19]). We note that if ϕ is strict and regular,
then T+(Σ, X)ϕ−1 = T+(Ω, Y ). A family of recognizable trivial-free tree
languages {V (Σ, X)}, where V (Σ, X) ⊆ T+(Σ, X) for any Σ and X, is
called a +–gVTL if it is closed under Boolean operations, inverse translations
and inverse strict regular tree homomorphisms, and moreover satisfies the
following conditions:
(1) For every unary ranked alphabet Λ, and any leaf alphabets X and Y , if
Y ⊆ X then V (Λ, Y ) ⊆ V (Λ, X).
(2) For any strict regular tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) full
with respect to T ⊆ T+(Ω, Y ), if Tϕ−1 ∈ V (Σ, X) then T ∈ V (Ω, Y ).

That any variety of trivial-free tree languages definable by syntactic semi-
groups is a +–gVTL can be proved similarly as the monoid case. We claim
also the converse in the following proposition.

Proposition 4.3.3 A family of trivial-free tree languages is definable by
syntactic semigroups iff it is a +–gVTL of tree languages.

The proof, once we have proved the following semigroup counterparts of
Lemmas 4.2.9 and 4.2.10, is very similar to that of Proposition 4.2.14.

Lemma 4.3.4 Let A = (A,Σ) be a finite algebra, and X be a leaf alphabet
disjoint from A ∪ Σ.

(1) For any trivial-free tree language L ⊆ T+(ΛA, X) recognized by Aς ,
there are a strict regular tree homomorphism ϕ : T(ΛA, X) → T(Σ, X ∪ A)
and a trivial-free tree language T ⊆ T+(Σ, X ∪A) such that L = Tϕ−1, and
T can be recognized by a finite power of A.

(2) For any trivial-free tree language T ⊆ T+(Σ, X) recognized by A there
exist a unary ranked alphabet Λ and a strict regular tree homomorphism
ϕ : T(Λ, X ∪ Σ0) → T(Σ, X) such that ϕ is full with respect to T , and for
every z ∈ X ∪ Σ0, Tϕ−1 ∩ T(Λ, {z}) can be recognized by Aς as a subset of
T(Λ, {z}).

Proof. (1) Suppose that L = {t ∈ T(ΛA, X) | tαA% ∈ F} for an initial
assignment α : X → Tr(A)∪ {IA} and a subset F ⊆ Tr(A)∪ {IA}. Since L
is trivial-free, we can assume that F ⊆ Tr(A). Let Y = {x ∈ X | xα = IA}.
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Define the tree homomorphism ϕ : T(ΛA, X) → T(Σ, X ∪ A) by setting
ϕX(x) = x for all x ∈ X, and for every p ∈ Tr(A) choose a ϕ1(p) ∈ C(Σ, A)
such that ϕ1(p)A = p. Obviously ϕ is a strict regular tree homomorphism.
Suppose that A = {a1, . . . , am}. Let F ′ = {(p(a1), . . . , p(am)) ∈ Am |
p ∈ F}, and define the initial assignment β : X ∪ A → Am by setting
xβ =

(
(xα)(a1), . . . , (xα)(am)

)
for all x ∈ X \ Y , yβ =

(
a1, . . . , am

)
for

all y ∈ Y , and aβ = (a, . . . , a) ∈ Am for all a ∈ A. Let T be the subset
of T(Σ, X ∪ A) recognized by (Am, β, F ′). We show L = Tϕ−1. Every
trivial-free tree w in T+(ΛA, X) is of the form w = p1

(
p2

(
. . . pk(x) . . .

))
for some p1, . . . , pk ∈ Tr(A) (k > 0) and x ∈ X. For such a tree w, wαA

%
=

xα · pk · . . . · p2 · p1 if x ∈ X \ Y , and wαA
%

= pk · . . . · p2 · p1 if x ∈ Y ;
also (wϕ)βA

m
= (xα · pk · . . . · p2 · p1(a1), . . . , xα · pk · . . . · p2 · p1(am)) holds.

So, for x ∈ X \ Y we have wϕ ∈ T iff (wϕ)βA
m ∈ F ′ iff for some p ∈ F ,

p(a) = xα · pk · . . . · p2 · p1(a), for all a ∈ A iff xα · pk · . . . · p2 · p1 ∈ F iff
wαA

% ∈ F iff w ∈ L. Similarly, for x ∈ Y we have wϕ ∈ T iff (wϕ)βA
m ∈ F ′

iff for some p ∈ F , p(a) = pk · . . . ·p2 ·p1(a), for all a ∈ A iff pk · . . . ·p2 ·p1 ∈ F
iff wαA

% ∈ F iff w ∈ L.
(2) The proof is almost identical to that of Lemma 4.2.10, only 1A is replaced
with IA. �

It was shown in Example 4.2.2 that the variety of 1-definite tree lan-
guages is not definable by syntactic monoids. In the following example we
show that likewise the family of trivial-free 1-definite tree languages is not
definable by syntactic semigroups.

Example 4.3.5 The syntactic semigroup of the trivial-free 1-definite tree
language T\{x} where T is defined in Example 4.2.2, consists of two elements
both of which are right zeros. Let Λ = Λ1 = {α, β} and X = {x, y}. Let T ′′

be the set of all ΛX-trees which either have root label α and leaf label x or
have root label β and leaf label y, i.e.,

T ′′ = {α(p(x)) | p ∈ C(Λ, X)} ∪ {β(p(y)) | p ∈ C(Λ, X)}.
It is easy to see that the syntactic semigroup of T ′′ consists of two right

zero elements, but clearly T ′′ is not 1-definite. So, the trivial-free 1-definite
tree languages are not definable by syntactic semigroups. Indeed, T ′′ is not
k-definite for any k ≥ 1, thus the trivial-free definite tree languages are not
definable by syntactic semigroups (cf. Remark 4.2.3).

In the sequel we show that neither one of the properties “definability by
semigroups” and “definability by monoids” implies the other one.

The abbreviation VFS stands for variety of finite semigroups. For a VFS
S, let Sa be the class of all finite algebras whose translation semigroups are
in S, and St be the family of all recognizable trivial-free tree languages whose
syntactic semigroups are in S (cf. Definitions 4.1.2 and 4.2.1).
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We recall Proposition 10.9 of [54] which can be extended to VFS’s as
well; see also Lemma 5.2.5 in Chapter 5 below.

Proposition 4.3.6 For any VFM M and VFS S, the identities Mat = Mt,
Mta = Ma, Sat = St and Sta = Sa hold. �

Proposition 4.3.7 (1) There exists a VFM M such that neither Ma = Sa

nor Mt = St holds for any VFS S.
(2) For some VFS S, no VFM M satisfies Ma = Sa or Mt = St.

Proof. (1) Let M be the class of all finite monoids that satisfy the equation
y · x · x = y. Obviously, M is a VFM. Let Σ = Σ1 = {f} and let the
algebras A = (A,Σ) and B = (B,Σ) be defined by A = {a}, fA(a) = a,
and B = {a, b}, fB(a) = fB(b) = a. Then Tr(A) ∼= TrS(A) ∼= TrS(B) is the
trivial semigroup, but the monoid Tr(B) consists of a zero element (let us
denote it by 0) and a unit (denoted by 1). Now, A ∈Ma, but B 6∈Ma since
Tr(B) does not satisfy the equation y · x · x = y: 1 · 0 · 0 = 0 6= 1. Hence,
Ma is not definable by translation semigroups. Now if Mt = St hold for
a VFS S, then by Theorem 4.3.6 we would have Ma = Mta = Sta = Sa,
contradiction.

(2) Let S be the variety of finite right zero semigroups, i.e., the class of
semigroup that satisfy the equation x · y = y. It can be easily seen that if
T and T ′ are the tree languages of Example 4.2.2, then T \ {x} belongs to
St(Σ, X) since the syntactic semigroup of T \ {x} has two elements both
of which are right zeros. On the other hand, the syntactic semigroup of
T ′ consists of an identity element and two right zeros (like its syntactic
monoid). Thus T ′ 6∈ St(Σ, X). This shows that St is not definable by
syntactic monoids (since T \{x} and T ′ have isomorphic syntactic monoids)
whence Mt = St does not hold for any VFM M. On the other hand if
the identity Ma = Sa hold for some VFM M, then by Proposition 4.3.6 we
would have Mt = Mat = Sat = St, contradiction. �

Propositions 4.3.7 means that the definability by semigroups deserves a
separate study.





Chapter 5

Definability by ordered
monoids

We already know that the syntactic algebras of tree languages can be or-
dered. Likewise, the syntactic monoids of tree languages can also be ordered.
Due to its richer structure, the ordered syntactic monoid of a tree language
reflects more of the combinatorial properties of the language than its syn-
tactic monoid. In Chapter 4 the classes of finite algebras and the families of
recognizable tree languages that are definable by (translation or syntactic)
monoids were characterized. In this chapter we characterize the classes of
finite ordered algebras and the families of tree languages that are definable
by ordered monoids. Informally speaking, we prove the ordered version of
the results of Chapter 4. By doing so, Propositions 4.1.7 and 4.2.14 become
special cases of the results of the present chapter (when the inequality is
taken to be the equality).

In Section 5.1 we introduce ordered translation monoids of ordered alge-
bras and give necessary and sufficient conditions for a class of finite ordered
algebras to be definable by ordered translation monoids. In Section 5.2,
after introducing the syntactic ordered monoid of a tree language, we char-
acterize the families of tree languages that are definable by syntactic ordered
monoids. In the last section 5.3 we study semilattice and symbolic tree lan-
guages in detail. These provide some instances for the variety theorems of
Chapter 4 and the present chapter.

5.1 Ordered algebras vs. ordered monoids

We assume familiarity with ordered algebras (Chapter 3) and translation
monoids of algebras (Chapter 4). The translations of ordered algebras can
be ordered as follows:
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Definition 5.1.1 The ordered translation monoid of an ordered algebra
A = (A,Σ,6) is the structure OTr(A) = (Tr(A), ·,.A) where (Tr(A), ·)
is the translation monoid of A and the binary relation .A is defined by

p .A q ⇐⇒ (∀a ∈ A)
(
p(a) 6 q(a)

)
(p, q ∈ Tr(A)).

The relation .A is indeed an order on Tr(A) compatible with the com-
position of translations: if p .A q then p · r .A q · r and r · p .A r · q for
any p, q, r ∈ Tr(A).

Recall the notions of ⊆g, ←g and ∼=g from Chapter 3. We note that
Proposition 3.1.7 in Chapter 3 can be generalized to g-morphisms:

Proposition 5.1.2 Let A = (A,Σ,6) and B = (B,Ω,6′) be two ordered
algebras, and (κ, ϕ) : A → B be an order g-morphism. The mappings κ, ϕ
induce a monoid morphism Tr(A) → Tr(B), p 7→ p(κ,ϕ) such that p(a)ϕ =
p(κ,ϕ)(aϕ) for all a ∈ A. Moreover, if (κ, ϕ) is an order g-epimorphism then
the induced map is a monoid epimorphism.

Proof. For any elementary translation p = fA(a1, . . . , ξ, . . . , am) of A where
f ∈ Σm (m > 0) and a1, . . . , am ∈ A, the unary function p(κ,ϕ) on B defined
by b 7→ (fκ)B(a1ϕ, . . . , b, . . . , amϕ) is an elementary translation of B, and if
κ and ϕ are surjective then every elementary translation of B is of this form.
The mapping p 7→ p(κ,ϕ) can be extended inductively to all translations
by setting (1A)(κ,ϕ) = 1B and (p · q)(κ,ϕ) = p(κ,ϕ) · q(κ,ϕ). The identity
p(κ,ϕ)(aϕ) = p(a)ϕ is obvious. �

The following proposition is the ordered version of Lemma 10.7 in [54].

Proposition 5.1.3 For any finite ordered algebras A and B,

(1) if A ⊆g B, then OTr(A) � OTr(B);
(2) if A ←g B, then OTr(A)← OTr(B);
(3) OTr(κ(A,B)) ⊆ OTr(A)×OTr(B) for any g-product κ(A,B).

Proof. Let A = (A,Σ,6) and B = (B,Ω,6′).
(1) Let M be the order submonoid of OTr(B) generated by the elemen-

tary translations of the form fB(a1, . . . , ξ, . . . , am) where f ∈ Σm (m > 0)
and a1, . . . , am ∈ A. The mapping

fB(a1, . . . , ξ, . . . , am) 7→ fA(a1, . . . , ξ, . . . , am)
can be uniquely extended to an order monoid epimorphism M→ OTr(A).
Thus OTr(A)←M⊆ OTr(B).

(2) Let (κ, ϕ) : B → A be an order g-epimorphism. By Proposition 5.1.2,
the mapping OTr(B) → OTr(A), p 7→ p(κ,ϕ) is a monoid epimorphism. It
also preserves the order of translations, since for any p, q ∈ OTr(B),

p .B q ⇒ p(b) 6′ q(b) for all b ∈ B
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⇒ p(b)ϕ 6 q(b)ϕ for all b ∈ B
⇒ p(κ,ϕ)(bϕ) 6 q(κ,ϕ)(bϕ) for all b ∈ B
⇒ p(κ,ϕ)(a) 6 q(κ,ϕ)(a) for all a ∈ A
⇒ p(κ,ϕ) .A q(κ,ϕ).

(3) Let Γ be a ranked alphabet and κ : Γ→ Σ×Ω be an assignment. It
is easy to verify that the mapping

gκ(A,B)
(
(a1, b1), . . . , ξ, . . . , (am, bm)

)
7→(

fA(a1, . . . , ξ, . . . , am), hB(b1, . . . , ξ, . . . , bm)
)

where a1, . . . , am ∈ A, b1, . . . , bm ∈ B, g ∈ Γm and gκ = (f, h), can be
extended to a monomorphism ψ : OTr(κ(A,B))→ OTr(A)×OTr(B) which
satisfies p(a, b) = (pψ1(a), pψ2(b)) for all a ∈ A, b ∈ B and p ∈ Tr(κ(A,B)),
where ψ1 and ψ2 are the components of ψ, i.e., pψ = (pψ1, pψ2). The
mapping ψ is also order preserving, since for p, q ∈ Tr(κ(A,B)),

p .κ(A,B) q ⇒ p(a, b) 6 × 6′ q(a, b) for all a ∈ A, b ∈ B
⇒ pψ1(a) 6 qψ1(a) & pψ2(b) 6′ qψ2(b) for all a ∈ A, b ∈ B
⇒ pψ1 .A qψ1 & pψ2 .B qψ2

⇒ (pψ1, pψ2) .A × .B (qψ1, qψ2)
⇒ pψ .A × .B qψ. �

Definition 5.1.4 A variety of finite ordered monoids, in notation VFOM,
is a class of finite ordered monoids closed under order submonoids, order
epimorphic images and finite direct products.

For a VFOM M, Ma is the class of all finite ordered algebras whose
ordered translation monoids are in M, i.e.,

Ma = {A | A is an ordered algebra such that OTr(A) ∈M}.
A class of finite ordered algebras K is said to be definable by ordered trans-
lation monoids if there is a VFOM M such that Ma = K.

Corollary 5.1.5 For any VFOM M, the class Ma is a gVFOA. �

This follows from Proposition 5.1.3. It is known that not every gVFOA
is definable by ordered translation monoids; such an example is the gVFOA
Nil of ordered nilpotent algebras considered in Chapter 3. In this section
we give necessary and sufficient conditions for a class of algebras to be of
the form Ma for some VFOA M.

Definition 5.1.6 For any set D, let ΛD = {d | d ∈ D} be the unary ranked
alphabet consisting of a unary function symbol d for each d ∈ D. For a finite
ordered monoidM = (M, ·,.) the unary ordered algebraMν = (M,ΛM ,.)
is defined by mMν

(a) = a ·m for all a,m ∈M .

The structure Mν for a finite ordered monoid M is indeed an ordered
algebra since for any a, b,m ∈M ,

a . b⇒ a ·m . b ·m⇒ mMν
(a) . mMν

(b).
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Proposition 5.1.7 For a finite ordered monoid M = (M, ·,.),
OTr(Mν) ∼=M.

Proof. The elementary translations of Mν are of the form mMν
(ξ) where

m ∈M , and clearlymMν
(ξ)·nMν

(ξ) = m · nMν
(ξ) for allm,n ∈M . For the

unit element 1M ofM, the translation 1M
Mν

(ξ) is the identity translation of
Mν . This means that Tr(Mν) = {mMν

(ξ) | m ∈M}. Moreover, mMν
(ξ) 6=

nM
ν
(ξ) whenever m 6= n, since mMν

(ξ) = nM
ν
(ξ) implies m = 1M ·m =

mMν
(1M ) = nM

ν
(1M ) = 1M · n = n. Hence, the mapping M→ OTr(Mν),

m 7→ mMν
(ξ) is a monoid isomorphism. It is also an order isomorphism.

Indeed, for any m,n ∈ M , m . n iff a · m . a · n for every a ∈ M , i.e.,
mMν

(a) . nM
ν
(a) for every a ∈ M , what by definition is equivalent to

mMν
(ξ) .Mν nM

ν
(ξ). �

Proposition 5.1.8 For all finite ordered monoids M and P,

(1) if M⊆ P then Mν ⊆g Pν ;
(2) if M← P then Mν ←g Pν ;
(3) (M×P)ν ∼=g κ(Mν ,Pν) for some g-product κ(Mν ,Pν).

Proof. Let M = (M, ·,.) and P = (P, ·,.′). Statement (1) is obvious.
For (2) we note that if ϕ : P → M is an order monoid epimorphism, then
(ϕ,ϕ) : Pν → Mν , where ϕ : ΛP → ΛM is defined by (m)ϕ = mϕ, is
an order g-epimorphism. For proving (3) let κ : ΛM×P → ΛM × ΛP be
an assignment defined by (m, p)κ = (m, p) for m ∈ M,p ∈ P , and let
κ(Mν ,Pν) be the corresponding g-product of Mν and Pν . It is easy to
verify that (λ, ϕ) : (M×P)ν → κ(Mν ,Pν), where λ is the identity map on
ΛM×P and ϕ is the identity map on M × P , is an order g-isomorphism. �

Clause (3) of Proposition 5.1.8 can be generalized to any finite number
of finite ordered monoids M1, . . . ,Mn, that is to say, the g-isomorphism

(M1 × · · · ×Mn)ν ∼=g κ(Mν
1 , . . . ,Mν

n)
holds for some g-product κ(Mν

1 , . . . ,Mν
n).

For a finite ordered algebra A, the unary algebra Aρ is defined to be
OTr(A)ν ; cf. Definition 4.1.3 in Chapter 4. The following is an immediate
consequence of Proposition 5.1.8.

Corollary 5.1.9 If OTr(A) � OTr(A1)× · · · ×OTr(An) for any finite or-
dered algebras A,A1, . . . ,An, then Aρ �g κ(Aρ1, . . . ,A

ρ
n) for some g-product

κ(Aρ1, . . . ,A
ρ
n). �

Our characterization of gVFOA’s definable by ordered monoids is the
following.
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Proposition 5.1.10 For any class K of finite ordered algebras the following
conditions are equivalent:

(1) K is definable by ordered translation monoids;

(2) K is a gVFOA such that for all finite ordered algebras A and B, if
OTr(A) ∼= OTr(B) and A ∈ K then B ∈ K;

(3) K is a gVFOA such that A ∈ K⇐⇒ Aρ ∈ K for any A.

Proof. The implication (1) ⇒ (2) is obvious, and (2) ⇒ (3) follows from
Proposition 5.1.7. For (3) ⇒ (1), suppose that a gVFOA K satisfies the
equivalence A ∈ K ⇔ Aρ ∈ K for any A. Let M be the VFOM generated
by {OTr(A) | A ∈ K}. We claim that K = Ma. Obviously K ⊆ Ma. For
the opposite inclusion let B ∈Ma. So, OTr(B) � OTr(A1)× · · · ×OTr(An)
for some A1, . . . ,An ∈ K. By Corollary 5.1.9, Bρ �g κ(Aρ1, . . . ,A

ρ
n) for

some g-product κ(Aρ1, . . . ,A
ρ
n). Now we have Aρ1, . . . ,A

ρ
n ∈ K and this

implies that Bρ ∈ K hence B ∈ K. Thus Ma ⊆ K. �

Remark 5.1.11 Proposition 5.1.8 and the proof of Proposition 5.1.10 also
yield the fact that for any gVFOA K definable by ordered translation
monoids, the class {OTr(A) | A ∈ K} is a variety of finite ordered monoids.

5.2 Tree languages definable by ordered monoids

Let Σ be a ranked alphabet and X be a leaf alphabet.

Definition 5.2.1 For any tree language T ⊆ T(Σ, X), the quasi-order -T

on C(Σ, X) is defined by the condition
P -T Q ⇐⇒ (∀R ∈ C(Σ, X))(∀t ∈ T(Σ, X))

(
t ·Q ·R ∈ T ⇒ t · P ·R ∈ T

)
.

The equivalence relation of -T is the m-congruence of T defined by
P ∼T Q ⇐⇒ (∀R ∈ C(Σ, X))(∀t ∈ T(Σ, X))

(
t · P ·R ∈ T ⇔ t ·Q ·R ∈ T

)
.

Recall also that the quotient monoid (C(Σ, X)/∼T , ·) is the syntactic
monoid SM(T ) of T .

The syntactic ordered monoid of T is SOM(T ) = (C(Σ, X)/≈T , ·,.T )
where .T is the order induced by -T : (P/∼T ) .T (Q/∼T ) ⇔ P -T Q for
P,Q ∈ C(Σ, X); cf. [54] or [58]. It is easy to verify that P -T Q implies
R · P · S -T R · Q · S for any P,Q,R, S ∈ C(Σ, X). Thus the structure
SOM(T ) is indeed an ordered monoid.

It is known that the syntactic monoid of a tree language is the translation
monoid of the syntactic algebra of the language ([48, 54]). The following is
the corresponding proposition for ordered translation monoids and syntactic
ordered algebras.
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Proposition 5.2.2 For a tree language T ⊆ T(Σ, X),
OTr(SOA(T )) ∼= SOM(T ).

Proof. It is easy to see that the mapping
f(t1, . . . , ξ, . . . , tm) 7→ fSOA(T )(t1/≈T , . . . , ξ, . . . , tm/≈T )

can be extended to a monoid epimorphism ϕ : C(Σ, X) → OTr(SOA(T ))
which satisfies Pϕ(t/≈T ) = (t · P )/≈T for all t ∈ T(Σ, X), P ∈ C(Σ, X).
We show that for any P,Q ∈ C(Σ, X), P -T Q iff Pϕ .SOA(T ) Qϕ. Indeed,
P -T Q means by definition that t · Q · R ∈ T implies t · P · R ∈ T for
all t ∈ T(Σ, X), R ∈ C(Σ, X), i.e., t · P 4T t · Q for every t ∈ T(Σ, X),
or equivalently (t · P )/≈T6T (t · Q)/≈T for every t ∈ T(Σ, X). This is
equivalent to the fact that Pϕ(t/≈T ) 6T Qϕ(t/≈T ) for every t ∈ T(Σ, X),
or in other words, to Pϕ .SOA(T ) Qϕ. Thus ϕ◦.SOA(T ) ◦ϕ−1 = -T , and
then from Proposition 3.1.4 it follows that SOM(T ) ∼= OTr(SOA(T )). �

Corollary 5.2.3 For any ranked alphabets Σ,Ω, leaf alphabets X,Y , con-
text P ∈ C(Σ, X), order g-morphism (κ, ϕ) : T (Ω, Y ) → T (Σ, X), and tree
languages T, T ′ ⊆ T(Σ, X),

(1) SOM(T ∩ T ′),SOM(T ∪ T ′) � SOM(T )× SOM(T ′);

(2) SOM(P−1(T ))← SOM(T );

(3) SOM(Tϕ−1) � SOM(T ), and if (κ, ϕ) is a g-epimorphism then
SOM(Tϕ−1) ∼= SOM(T ). �

It follows from Corollary 3.2.3 (Chapter 3) and Propositions 5.1.3 and 5.2.2.

Definition 5.2.4 For a VFOM M, let Mt = {Mt(Σ, X)} be the family of
all recognizable tree languages whose syntactic ordered monoids are in M,
that is to say, Mt(Σ, X) = {T ⊆ T(Σ, X) | SOM(T ) ∈M}.

A family of recognizable tree languages V is definable by syntactic or-
dered monoids if there is a VFOM M such that Mt = V .

By Corollary 5.2.3, the family Mt for any VFOM M is a gPVTL. In this
section we characterize the gPVTL’s that are definable by syntactic ordered
monoids.

Lemma 5.2.5 For any VFOM M, (1) Mat = Mt and (2) Mta = Ma.

Proof. (1) For any tree language T ⊆ T(Σ, X) by Proposition 5.2.2,
T ∈Mat(Σ, X)⇐⇒ SOA(T ) ∈Ma ⇐⇒ OTr(SOA(T )) ∈M

⇐⇒ SOM(T ) ∈M⇐⇒ T ∈Mt(Σ, X).
(2) By (1) and Proposition 3.3.5, (Mt)a = (Mat)a = (Ma)ta = Ma. �
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Corollary 5.2.6 (1) A gPVTL V is definable by syntactic ordered monoids
iff V a is a gVFOA definable by ordered translation monoids.

(2) A gVFOA K is definable by ordered translation monoids iff Kt is a
gPVTL definable by syntactic ordered monoids. �

Recall the definition of a tree homomorphism and its extension to con-
texts from Chapters 4. The following lemma is the ordered version of Lemma
4.2.6.

Lemma 5.2.7 If ϕ : T(Σ, X) → T(Ω, Y ) is a regular tree homomorphism
and T ⊆ T(Ω, Y ) then SOM(Tϕ−1) � SOM(T ). If ϕ is full with respect to
T then SOM(Tϕ−1) ∼= SOM(T ).

Proof. We note that ϕ∗ : C(Σ, X)→ C(Ω, Y ) is a monoid homomorphism.
Let S ⊆ C(Ω, Y ) be the image of ϕ∗, - be the restriction of -T to S and µ
be the equivalence relation of -. Then S/µ is a submonoid of C(Ω, Y )/∼T .
We show that Pϕ∗ - Qϕ∗ implies P -Tϕ−1 Q for all P,Q ∈ C(Σ, X).

Suppose Pϕ∗ - Qϕ∗ and take arbitrary t ∈ T(Σ, X) and R ∈ C(Σ, X).
Then t ·Q · R ∈ Tϕ−1 implies tϕ ·Qϕ∗ · Rϕ∗ ∈ T then tϕ · Pϕ∗ · Rϕ∗ ∈ T ,
and so t · P · R ∈ Tϕ−1 or equivalently P -Tϕ−1 Q. Hence the map-
ping ψ : S/µ → C(Σ, X)/∼Tϕ−1

defined by ((Pϕ∗)µ)ψ = P ∼Tϕ−1
is

well-defined, order preserving and surjective. It is also a monoid mor-
phism, since ((Pϕ∗)µ · (Qϕ∗)µ)ψ = ((P · Q)ϕ∗µ)ψ = (P · Q) ∼Tϕ−1

=
P ∼Tϕ−1 ·Q ∼Tϕ−1

= ((Pϕ∗)µ)ψ · ((Qϕ∗)µ)ψ for all P,Q ∈ C(Σ, X). Hence,
SOM(Tϕ−1)← S/- ⊆ SOM(T ) holds and so SOM(Tϕ−1) � SOM(T ).

Suppose now that ϕ is full with respect to T . We show that P -Tϕ−1 Q
iff Pϕ∗ -T Qϕ∗ for any P,Q ∈ C(Σ, X). It has already been proved that
Pϕ∗ -T Qϕ∗ implies P -Tϕ−1 Q. For the converse, suppose P -Tϕ−1 Q
and take arbitrary R′ ∈ C(Ω, Y ) and t′ ∈ T(Ω, Y ). There are R ∈ C(Σ, X)
and t ∈ T(Σ, X) such that Rϕ∗ ∼T R′ and tϕ ≈T t′. Hence, t′ ·Qϕ∗ ·R′ ∈ T
implies tϕ·Qϕ∗·Rϕ∗ ∈ T , which is equivalent to (t·Q·R)ϕ ∈ T , or to t·Q·R ∈
Tϕ−1 and hence t·P ·R ∈ Tϕ−1. This is equivalent to tϕ·Pϕ∗ ·Rϕ∗ ∈ T , and
so t′ · Pϕ∗ · R′ ∈ T , what shows that Pϕ∗ -T Qϕ∗. Hence P -Tϕ−1 Q iff
Pϕ∗ -T Qϕ∗, and since the mapping ϕ∗ : C(Σ, X)→ C(Ω, Y ) is a monoid
homomorphism then SOM(Tϕ−1) ∼= SOM(T ) by Proposition 3.1.4. �

In the following two lemmas, some connections between tree languages
recognizable by a finite ordered algebra A, and tree languages recognizable
by Aρ are presented. Recall that the unary ranked alphabet of the algebra
Aρ is {p | p ∈ Tr(A)}; for simplicity we denote this alphabet by ΛA; cf.
Definition 4.1.3.

Suppose A = (A,Σ) is a finite algebra. Every context in C(Σ, A) corre-
sponds to a translation in Tr(A) in a natural way: for any m > 0, f ∈ Σm
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and a1, . . . , am ∈ A the elementary translation fA(a1, . . . , ξ, . . . , am) cor-
responds to the elementary context f(a1, . . . , ξ, . . . , am). This correspon-
dence can be extended to a mapping −A : C(Σ, A) → Tr(A) which sat-
isfies ξA = 1A (the identity translation) and (P · Q)A = PA · QA for all
P,Q ∈ C(Σ, A). We note that for any translation p ∈ Tr(A), there is a
P ∈ C(Σ, A) such that PA = p but this P may not be unique. In other
words, −A is a non-injective monoid epimorphism.

We also note that the mapping −A : C(Σ, A) \ {ξ} → TrS(A) is a semi-
group epimorphism that assigns non-unit contexts of C(Σ, A) to translations
of A. Let us recall that TrS(A) is the translation semigroup of the algebra
A; cf. Chapter 4.

Lemma 5.2.8 Let A = (A,Σ,6) be a finite ordered algebra and X be a leaf
alphabet disjoint from A. For any tree language L ⊆ T(ΛA, X) recognized by
Aρ there exist a regular tree homomorphism ϕ : T(ΛA, X) → T(Σ, X ∪ A)
and a tree language T ⊆ T(Σ, X∪A) such that L = Tϕ−1 and T is recognized
by a finite power An where n = |A|.

Proof. Let α : X → Tr(A) be an initial assignment for Aρ and F ⊆ Tr(A)
be an ideal of OTr(A) such that L = {t ∈ T(ΛA, X) | tαAρ ∈ F}. Let
ϕ : T(ΛA, X)→ T(Σ, X ∪A) be a tree homomorphism such that ϕX(x) = x
for all x ∈ X, and ϕ1(p) ∈ C(Σ, A) satisfies ϕ1(p)A = p for every p ∈
Tr(A). Obviously ϕ is a regular tree homomorphism. Suppose that A =
{a1, . . . , an}. Let F ′ be the ideal of An generated by {(p(a1), . . . , p(an)) ∈
An | p ∈ F}, i.e., (b1, . . . , bm) ∈ F ′ iff there is a p ∈ F such that bj 6 p(aj)
for every j ≤ n. Define the initial assignment β : X ∪ A → An for An by
aβ = (a, . . . , a) ∈ An for all a ∈ A and xβ =

(
(xα)(a1), . . . , (xα)(an)

)
for

all x ∈ X. Let T = {t ∈ T(Σ, X ∪ A) | tβAn ∈ F ′} be the tree language
recognized by (An, β, F ′). We are proving that L = Tϕ−1. Every tree w in
T(ΛA, X) is of the form w = p1(p2(. . . pk(x) . . .)) where p1, . . . , pk ∈ Tr(A)
(k ≥ 0) and x ∈ X. For such a tree w, wαA

%
= xα · pk · · · p2 · p1 and

(wϕ)βA
n

= (xα · pk · · · p2 · p1(a1), . . . , xα · pk · · · p2 · p1(an)). Hence, we have
wϕ ∈ T iff (wϕ)βA

n ∈ F ′ which holds iff there is a p ∈ F such that
xα·pk · · · p2 ·p1(a) 6 p(a) for every a ∈ A, or equivalently, xα·pk · · · p2 ·p1 .A
p for some p ∈ F , which is equivalent to xα · pk · · · p2 · p1 ∈ F or in other
words wαA

% ∈ F which means w ∈ L. �

Lemma 5.2.9 Let A = (A,Σ,6) be a finite ordered algebra and X be a
leaf alphabet disjoint from A ∪ Σ. For any tree language T ⊆ T(Σ, X)
recognized by A there exists a unary ranked alphabet Λ and a regular tree
homomorphism ϕ : T(Λ, X ∪Σ0)→ T(Σ, X) such that ϕ is full with respect
to T , and for every z ∈ X ∪ Σ0, Tϕ−1 ∩ T(Λ, {z}) can be recognized as a
subset of T(Λ, {z}) by Aρ.
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Proof. If we denote SOA(T ) by B = (B,Σ,6′), then B � A. Suppose
T = {t ∈ T(Σ, X) | tβB ∈ F} where β : X → B is an initial assignment for B
and FEB. Since B is the least ordered algebra that recognizes T , the algebra
B is generated by β(X). The mapping β : X → B can be uniquely extended
to a monoid homomorphism βc : C(Σ, X)→ C(Σ, B). Since B is generated
by β(X), the mapping C(Σ, X) → Tr(B), Q 7→ βc(Q)B is surjective. Let
ϕ : T(ΛB, X∪Σ0)→ T(Σ, X) be a tree homomorphism such that ϕX(x) = x
for all x ∈ X ∪ Σ0, and ϕ1(q) = Q ∈ C(Σ, X) satisfies βc(Q)B = q for
every q ∈ Tr(B). Note that ϕ is a regular tree homomorphism. It remains
to show that ϕ is full with respect to T and that for every z ∈ X ∪ Σ0,
Lz = Tϕ−1 ∩ T(Λ, {z}) can be recognized by Bρ as a subset of T(Λ, {z}).
This will finish the proof since OTr(B) � OTr(A) follows from B � A by
Proposition 5.1.3, and so Bρ � Aρ by Proposition 5.1.8, which implies that
Lz can also be recognized by Aρ.

First, we show that ϕ is full with respect to T . For any Q ∈ C(Σ, X),
q(ξ)ϕ∗ ∼T Q holds, where q = βc(Q)B ∈ Tr(B). By induction on the height
of t we show that for any t ∈ T(Σ, X) there is an s ∈ T(ΛB, X ∪ Σ0) such
that t ≈T sϕ. If t = x ∈ X ∪ Σ0, then sϕ ≈T t for s = t. If t = t′ · P for
some P ∈ C(Σ, X) and t′ ∈ T(Σ, X) such that the height of t′ is less than the
height of t, then by the induction hypothesis there is an s′ ∈ T(ΛB, X ∪Σ0)
such that t′ ≈T s′ϕ. Also, for some p ∈ Tr(B), p(ξ)ϕ∗ ∼T P holds. Let
s = p(s′). Then sϕ = s′ϕ · p(ξ)ϕ∗ ≈T t′ · P = t.

Second, we are showing that Lz can be recognized by Bρ for a fixed z ∈
X∪Σ0. Let 1B be the identity translation of B. Define the initial assignment
α : {z} → Tr(B) for Bρ by zα = 1B, and let Fz = {q ∈ Tr(B) | q(zβB) ∈ F}.
We show that Fz E Bρ and that Lz is recognized by (Bρ, α, Fz). For p, q ∈
Tr(B), if p .B q ∈ Fz then p(zβB) 6′ q(zβB) ∈ F , so p(zβB) ∈ F , and thus
p ∈ Fz. Hence Fz E Bρ. Every w ∈ T(ΛB, {z}) can be written in the form
w = q1(q2(. . . qh(z) . . .)) for some q1, . . . , qh ∈ Tr(B) (h ≥ 0). For such a tree
w, wαB

ρ
= 1B · qh · · · q2 · q1 and (wϕ)βB = qh · · · q2 · q1(zβB). Thus, w ∈ Lz

iff wϕ ∈ T , or equivalently (wϕ)βB ∈ F , which means qh · · · q2 ·q1(zβB) ∈ F .
This is equivalent to qh · · · q2 · q1 ∈ Fz, that is wαB

ρ ∈ Fz. Hence we showed
that Lz = {w ∈ T(Λ, {z}) | wαBρ ∈ Fz}. �

Now, we are almost ready to characterize the gPVTL’s definable by
syntactic ordered monoids. Before that we make a remark.

Remark 5.2.10 Let Λ be a unary ranked alphabet. For every leaf alphabet
X and every subset Y ⊆ X, C(Λ, Y ) = C(Λ, X), and the quasi-order -T

for a tree language T ⊆ T(Λ, Y ) on C(Λ, Y ) is the same relation -T on
C(Λ, X) when T is viewed as a subset of T(Λ, X). Therefore, if a family of
tree languages V = {V (Σ, X)} is definable by syntactic ordered monoids,
then for any unary ranked alphabet Λ and any leaf alphabets X and Y , if
Y ⊆ X then V (Λ, Y ) ⊆ V (Λ, X) (cf. Remark 4.2.11).
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Proposition 5.2.11 A family of recognizable tree languages V is definable
by syntactic ordered monoids if and only if V is a gPVTL that satisfies the
following conditions:

(1) The family V is closed under inverse regular tree homomorphisms.
(2) For every unary ranked alphabet Λ, and any leaf alphabets X and
Y , if Y ⊆ X then V (Λ, Y ) ⊆ V (Λ, X).

(3) For any regular tree homomorphism ϕ : T(Σ, X) → T(Ω, Y ) which
is full with respect to a tree language T ⊆ T(Ω, Y ), if Tϕ−1 ∈ V (Σ, X)
then T ∈ V (Ω, Y ).

Proof. The fact that for any VFOM M, Mt is a gPVTL follows from Corol-
lary 5.2.3, that it satisfies the conditions (1) and (3) follows from Proposition
5.2.7, and that it satisfies the condition (2) follows from Remark 5.2.10.

For the converse, suppose that a gPVTL V = {V (Σ, X)} satisfies the
conditions of the proposition. By Corollary 5.2.6 it is enough to show that
V a satisfies the condition of Proposition 5.1.10.

Let A = (A,Σ,6) be a finite ordered algebra in V a. By Lemma 5.2.8,
any tree language L ⊆ T(ΛA, X) recognized by Aρ can be written as L =
Tϕ−1 where ϕ : T(ΛA, X) → T(Σ, X ∪ A) is a regular tree homomorphism
and T is a tree language recognized by some power An of A. Then An ∈ V a

implies that T ∈ V (Σ, X ∪ A), and hence L = Tϕ−1 ∈ V (ΛA, X) by (1).
This holds for every tree language L recognizable by Aρ, so Aρ ∈ V a by
Corollary 3.2.8(2).

Now, suppose Aρ ∈ V a for a finite ordered algebra A = (A,Σ,6).
Let T ⊆ T(Σ, X) be a tree language recognizable by A. By Lemma 5.2.9
there exists a unary ranked alphabet Λ and a regular tree homomorphism
ϕ : T(Λ, X∪Σ0)→ T(Σ, X) that is full with respect to T such that for every
z in X ∪ Σ0, Lz = Tϕ−1 ∩ T(Λ, {z}) is recognized as a subset of T(Λ, {z})
by Aρ. So, Lz ∈ V (Λ, {z}), and thus Lz ∈ V (Λ, X ∪ Σ0) by (2). Hence,
Tϕ−1 =

⋃
z∈X∪Σ0

Lz ∈ V (Λ, X ∪Σ0). Since ϕ is full with respect to T , then
T ∈ V (Σ, X) by (3). This holds for every tree language T recognizable by
A, so by Corollary 3.2.8(2) we have A ∈ V a. �

We end the section with some further remarks and examples. Recall
from Chapter 3 that the families Fin and Cof of finite and cofinite tree
languages are gPVTL’s. Here we show that neither of them is definable
by syntactic ordered monoids. Let Ω = Ω1 = {g}, Σ = Σ1 = {f, g},
X = {x}, and let T = {x, f(x), f(f(x)), . . .} ⊆ T(Σ, X). Define the tree
homomorphism ϕ : T(Ω, X) → T(Σ, X) by ϕ1(g) = g(ξ1) and ϕX(x) = x.
The tree homomorphism ϕ is full with respect to T since f(ξ) ∼T ξ = ξϕ∗.
Now, we have Tϕ−1 = {x} ∈ Fin(Ω, X) but T 6∈ Fin(Σ, X). Also, if T d =
T(Σ, X) \ T is the complement of T , then T dϕ−1 = (Tϕ−1)d ∈ Cof(Ω, X)
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but T d 6∈ Cof(Σ, X). Thus, neither Fin nor Cof satisfies condition (3) of
Proposition 5.2.11. Note that ϕ is also full with respect to T d.

One can define the ordered translation semigroup of an ordered algebra
and the the syntactic ordered semigroup of a tree language as in Definition
5.1.1 and (the notes after) Definition 5.2.1. Below we show that the de-
finability by ordered semigroups is not comparable to the definability by
ordered monoids (cf. Proposition 4.3.7). For a variety of ordered semi-
groups S, let Sa be the class of ordered algebras whose ordered translation
semigroups are in S, and St be the family of tree languages whose syntactic
ordered semigroups are in S. It can be shown that for such an S, the class
Sa is a gVFOA, and the family St is a gPVTL.

(I) Let M be the variety of finite ordered monoids defined by the equation
x · y · y = x. Let Σ = Σ1 = {f}, and let the ordered algebras A = ({a},Σ,6)
and B = ({a, b},Σ,6′) be defined by

(1) 6 = {(a, a)}, fA(a) = a;
(2) 6′ = {(a, a), (a, b), (b, b)}, fB(a) = fB(b) = a.

It is straightforward to see that the ordered translation semigroup of A
consists of unit element fA(ξ) = 1A like its ordered translation monoid.
This is also the case for the ordered translation semigroup of B, while the
ordered translation monoid of B consists of two elements fB(ξ) and 1B,
where fB(ξ) �B 1B. So, A ∈Ma but B 6∈Ma which shows that Ma is not
definable by ordered translation semigroups. Similarly, the positive variety
Mt is not definable by syntactic ordered semigroups.

(II) Let S be the the variety of right zero ordered semigroups, i.e., S
is defined by the equation x · y = y. Let Σ = Σ1 = {f, g, h} be a ranked
alphabet. We define two ordered algebras A = (A,Σ,6) and B = (A,Σ,6),
where A = {a, b} and 6 = {(a, a), (b, a), (b, b)}, as follows:

(1) fA(a) = hA(a) = fA(b) = hA(b) = b, gA(a) = gA(b) = a;
(2) fB(a) = fB(b) = hB(b) = b, gB(a) = gB(b) = hB(a) = a.

It can be directly verified that the translation semigroup of A consists of
two elements {fA(ξ), gA(ξ)} and the translation semigroup of B consists of
three elements {fB(ξ), gB(ξ), hB(ξ)} in which hB(ξ) is the unit element. The
orders are as follows:

(i) hA(ξ) = fA(ξ) �A 1A �A gA(ξ);
(ii) fB(ξ) �B h

B(ξ) = 1B �B g
B(ξ).

Thus A and B have isomorphic ordered translation monoids while their
ordered translation semigroups are not isomorphic. Moreover, A ∈ Sa and
B 6∈ Sa. So, Sa is not definable by ordered translation monoids. Similarly,
the positive variety St is not definable by syntactic ordered monoids.

Recall the operations −d from Chapter 3. It is easy to show that
OTr(Ad) ∼= OTr(A)d for any finite ordered algebra A. It follows that
SOM(T d) ∼= SOM(T )d for any tree language T . Hence, (Ma)d = (Md)a

and (Mt)d = (Md)t for any VFOM M. Thus, any gVFOA K is definable by
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ordered translation monoids exactly in case Kd is. Similarly, any gPVTL V
is definable by syntactic ordered monoids iff V d is so.

5.3 Examples of varieties

Here we characterize the varieties of finite algebras and tree languages that
are definable by semilattice monoids. This is an instance of the variety
theorem, Proposition 4.2.14, in Chapter 4 (cf. Theorem 6.3 of [39]). We
also introduce symbolic finite ordered algebras and symbolic tree languages,
and show that they are definable by semilattice ordered monoids in which
the unit is the greatest element (called symbolic ordered monoids here).
This is an instance of Propositions 5.1.10 and 5.2.11.

A monoid (M, ·) is a semilattice monoid if it is commutative and idem-
potent, i.e., for every a, b ∈M , a · a = a and a · b = b · a hold. Sequences of
elements of a given set D are denoted by bold face lower case letters. For ex-
ample d is a (possibly empty) sequence 〈d1, . . . , dm〉 where d1, . . . , dm ∈ D.
For simplicity we write d ∈ D when all components of the sequence d be-
long to D. In that case for a function symbol f ∈ Σm+1, f(d,d) stands for
f(d, d1, . . . , dm). We assume that the lengths of the sequences always add
up correctly.

Definition 5.3.1 An algebra A = (A,Σ) is a semilattice algebra if it satis-
fies the following two identities for every f, g ∈ Σ and a,b, c,d, a ∈ A:

fA(a, fA(a, a,b),b) = fA(a, a,b);
fA(a, gA(c, a,d),b) = gA(c, fA(a, a,b),d).

The class of all semilattice Σ-algebras is denoted by SL(Σ).

Lemma 5.3.2 An algebra is semilattice if and only if its translation monoid
is a semilattice; and the class SL(Σ) is a variety of finite algebras. �

The proof is straightforward.

Lemma 5.3.3 Let A = (A,Σ) be a semilattice algebra. For any a, b ∈ A
and translations p, q ∈ Tr(A) the following hold:

(1) if p(q(a)) = a then p(a) = q(a) = a;
(2) if p(a) = b and a = q(b) then a = b.

Proof. Claim (2) is an immediate corollary of (1). Let us prove (1). Suppose
p, q ∈ Tr(A). Since q · q = q, p · p = p and q · p = p · q, we have q(a) =
q(p(q(a))) = q(q(p(a))) = q(p(a)) = p(q(a)) = a, and similarly p(a) =
p(p(q(a))) = p(q(a)) = a. �

The following 6 lemmas are some identities of semilattice algebras that
will be used later. Let A = (A,Σ) be a semilattice algebra.
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Lemma 5.3.4 For any a,b, c, a, b ∈ A and f ∈ Σ,
(s1) fA(a, a,b, b, c) = fA(a, b,b, a, c).

Proof. If p = fA(a, ξ,b, b, c), then
fA(a, a,b, b, c) = fA(a, fA(a, a,b, b, c),b, b, c)
= fA(a, a,b, fA(a, b,b, b, c), c) = fA(a, b,b, fA(a, a,b, b, c), c) =
= fA(a, fA(a, b,b, a, c),b, b, c) = p(fA(a, b,b, a, c)).
By swapping a and b the identity fA(a, b,b, a, c) = q(fA(a, a,b, b, c))

can be proved for some q ∈ Tr(A). Now Lemma 5.3.3(2) implies that
fA(a, a,b, b, c) = fA(a, b,b, a, c). �

Lemma 5.3.5 For any a, a, b ∈ A and f ∈ Σ,
(s2) fA(a, a, b,a) = fA(a, b, b,a).

Proof. By (s1) Lemma 5.3.4, we have:
fA(a, a, b,a) = fA(fA(a, a, b,a), a, b,a)
= fA(a, a, fA(b, a, b,a),a) = fA(fA(a, b, b,a), a, a,a) = p(fA(a, b, b,a)),

where p = fA(ξ, a, a,a). By the same argument and swapping a and b it can
be proved that fA(a, b, b,a) = q(fA(a, a, b,a)) for some q ∈ Tr(A). Hence,
fA(a, a, b,a) = fA(a, b, b,a) by Lemma 5.3.3(2). �

Lemma 5.3.6 For any a,b, a, b ∈ A and f, g ∈ Σ,
(s3) fA(gA(a,a), b,b) = fA(gA(b,a), a,b).

Proof. The second equality follows from (s1) Lemma 5.3.4:
fA(gA(a,a), b,b) = gA(fA(a, b,b),a) = gA(fA(b, a,b),a)
= fA(gA(b,a), a,b). �

Lemma 5.3.7 For any a1, a2, · · · , am ∈ A and f ∈ Σm,
(s4) fA(fA(a1, · · · , a1), a2, · · · , am) = fA(a1, a2, · · · , am).

Proof. The third equality is implied by (s2) in Lemma 5.3.5:
fA(fA(a1, · · · , a1), a2, · · · , am) = fA(a1, · · · , a1, f

A(a1, a2, · · · , am))
= fA(a1, f

A(a1, · · · , a1, a1, a2), a3, · · · , am)
= fA(a1, f

A(a1, · · · , a1, a2, a2), a3, · · · , am)
= fA(a1, · · · , a1, a2, f

A(a1, a2, a3, · · · , am)).
Now, we show for any j < m,

fA(a1, · · · , a1, a1, a2, . . . , aj , f
A(a1, a2, a3, · · · , am))

= fA(a1, · · · , a1, a2, . . . , aj , aj+1, f
A(a1, a2, a3, · · · , am)),

as follows, by using Lemmas 5.3.4 (s1), and 5.3.5 (s2),
fA(a1, · · · , a1, a2, . . . , aj , f

A(a1, a2, a3, · · · , am))
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= fA(a1, a2, · · · , aj , fA(a1, · · · , a1, a1, a2, . . . , aj , aj+1), aj+2, · · · , am)
= fA(a1, a2, · · · , aj , fA(a1, · · · , a1, a2, . . . , aj , aj+1, aj+1), aj+2, · · · , am)
= fA(a1, · · · , a1, a2, . . . , aj , aj+1, f

A(a1, a2, a3, · · · , am)).
By repeating this argument m− 1 times, we get

fA(fA(a1, · · · , a1), a2, · · · , am)
= fA(a1, · · · , am−1, f

A(a1, a2, a3, · · · , am)) = fA(a1, a2, · · · , am). �

Lemma 5.3.8 For any a, b,a,b ∈ A and f ∈ Σ,
(s5) fA(gA(a, b,a), a,b) = fA(gA(a, b,a), b,b).

Proof. We distinguish two cases.
(1) If the sequence a is empty, then by using identities (s4), (s3), (s1), (s3),
(s3) and (s4) consecutively, we get

fA(gA(a, b), a,b) = fA(gA(a, gA(b, b)), a,b)
= fA(gA(b, gA(a, b)), a,b) = fA(gA(gA(a, b), b), a,b)
= fA(gA(gA(a, b), a), b,b) = fA(gA(gA(a, a), b), b,b)
= fA(gA(a, b), b,b).

(2) If the sequence a is not empty, then write a = (c, c) and use identities
(s3), (s1), (s2) and (s3) consecutively

fA(gA(a, b,a), a,b) = fA(gA(a, b, c, c), a,b)
= fA(gA(a, b, a, c), c,b) = fA(gA(a, a, b, c), c,b)
= fA(gA(a, b, b, c), c,b) = fA(gA(a, b, c, c), b,b)
= fA(gA(a, b,a), b,b). �

Lemma 5.3.9 For any f ∈ Σm and g ∈ Σn where m ≤ n and n ≥ 2, and
any a, b,a,b, c ∈ A where the sequence b consists of n−m times b,
(s6) fA(fA(gA(a, b,a),b), c) = fA(gA(gA(a,b, b), b,a), c).

Proof. Use identities (s1), (s3) and (s4) alternatively:
fA(fA(gA(a, b,a),b), c) = fA(fA(gA(a, gA(b, . . . , b),a),b), c)
= fA(gA(fA(gA(b, . . . , b),b), a,a), c)
= fA(gA(gA(fA(b, . . . , b), b,b), a,a), c)
= gA(fA(gA(fA(b, . . . , b), b,b), c), a,a)
= gA(gA(fA(fA(b, . . . , b), c), b,b), a,a)
= gA(gA(fA(b, c), b,b), a, c) = gA(fA(gA(b, b,b), c), a,a)
= fA(gA(gA(b, b,b), a,a), c) = fA(gA(gA(a,b, b), b,a), c). �

We note that the identity corresponding to (s6) for m = n = 1 also
holds, i.e., fA(fA(gA(a))) = fA(gA(a)) = fA(gA(gA(a))).

We can assume that the leaf alphabets X are always disjoint from the
ranked alphabet Σ.
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Definition 5.3.10 For a tree t ∈ T(Σ, X), the contents c(t) of t is the set
of symbols from Σ ∪X which appear in t. It can be defined inductively as:

(1) c(x) = {x} for x ∈ Σ0 ∪X;
(2) c(f(t1, . . . , tm)) = {f} ∪ c(t1) ∪ · · · ∪ c(tm) for t1, . . . , tm ∈ T(Σ, X)

and f ∈ Σm.

For any subset Z ⊆ Σ ∪ X let C(Z) = {t ∈ T(Σ, X) | Z = c(t)}. A tree
language T ⊆ T(Σ, X) is semilattice if it is a union of tree languages of
the form C(Z) for some subsets Z ⊆ Σ ∪ X. The family of all semilattice
ΣX-tree languages is denoted by SL(Σ, X), and SLΣ = {SL(Σ, X)} is the
family of semilattice tree languages.

Lemma 5.3.11 For a tree language T ⊆ T(Σ, X) the following properties
are equivalent:

(1) T is semilattice;
(2) for all trees t, t′ ∈ T(Σ, X), c(t) = c(t′) and t ∈ T imply t′ ∈ T ;
(3) T =

⋃
t∈T C(c(t)).

Proof. The implications (1) ⇒ (2) and (3) ⇒ (1) are straightforward. Let
us verify the implication (2)⇒ (3). The inclusion T ⊆

⋃
t∈T C(c(t)) always

holds. Suppose t′ ∈ C(c(t)) for some t ∈ T . Then c(t) = c(t′), and so t′ ∈ T ,
whence

⋃
t∈T C(c(t)) ⊆ T . �

The rest of this subsection is devoted to proving the fact that semilattice
tree languages are definable by semilattice algebras, i.e., SLΣ = SL(Σ)t.

Fix a ranked alphabet Σ and a leaf alphabet X. The sequences of trees
are denoted by bold face letters, e.g., t is a sequence like (t1, . . . , tm) for
some trees t1, . . . , tm ∈ T(Σ, X).

Let σ be a congruence on T (Σ, X) such that T (Σ, X)/σ is a semilattice
algebra, i.e., it satisfies the following relations for all symbols f, g ∈ Σ and
trees t, r,u,v, t ∈ T(Σ, X):
(d1) f(t, f(t, t, r), r) σ f(t, t, r)
(d2) f(t, g(u, t,v), r) σ g(u, f(t, t, r),v).

The following lemma is implied by Lemmas 5.3.4, 5.3.5, 5.3.6, 5.3.7, 5.3.8
and 5.3.9.

Lemma 5.3.12 The following relations hold for any f ∈ Σm, g ∈ Σn, and
any ΣX-trees t, s, r, t, s:
(s1) f(t, t, r, r,u) σ f(t, r, r, t,u);
(s2) f(t, t, r, t) σ f(t, r, r, t);
(s3) f(g(t, t), r, r) σ f(g(r, t), t, r);
(s4) f(f(t, · · · , t), t) σ f(t, t);
(s5) f(g(t, r, t), t, r) σ f(g(t, r, t), r, r);
(s6) f(f(g(t, s, t), r),u) σ f(g(g(t, r, r), r, t),u)

where m ≤ n and the sequence r consists of n−m times r. �
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The family of Σ-congruences on T (Σ, X) satisfying (d1) and (d2) is
closed under intersections and contains the universal relation ∇T(Σ,X) =
T(Σ, X)×T(Σ, X), and so it has a smallest element τ . Our aim is to prove
that τ is determined by t1 τ t2 ⇐⇒ c(t1) = c(t2) for any trees t1, t2.

Suppose that the elements of Σ \ Σ0 are linearly ordered in such a way
that function symbols with smaller arity are smaller than function symbols
with greater arity. Assume also that the leaves X ∪Σ0 are linearly ordered.

Let cΣ(t) = (Σ \Σ0)∩ c(t) be the set of nodes of a tree t ∈ T(Σ, X) and
cX(t) = (X ∪ Σ0) ∩ c(t) be its set of leaves.

A tree t is in the canonical form if:

(1) either t ∈ X ∪ Σ0, or
(2) t = f(t1, x2, . . . , xm) where

(a) t1 is in the canonical form and x2 ≤ . . . ≤ xm ∈ Σ0 ∪X,
(b) f is the smallest in cΣ(t),
(c) either f /∈ cΣ(t1) or cΣ(t1) = {f} and then |cX(t1)| > 1,
(d) if |cX(t)| > m − 1 then x2 � . . . � xm are the smallest m − 1

elements in cX(t), and
(e) otherwise if cX(t) = {x2, . . . , xn} with n ≤ m, then x2 � . . . � xn,

xn+1 = . . . = xm = xn and cX(t1) = {xn}.

In other words, a tree is in the canonical form if on each its level only the
leftmost node may be from Σ \ Σ0, all the others are leaves from Σ0 ∪ X,
nodes grow from the root downwards and leaves grow from left to right and
from top to down. As soon as the set of nodes or leaves is exhausted, the last
symbol from the exhausted set is repeated as long as there are still symbols
in the other set to be used.

Let us fix σ to be any congruence on T (Σ, X) satisfying (d1) and (d2).
Our aim is to show that every tree t is σ-equivalent to a tree t′ in the
canonical form where c(t) = c(t′). A tree is called leftmost branching if its
every subtree is either a leaf or of the form f(t,x) where t is a tree and x is
a sequence of leaves (from X ∪ Σ0). For a tree t, the root of t, in notation
root(t), is its topmost symbol. Transformation of a tree into a σ-equivalent
tree in the canonical form consists of the following steps.

Step 1. Shaping the tree into a leftmost branching tree while arranging the
nodes in the increasing order from top to down.

We show that this can be done by induction on the number of nodes
and leaves in t. The claim clearly holds for t ∈ Σ0 ∪ X. Sup-
pose that t = f(t1, t2, . . . , tn) where t1, . . . , tm have the shape of a
leftmost branching tree and the nodes are in increasing order. Let
g = min{root(t1), . . . , root(tm)}. Without loosing generality, by (s1),
we can assume that g = root(t1), and let t1 = g(t′1, x2, . . . , xn). We
distinguish two cases:
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If g ≤ f then by (d2),
t = f(g(t′1, x2, . . . , xn), t2, . . . , tm) σ
σ g(f(t′1, t2, . . . , tm), x2, . . . , xn),

and now we can apply the induction hypotheses to f(t′1, t2, . . . , tm).

If f < g then m ≤ n and by (s3) we have
t = f(g(t′1, x2, . . . , xn), t2, . . . , tm) σ
σ f(g(t′1, t2, . . . , tm, x2, . . . , xn−m+1), xn−m+2, . . . , xn),

and then we can continue by induction.

We get a tree of the desired shape with nodes increasing from top to
down, but there may be repetitions of same nodes.

Step 2. Removing repetitions of nodes different from the greatest node.

The clause (s6) of Lemma 5.3.4 provides a transformation that pushes
repetitions, i.e., if f ≤ g and ffg is a subsequence of the sequence
of nodes, then the transformation will replace an extra copy of f by
a copy of g. Namely, let f1, . . . , fi−1, fi, . . . , fi, fi+1, . . . , fk, k ∈ N,
be the sequence of nodes read from the root downwards after Step
1, and assume that fi is the first repeated symbol. By applying (s6)
from Lemma 5.3.4, the last copy of fi is replaced by a new copy of
fi+1. This is repeated as long as there is more than one fi in the
sequence. Thus all repetitions of fi are replaced by repetitions of fi+1.
After that, the last copy of fi+1 is replaced by a new copy of fi+2,
etc. Finally, only the last symbol fk may have multiple copies, all the
others appear only once.

After these transformations we get a tree σ-equivalent to t, branching
only in the leftmost node and with increasing nodes where only the
greatest node is possibly repeated. The tree is still not in the canonical
form since leaves are not necessarily already arranged.

Step 3. Arranging leaves into increasing order.

The sequence of leaves is read starting from left to right and from top
downwards. This sequence can be sorted using standard algorithms
for sorting sequences what assumes comparing the first symbol with
the rest one by one and when a smaller one appears swap them and
continue comparing the new first symbol with the rest of the sequence.
After this the smallest leaf is on the first place. Repeat the same with
the second one and the rest of the sequence, etc. We note that this
swapping is supported by σ, since places of leaves on the same level
can be changed by (s1), and if they are on different levels then (s3)
can be applied.

After this, leaves will be in increasing order, but there are possibly
repetitions of those leaves which are not the greatest.
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Step 4. Removing repetitions of leaves different from the greatest leaf.

The idea is the same as in Step 2, the repetition of a smaller leaf is
replaced by a repetition of the next greater leaf, so that repetitions
are pushed trough the sequence and finally only the greatest leaf may
be repeated. In other words, if x < y then the subsequence of leaves
of the form xxy is replaced by xyy. We distinguish four cases.

First, xxy appears on the same level, i.e., as the components of the
same node. This case is solved by applying (s2).

Second, the first x is on one level and the second x and y are both on
the next. This is solved easily by applying first (s1), then (s5) and so
changing the first x into y, then applying (s3) to swap x and outer y,
and finally once more (s1):

f(g(t, x, y,x),y, x) σ f(g(t, x, y,x), x,y) σ
σ f(g(t, x, y,x), y,y) σ f(g(t, y, y,x), x,y) σ f(g(t, y, y,x),y, x).

Third, both x’s are on the upper level and y is on the lower. We pro-
ceed as

f(g(t, y,x),y, x, x) σ f(g(x, y,x),y, x, t) σ
σ f(g(x, y,x),y, y, t) σ f(g(t, y,x),y, y, x) σ f(g(t, y,x),y, x, y).

Note that t is needed here and the existence of such a symbol follows
from the fact that f ≤ g and thus the arity of g is at least 2.

Fourth, all three leaves appear on different levels. The tree is of the
form f(g(h(t, y, z), x), x) where f, g ∈ Σ2, and so the arity of h is at
least two. The first x should be changed into y. The transformation
is as follows:

f(g(h(t, y, z), x), x) σ f(g(h(x, y, z), t), x) σ
σ f(g(h(x, y, z), x), t) σ f(g(h(x, y, z), y), t) σ f(g(h(x, y, z), t), y) σ
σ f(g(h(t, y, z), x), y) σ f(g(h(t, y, z), y), x).

After this, our tree has almost the canonical form, the only disturbing
thing may be the existence of a too long subtree at the end having
only the greatest symbol from cΣ(t) as nodes and the greatest element
from cX(t) as leaves.

Step 5. Fold the unnecessary part.

Applying (s4) as many times as needed the tree is folded into one
without repetitions of the greatest symbol from cΣ(t), or with its rep-
etitions but not with only the greatest element of cX(t) as leaves on
the deepest level.

This finishes the procedure.

Clearly, the procedure results in a unique tree in the canonical form
which is σ-equivalent to a given tree.

For example, suppose h ∈ Σ3, f, g ∈ Σ2, c ∈ Σ0, x ∈ X, and the orders of
symbols are f < g < h and x < c. Let t = h(g(x, f(x, c)), x, g(x, c)). Then
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by applying the above steps we get the tree rj in the j-th step as follows:
t σ r1 = f(g(g(h(x, x, x), c), x), c)
σ r2 = f(g(h(h(x, c, x), x, x), x), c)
σ r3 = f(g(h(h(c, c, x), x, x), x), x)
σ r4 = f(g(h(h(c, c, c), c, c), c), x)
σ r5 = f(g(h(c, c, c), c), x).

It can be noticed that the canonical form tree corresponding to a given tree
t is determined by c(t) and can be constructed directly from this set. The
procedure can roughly be described as follows:

1. put the smallest node in the root of the tree, draw the necessary branches,
put the next smallest symbol from cΣ(t) in the left most node, continue
doing this as long as cΣ(t) is not exhausted;

2. put the smallest leaf in the topmost leftmost free place, choose the next
smallest and put in the next place, etc., as long as there are free places
in the tree or the set cX(t) of leaves is not empty;

3. if not all cX(t) is used, continue building the tree by shifting all symbols
on the last level by one place to the right, return the last leaf to cX(t),
put the greatest element of cΣ(t) to the leftmost place, add its arity
new branches, fill them with remaining symbols from cX(t) as in Step
2, and repeat this step until the whole cX(t) is used;

4. if there are still free places put the greatest symbol from cX(t) there.

Recall that τ denotes the smallest congruence satisfying (d1) and (d2).

Lemma 5.3.13 For any trees t1 and t2, t1τt2 ⇐⇒ c(t1) = c(t2).

Proof. Define τ ′ by t1τ
′t2 iff c(t1) = c(t2). Obviously τ ′ satisfies (d1) and

(d2). Let σ be any congruence satisfying (d1) and (d2). We are proving
τ ′ ⊆ σ. Assume t1τ ′t2. There are trees t′1 and t′2 in canonical form such that
t1σt

′
1 and t2σt

′
2. Then c(t′1) = c(t1) = c(t2) = c(t′2) and since the canonical

tree is uniquely determined by its contents, it follows that t′1 = t′2 which
immediately implies that t1σt2. Therefore, τ ′ is the smallest congruence
satisfying (d1) and (d2), and thus τ = τ ′. �

Proposition 5.3.14 A tree language T ⊆ T(Σ, X) is semilattice if and only
if it is recognizable by a finite semilattice algebra.

Proof. Since semillatice algebras form a variety of finite algebras, it suffices
to prove that a tree language is semilattice iff its syntactic algebra is semi-
lattice. By Lemma 5.3.13, T is a semilattice tree language iff τ ⊆ ≈T iff the
syntactic algebra of T is a semilattice algebra. �
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Corollary 5.3.15 Family SLΣ is a variety of tree languages and the identity
SLΣ = SL(Σ)t holds. �

Let SL = {SL(Σ)} the class of all semilattice finite algebras, and SL =
{SL(Σ, X)} be the family of all semilattice tree languages. Recall the notions
of gVFA and gVTL from Chapter 4.

Proposition 5.3.16 Class SL is a gVFA, family SL is a gVTL, and more-
over SL = SLt. �

We call an ordered monoid symbolic if it is a semilattice monoid and its
unit is the greatest element.

Definition 5.3.17 An ordered algebra A = (A,Σ,6) is symbolic, if it is
a semilattice algebra and fA(a1, · · · , am) 6 aj holds for every f ∈ Σm

(m > 0), j ≤ m, and a1, · · · , am ∈ A.
For a subset Z ⊆ Σ ∪ X let T (Z) = {t ∈ T(Σ, X) | Z ⊆ c(t)}. A tree

language T ⊆ T(Σ, X) is symbolic, if it is a union of tree languages of the
form T (Z) for some subsets Z ⊆ Σ ∪X.

Lemma 5.3.18 (i) An ordered algebra A = (A,Σ,6) is symbolic, iff it is
a semilattice algebra and p(a) 6 a holds for every p ∈ Tr(A) and a ∈ A, iff
its ordered translation monoid is symbolic.

(ii) A tree language T ⊆ T(Σ, X) is symbolic, iff for all trees t, t′ in
T(Σ, X), c(t) ⊆ c(t′) and t ∈ T imply t′ ∈ T . �

We denote the class of symbolic ordered Σ-algebras by Sym(Σ) and
SymΣ = {Sym(Σ, X)} denotes the family of symbolic tree languages. It can
be directly verified that Sym(Σ) is a gVOA and SymΣ is a gPVTL. We
note that the complement of a symbolic tree languages is not necessarily
symbolic. The contents c(P ) of a context P ∈ C(Σ, X) is the set of symbols
from Σ ∪X which appear in P . We note that c(P (t)) = c(P ) ∪ c(t) holds
for any context P ∈ C(Σ, X) and tree t ∈ T(Σ, X).

Proposition 5.3.19 A tree language T ⊆ T(Σ, X) is symbolic if and only
if it is recognizable by a finite symbolic ordered algebra.

Proof. Every symbolic tree language is also a semilattice tree language.
So, if T is symbolic then the syntactic algebra of T is semilattice. On the
other hand, since c(t) ⊆ c(P (t)) for all t ∈ T(Σ, X) and P ∈ C(Σ, X), then
P (t) 4T t always holds. This shows that SOA(T ) is a symbolic ordered
algebra. Conversely, if SOA(T ) is a symbolic ordered algebra, then τ ⊆≈T
and P (t) 4T t. Suppose that c(t) ⊆ c(t′) for some t ∈ T(Σ, X), and t ∈ T .
Then there exists a context P such that c(t′) = c(P (t)). By Lemma 5.3.13,
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t′ τ P (t), and so t′ ≈T P (t) holds. On the other hand P (t) 4T t implies
t′ 4T t, and this by t ∈ T implies t′ ∈ T . Hence, T is a symbolic tree
language by Lemma 5.3.11. �

Let Sym = {Sym(Σ)} the class of all finite symbolic ordered algebras,
and SL = {SL(Σ, X)} be the family of all symbolic tree languages.

Proposition 5.3.20 Class Sym is a gVFOA, family Sym is a gPVTL, and
Sym = Symt. �

Another characterization of symbolic tree languages is given below. We
will show that they are exactly those semilattice languages recognized by
so-called translation closed subsets of semilattice algebras.

Proposition 5.3.21 For a semilattice algebra A = (A,Σ) the structure
As = (A,Σ,6), where 6 is defined by

a 6 b ⇐⇒ a = p(b) for some p ∈ Tr(A)
for all a, b ∈ A, is a symbolic ordered algebra.

Proof. It is clear that the relation 6 is reflexive and transitive, and it is
anti-symmetric by Lemma 5.3.3. It is also compatible with Σ since for any
a, b ∈ A such that a 6 b, it follows that a = p(b) for some p ∈ Tr(A). Hence
q(a) = q(p(b)) = p(q(b)) for every q ∈ Tr(A), thus q(a) 6 q(b) for every
q ∈ Tr(A). Obviously p(a) 6 a for every a ∈ A and p ∈ Tr(A), which
implies that As is a symbolic ordered algebra by Lemma 5.3.18 (i). �

Definition 5.3.22 For a semilattice algebra (A,Σ), a subset D ⊆ A is
translation closed if d ∈ D implies p(d) ∈ D for any p ∈ Tr(A).

Translation closed subsets are known as ideals of algebras, but we chose
a different name since the term “idea” has already a different meaning here.
Note that any ideal of a symbolic ordered algebra is translation closed.

Lemma 5.3.23 A subset D ⊆ A of a semilattice algebra A = (A,Σ) is
translation closed if and only if D is an ideal of the symbolic ordered algebra
As defined in Proposition 5.3.21. �

It was proved in Proposition 5.3.14 that semilattice tree languages are
recognized by finite semilattice algebras. By Proposition 5.3.21 and Lemma
5.3.23 it follows that symbolic tree languages are exactly those semilattice
tree languages that are recognized by semilattice algebras with translation
closed sets of final states.

Proposition 5.3.24 A tree language T ⊆ T(Σ, X) is a symbolic tree lan-
guage if and only if there exist a finite semilattice algebra A = (A,Σ), a
morphism ϕ : T (Σ, X) → A and a translation closed subset F ⊆ A such
that T = Fϕ−1. �





Chapter 6

Tree algebras

Another syntactic structure for recognizable tree languages is introduced
by Wilke [60]. This formalism considers only binary trees (in which every
node is either a leaf or two-branching) whose nodes and leaves are labeled
by symbols of a finite alphabet.

In this formalism trees are represented by terms over a signature Γ con-
sisting of six operation symbols involving the three sorts label, tree and
context. A tree algebra is a Γ-algebra satisfying certain identities which
identify some pairs of Γ-terms that represent the same tree. The syntactic
tree algebra of a tree language T is defined in a natural way. Its component
of sort tree is the syntactic algebra of T while its context-component is
the syntactic semigroup of T .

“The present algebraic framework based on three-sorted tree algebras
can be described as a combination of the semigroup approach and the uni-
versal algebra approach that have been used, respectively, by Nivat and
Podelski and by Steinby to characterize classes of regular tree languages. It
is observed that the three-sorted tree algebras are more suitable when con-
sidering the class of frontier testable [i.e., reverse definite] tree languages.
Frontier testable tree languages cannot be characterized by syntactic semi-
groups and there is no known finite characterization for frontier testability
in the latter universal algebra framework.” [49].

This formalism for binary tree languages is studied further in this chap-
ter. A completeness theorem for the axiomatization of tree algebras with
respect to representations of binary trees, and a variety theorem for families
of binary tree languages and varieties of tree algebras are proved.

In Section 6.1 we consider the canonical homomorphism from the Γ-term
algebra generated by a given label alphabetA. Its tree-component yields the
binary trees from their representations as Γ-terms, and by showing that its
kernel is the fully invariant congruence relation generated by Wilke’s axioms
of tree algebras, we get the soundness and completeness of the axiom system
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with respect to binary representations, i.e., any two Γ-terms representing the
same tree are proved to be equal in the axiom system. For proving this, a
complete term rewriting system is constructed for Wilke’s axiom system. It
follows that the derivability of equations in the axiom system is decidable.

In Section 6.2 we study the variety theory of the formalism. As a partic-
ular case of many-sorted variety theorem (Proposition 2.3.14 in Chapter 2)
we get a variety theorem for families of recognizable triple subsets of sort
label-tree-context and varieties of finite tree algebras. But it turns out
that there is no such a variety theorem for families of binary tree languages
and varieties of finite tree algebras. However, by restricting ourselves to spe-
cial kind of tree algebras (called reduced algebras) we get a sort of a variety
theorem for reduced tree algebras and binary tree languages. This answers
a question mentioned by several authors [19, 20, 54, 60]. Finally, we link
the varieties of recognizable binary tree languages to generalized varieties of
tree languages [54]. It turns out that the binary fragment of any gVTL is
a variety of recognizable binary tree languages. So, nilpotency, definiteness,
reverse definiteness, locally testability, etc. [54] are canonically translated
to binary tree languages.

In Section 6.3 we discuss some algebraic properties of free tree algebras
and term algebras. We list without proofs the main results of [43, 44] stating
that Wilke’s functions generate all the functions involving labels, trees and
contexts that preserve the syntactic tree algebra congruences (cf. [60]) of all
binary tree languages, if the alphabet contains at least seven labels. Also, all
the congruence preserving functions of term algebras over ranked alphabets
with at least seven constant symbols can be proved to be term functions.

We assume some familiarity with the basic notions of term rewriting
systems, see e.g. [5, 25].

6.1 Binary trees and tree algebras

In what follows, we shall consider especially binary trees in which both
the inner nodes and the leaves are labelled with symbols from a given finite
alphabet A. Such trees can also be defined as terms like in the previous
chapters. With every a ∈ A we associate a constant symbol ca and a binary
function symbol fa. The ranked alphabet ΣA = ΣA

0 ∪ΣA
2 is associated with

A, where ΣA
0 = {ca | a ∈ A} and ΣA

2 = {fa | a ∈ A}.
The sets TA and CA of A-trees and A-contexts, respectively, are defined

inductively as follows:
(1) ca ∈ TA for all a ∈ A, and ξ ∈ CA;
(2) fa(s, t) ∈ TA and fa(p, t), fa(t, p) ∈ CA for all a ∈ A, s, t ∈ TA and
p ∈ CA.

Moreover, let C+
A = CA \ {ξ} be the set of non-unit A-contexts.
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The ΣA-algebra of A-trees TΣ,A = (TA,ΣA) is defined as follows:

(1) c
TΣ,A
a = ca for every a ∈ A, and

(2) f
TΣ,A
a (s, t) = fa(s, t) for every a ∈ A and every s, t ∈ TA.

Clearly, TΣ,A is the ΣA-term algebra (over the empty leaf alphabet), and
hence for each ΣA-algebra D = (D,ΣA), there is a unique homomorphism
hD : TΣ,A → D defined inductively by:

(1) hD(ca) = cDa for a ∈ A;
(2) hD(fa(s, t)) = fDa (hD(s), hD(t)) for a ∈ A and s, t ∈ TA.

Let us now introduce Wilke’s [60] formalism for representing binary trees
over a given alphabet A by terms over a many-sorted ranked alphabet Γ.
This alphabet Γ contains operators by which A-trees and A-contexts can be
constructed starting from the label alphabet A.

The set of sorts is S = {label, tree, context}. For sort names we use
the abbreviations l = label, t = tree and c = context. The types (see
[59]) of the symbols in the S-sorted ranked alphabet Γ = {ι, κ, λ, ρ, η, σ} are
as follows:
• ι : l→ t, • λ : lt→ c, • η : ct→ t
• κ : ltt→ t, • ρ : lt→ c, • σ : cc→ c.
For defining Γ-terms, let X = 〈Xl, Xt, Xc〉, where Xl is a set of variables

of sort label, Xt is a set of variables of sort tree, and Xc is a set of variables
of sort context. The sets TΓ(X)l, TΓ(X)t and TΓ(X)c of Γ-terms over X
of sort label, tree and context, respectively, are defined inductively:

• Xl ⊆ TΓ(X)l, Xt ⊆ TΓ(X)t, Xc ⊆ TΓ(X)c;
• if a ∈ TΓ(X)l, then ι(a) ∈ TΓ(X)t;
• if a ∈ TΓ(X)l and s, t ∈ TΓ(X)t, then κ(a, s, t) ∈ TΓ(X)t;
• if a ∈ TΓ(X)l and t ∈ TΓ(X)t, then λ(a, t), ρ(a, t) ∈ TΓ(X)c;
• if p ∈ TΓ(X)c and t ∈ TΓ(X)t, then η(p, t) ∈ TΓ(X)t;
• if p, q ∈ TΓ(X)c, then σ(p, q) ∈ TΓ(X)c.

For the particular choice X = 〈A, ∅, ∅〉, where A is a given alphabet
of labels, we get TΓ(X)l = A, and write TΓ(X)t = TΓ(A) and TΓ(X)c =
CΓ(A)+. Elements of the sets TΓ(A) and CΓ(A) = CΓ(A)+ ∪ {ξ} are called
ΓA-terms and ΓA-contexts, respectively. Note that CΓ(A)+ does not include
the unit context ξ.

Binary A-trees and A-contexts are represented by ΓA-terms and ΓA-
contexts, as follows. If s, t ∈ TΓ(A) represent the A-trees ŝ and t̂, and
p, q ∈ CΓ(A) represent the A-contexts p̂ and q̂, respectively, then for any
label a ∈ A,

• ι(a) represents the A-tree ca,
• κ(a, s, t) represents the A-tree fa(ŝ, t̂),
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• λ(a, t) represents the A-context fa(ξ, t̂),
• ρ(a, t) represents the A-context fa(t̂, ξ),
• η(p, t) represents the A-tree p̂(t̂), and
• σ(p, q) represents the A-context p̂(q̂).

Any A-tree or A-context is, in general, represented by several ΓA-terms
or ΓA-contexts, respectively. For example, the {a, b}-tree fb(fa(cb, ca), ca)
can be represented by the Γ{a, b}-terms

κ(b, κ(a, ι(b), ι(a)), ι(a)) or η(λ(b, ι(a)), κ(a, ι(b), ι(a))).
Later we shall formulate this representation relation as a homomorphism.
A Γ-algebra M = (〈Ml,Mt,Mc〉,Γ) consists of

• a nonempty set Ml of elements of sort label,
• a nonempty set Mt of elements of sort tree, and
• a nonempty set Mc of elements of sort context,

and operations

• ιM : Ml →Mt,
• κM : Ml ×Mt ×Mt →Mt,
• λM, ρM : Ml ×Mt →Mc,
• ηM : Mc ×Mt →Mt, and
• σM : Mc ×Mc →Mc,

defined as realizations of the symbols in Γ.
If X = 〈Xl, Xt, Xc〉 is a triple of sets of variables as above, then the

operations of the Γ-term algebra over X,
TΓ(X) = (〈TΓ(X)l, TΓ(X)t, TΓ(X)c〉,Γ)

are defined by setting the following for all a ∈ TΓ(X)l, s, t ∈ TΓ(X)t and
p, q ∈ TΓ(X)c,

• ιTΓ(X)(a) = ι(a),
• κTΓ(X)(a, s, t) = κ(a, s, t),
• λTΓ(X)(a, t) = λ(a, t),
• ρTΓ(X)(a, t) = ρ(a, t),
• ηTΓ(X)(p, t) = η(p, t), and
• σTΓ(X)(p, q) = σ(p, q).

In particular, for an alphabet A, the Γ-algebra of ΓA-terms
TΓ(A) = (〈A, TΓ(A), CΓ(A)+〉,Γ)

is obtained as a special case of the algebra TΓ(X) by putting X = 〈A, ∅, ∅〉.
A further Γ-algebra of special interest is the Γ-algebra of A-trees

FTA(A) = (〈A, TA, C+
A 〉,Γ)

defined as follows: for any a ∈ A, s, t ∈ TA and p, q ∈ C+
A ,
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• ιFTA(A)(a) = ca,
• κFTA(A)(a, s, t) = fa(s, t),
• λFTA(A)(a, t) = fa(ξ, t),
• ρFTA(A)(a, t) = fa(t, ξ),
• ηFTA(A)(p, t) = p(t), and
• σFTA(A)(p, q) = p(q),

where p(t) and p(q) are the A-tree and the A-context obtained from p by
replacing the ξ in it with t and q, respectively.

As noted in [60], for any alphabet A, the algebra FTA(A) satisfies the
following identities:

(TA1) σ(σ(p, q), r)) ≈ σ(p, σ(q, r));
(TA2) η(σ(p, q), t) ≈ η(p, η(q, t));
(TA3) η(λ(a, s), t) ≈ κ(a, t, s);
(TA4) η(ρ(a, s), t) ≈ κ(a, s, t).

Here, a is a variable of sort label, s and t are variables of sort tree, and p, q
and r are variables of sort context. Let TA denote the set of these identities.
Moreover, let ≡TA be the fully invariant congruence on FTA(A) generated
by TA, i.e., the equational theory in variables 〈A, ∅, ∅〉 axiomatized by TA.

Following [60], we call a Γ-algebra a tree algebra, if it satisfies the identi-
ties TA. In particular, FTA(A) is the free tree algebra generated by 〈A, ∅, ∅〉
([60], Proposition 1). This means that if M = (〈Ml,Mt,Mc〉,Γ) is a tree
algebra, then any mapping ψ : A → Ml can be extended in a unique way
to a homomorphism ϕ = (ϕl, ϕt, ϕc) of Γ -algebras from FTA(A) to M. We
note that ϕl = ψ.

For any finite alphabet A, the Γ-algebras TΓ(A) and FTA(A) are both
generated by 〈A, ∅, ∅〉. The identity mapping 1A : A → A can be extended
uniquely to a homomorphism ν : TΓ(A) → FTA(A) of Γ-algebras that we
call the canonical A-homomorphism. It is the triple of mappings

〈νl : A→ A, νt : TΓ(A)→ TA, νc : CΓ(A)+ → C+
A 〉

defined inductively for all a ∈ TΓ(X)l, s, t ∈ TΓ(X)t and p, q ∈ TΓ(X)c by:

• νl(a) = a,
• νt(ι(a)) = ca,
• νt(κ(a, s, t)) = fa(νt(s), νt(t)),
• νc(λ(a, t)) = fa(ξ, νt(t)),
• νc(ρ(a, t)) = fa(νt(t), ξ),
• νt(η(p, t)) = νc(p)(νt(t)), and
• νc(σ(p, q)) = νc(p)(νc(q)).

It is clear that the A-tree represented by any t ∈ TΓ(A) is precisely νt(t).
Similarly, νc(p) is always the A-context represented by p ∈ CΓ(A)+.
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We shall now establish some basic properties of the kernel of the canoni-
cal homomorphism ν : TΓ(A)→ FTA(A) and the algebra FTA(A) by convert-
ing the identities of TA into a convergent (i.e., terminating and confluent)
term rewriting system.

Definition 6.1.1 Let R be the term rewriting system consisting of the
following four rules:

(R1) σ(σ(p, q), r))→ σ(p, σ(q, r));
(R2) η(σ(p, q), t)→ η(p, η(q, t));
(R3) η(λ(a, s), t)→ κ(a, t, s);
(R4) η(ρ(a, s), t)→ κ(a, s, t).

Proposition 6.1.2 The system R is convergent.

Proof. It is clear that R is compatible with the lexicographic path ordering
(see e.g. [3] or [4]) induced by any order on Γ such that η > κ. Hence, R is
terminating. There are just two critical pairs. The pair

〈η(σ(p, σ(q, r)), t), η(σ(p, q), η(r, t))〉
produced by (R1) and (R2) converges to η(p, η(q, η(r, t)) by applications of
(R2), and the other critical pair

〈σ(σ(p, σ(q, r)), r′), σ(σ(p, q), σ(r, r′))〉
obtained by overlapping (R1) with itself, converges to

σ(p, σ(q, σ(r, r′)))
by further applications of (R1). Hence, R is confluent as well. �

Let IRRl(R) ⊆ A, IRRt(R) ⊆ TΓ(A), and IRRc(R) ⊆ CΓ(A)+ denote
the sets of Γ-terms over 〈A, ∅, ∅〉 irreducible by R of sort label, tree and
context, respectively. Clearly, IRRl(R) = A. The other two sets are
described in the following proposition.

Proposition 6.1.3 The sets of R-irreducible ΓA-terms and ΓA-contexts
are obtained as follows.

I. A ΓA-term is irreducible iff it contains the operators ι and κ only,
that is to say, IRRt(R) is the smallest subset of TΓ(A) satisfying the
following two conditions:
(1) ι(a) ∈ IRRt(R) for every a ∈ A;
(2) if a ∈ A and s, t ∈ IRRt(R), then κ(a, s, t) ∈ IRRt(R).

II. IRRc(R) is the smallest subset of CΓ(A)+ satisfying the following
two conditions:
(1’) λ(a, t), ρ(a, t) ∈ IRRc(R) for all a ∈ A and t ∈ IRRt(R);
(2’) σ(λ(a, t), p) ∈ IRRc(R) and σ(ρ(a, t), p) ∈ IRRc(R) whenever

a ∈ A, t ∈ IRRt(R) and p ∈ IRRc(R).
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Proof. By considering the rules of R we see immediately that clauses (1)
and (2) define a set of irreducible ΓA-terms. On the other hand, any term
with a subterm of the form η(p, t) is reducible as the ΓA-context p must
begin with λ, ρ or σ. Hence, all irreducible ΓA-terms are obtained by (1)
and (2) using only letters of A and the operators ι and κ.

It is again clear that no rule of R applies to any ΓA-context obtained
by rules (1’) and (2’). The converse claim, that (1’) and (2’) yield all the
irreducible ΓA-contexts, can be easily verified by induction on the ξ-depth
dξ(p) of p ∈ IRRc(R), i.e., the distance of the ξ-labelled node from the root
of νc(p). Indeed, if dξ(p) = 1, then p must be a ΓA-context given by clause
(1’). If dξ(p) > 1, then p = σ(q, r) for some q, r ∈ IRRc(R), and because of
rule (R1), q must be of the form λ(a, t) or ρ(a, t) with t ∈ IRRt(R). Since
the induction assumption applies to r, then p also is of the required type. �

Any two ≡TA-congruent ΓA-terms represent the same A-tree, and sim-
ilarly, for any p, q ∈ CΓ(A), p ≡TAc q implies νc(p) = νc(q). It follows from
Propositions 6.1.2 and 6.1.3 that any A-tree is represented by a ΓA-term in
which only the operators ι and κ are used. Also, every A-context is repre-
sented by a ΓA-context of the form

σ(p1, (σ(p2, . . . σ(pn−1, pn) . . .),
where n ≥ 1, and each pi is of the form λ(a, t) or ρ(a, t) with a ∈ A and
t ∈ IRRt(R). The following proposition completes the picture. The proof
is straightforward.

Proposition 6.1.4 If s, t ∈ IRRt(R) and s 6= t, then νt(s) 6= νt(t). Hence
each A-tree is represented by a unique R-irreducible ΓA-term. Similarly, if
p, q ∈ IRRc(R) and p 6= q, then νc(p) 6= νc(q), and hence each A-context is
represented by a unique R-irreducible ΓA-context. �

The definition of R implies directly that the equivalence closure ⇔∗
R of

⇒R equals the fully invariant congruence ≡TA on TΓ(A) generated by the
identities TA ([3, 4]). Since FTA(A) satisfies the identities TA, the inclusion
≡TA⊆ ker ν holds. On the other hand, ker ν ⊆⇔∗

R by Proposition 6.1.4.
Hence, ≡TA = ker ν. By the homomorphism theorem (Proposition 2.1.1 in
Chapter 2) we know that FTA(A) ∼= TΓ(A)/ ker ν (as ν is an epimorphism)
and that TΓ(A)/≡TA is the free tree algebra generated by 〈A, ∅, ∅〉. These
observations yield the soundness and completeness of Wilke’s axiomatization
of tree algebras for binary tree or context representations, namely that every
two Γ-terms represent the same tree or context iff they are TA-provably
equal. This can be formalized more precisely in the following corollary.

Corollary 6.1.5 The kernel of the homomorphism ν : TΓ(A) → FTA(A)
equals the fully invariant congruence ≡TA on TΓ(A) generated by the iden-
tities TA, and FTA(A) is the free tree algebra generated by 〈A, ∅, ∅〉. �
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That FTA(A) is the free tree algebra generated by 〈A, ∅, ∅〉 is actually
Wilke’s Proposition 1 in [60]. From this result, on can derive the identity
≡TA = ker ν directly (without using any term rewriting system). To see
this, we note that since TΓ(A)/≡TA is also the free tree algebra generated
by 〈A, ∅, ∅〉, then there exists a morphism  : FTA(A) → TΓ(A)/≡TA such
that (u) ν = (u/≡TA) for all u ∈ TΓ(A). So, ker ν ⊆≡TA follows; the
inverse inclusion ≡TA⊆ ker ν is even more obvious.

Proposition 6.1.2 implies that the equational theory ≡TA is decidable: to
decide whether any two given ΓA-terms, or any two given ΓA-contexts, are
≡TA-equivalent, it suffices to compute and compare their R-normal forms.
Since ≡TA = ker ν, the question “s ≡TAt t?” can also be decided for any
s, t ∈ TΓ(A) simply by forming the A-trees represented by s and t: s ≡TAt t
if and only if νt(s) = νt(t). Similarly, for any ΓA-contexts p and q, p ≡TAc q
if and only if νc(p) = νc(q).

6.2 Varieties of binary tree languages

A binary tree language is any subset T ⊆ TA for a finite alphabet A. For such
a binary tree language T , the triple 〈T 〉 = 〈∅, T, ∅〉 is a subset of FTA(A).
We know from Chapter 2 that for any subset L = 〈Ll, Lt, Lc〉 ⊆ 〈A, TA, C+

A 〉,
the syntactic congruence ≈L= 〈≈Ll ,≈Lt ,≈Lc 〉 of L is a congruence relation
on FTA(A). For a binary tree language T ⊆ TA, the syntactic tree algebra
congruence of T is defined to be the syntactic congruence of 〈T 〉 = 〈∅, T, ∅〉
and is denoted by ≈T , i.e., ≈T =≈〈T 〉. The following lemma simplifies this
definition (cf. [60]).

Lemma 6.2.1 The syntactic tree algebra congruence relation ≈T of a bi-
nary tree language T ⊆ TA satisfies the following identities:

• ≈Tl = {(a, a′) ∈ A×A | ∀p ∈ CA
(
p(ca) ∈ T ↔ p(ca′) ∈ T

)
&

∀p ∈ CA∀t, t′ ∈ TA
(
p(fa(t, t′)) ∈ T ↔ p(fa′(t, t′)) ∈ T

)
},

• ≈Tt = {(t, t′) ∈ TA × TA | ∀p ∈ CA
(
p(t) ∈ T ↔ p(t′) ∈ T

)
},

• ≈Tc = {(p, p′) ∈ CA × CA | ∀q ∈ CA∀t ∈ TA
(
q(p(t)) ∈ T ↔ q(p′(t)) ∈ T

)
}.

�

For a context p ∈ CA and a subset T ⊆ TA, p−1(T ) is defined to be the
set {t ∈ TA | p(t) ∈ T}.

Corollary 6.2.2 For a binary tree language T ⊆ TA and a tree t ∈ TA,
{s ∈ TA | s ≈Tt t} =

⋂
p(t)∈T p

−1(T ) \
⋃
p(t) 6∈T p

−1(T )
where p ranges over CA.
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The syntactic tree algebra STA(T ) of a binary tree language T ⊆ TA is
defined as the quotient algebra FTA(A)/≈T . Hence, STA(T ) is the syntactic
algebra of 〈T 〉 in the sense of Chapter 2. The following lemma follows from
Proposition 2.2.12 in Chapter 2.

Lemma 6.2.3 Let A and B be two alphabets and T, T ′ ⊆ TA be binary tree
languages. Then

(1) STA(T ) = STA(TA \ T ) and STA(T ∩ T ′) � STA(T )× STA(T ′).
(2) STA(p−1(T )) � STA(T ) for any p ∈ CA.
(3) STA(Tϕ−1) � STA(T ) for any morphism ϕ : FTA(B)→ FTA(A). �

Proposition 2.3.14 in Chapter 2 results in a bijective correspondence
between varieties of finite tree algebras and varieties of recognizable many-
sorted subsets of the form L = 〈Ll, Lt, Lc〉 ⊆ 〈A, TA, C+

A 〉. Here we are
interested in families of binary tree languages rather than sorted subsets. A
family of binary tree languages is a mapping V = {V (A)} which assigns a
collection V (A) of binary tree languages (⊆ TA) to any finite alphabet A.

First we show that no variety theorem for families of binary tree lan-
guages and varieties of finite tree algebras can be proved. This was men-
tioned as an open question by Ésik in [19] page 759, and in [20] Remark 8;
and by Steinby in [54] page 3 (see also [60] page 105).

For any class of finite tree algebras K, let Kt = {Kt(A)} be the family
of binary tree languages defined by Kt(A) = {T ⊆ TA | STA(T ) ∈ K} for
any finite alphabet A; and for any family of binary tree languages V , let
V a be the variety of finite tree algebras generated by {STA(T ) | T ∈ V (A)}
where A ranges over finite alphabets.

In what follows we shall show that there exists a variety of finite tree
algebras K for which the identity Kta = K does not hold. For a tree
algebra M = (〈Ml,Mt,Mc〉,Γ), let M′ be the smallest subalgebra of M
which contains 〈Ml, ∅, ∅〉; we call it the l-subalgebra of M. The algebra
M is called l-generated, if M = M′. These were called A-generated tree
algebras in [60] (Remark 6). We immediately observe the following facts.

Lemma 6.2.4 (i) For any alphabet A, the algebra FTA(A) is l-generated.
(ii) Any homomorphic image of an l-generated tree algebra is l-generated.
(iii) The syntactic tree algebra of any binary tree language is l-generated.

Suppose N ,M,M1, . . . ,Mk are tree algebras.
(iv) If N ⊆M, then N ′ ⊆M′.
(v) If N ←M, then N ′ ←M′.
(vi) If N �M, then N ′ �M′.
(vii) (M1 × · · · ×Mk)′ ⊆M′

1 × · · · ×M′
k.

(viii) If N �M1 × · · · ×Mk, then N ′ �M′
1 × · · · ×M′

k. �
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Now we construct a variety K of finite tree algebras such that Kta = K
does not hold.

Definition 6.2.5 Let A = {a, b}, A′ = {a′, b′}, and let ∨ be the Boolean
sum on {0, 1}, i.e., 0 ∨ 0 = 0 and 1 ∨ 0 = 0 ∨ 1 = 1 ∨ 1 = 1. Let D =
(〈A,A× {0, 1}, A′ × {0, 1}〉,Γ) be the structure defined by the following for
x, y, z ∈ A, x′, y′ ∈ A′, and i, j ∈ {0, 1}:

ιD(x) = (x, 0);
κD(x, (y, i), (z, j)) = (x, i ∨ j);
λD(a, (x, i)) = ρD(a, (x, i)) = (a′, i),
λD(b, (x, i)) = ρD(b, (x, i)) = (b′, i);
σD((x′, i), (y′, j)) = (x′, i ∨ j);
ηD((a′, i), (x, j)) = (a, i ∨ j), ηD((b′, i), (x, j)) = (b, i ∨ j).

Lemma 6.2.6 The structure D is a tree algebra (satisfies Wilke’s axioms
TA) and the l-subalgebra of D is the tree algebra

D′ = (〈A,A× {0}, A′ × {0}〉,Γ)
which satisfies σD

′
(p, q) = p for every p, q ∈ A′ × {0}.

The proof is straightforward. Let K be the variety of finite tree algebras
generated by D. So, a tree algebra N belongs to K iff N divides a power of
D, i.e., N � D × · · · × D.

Lemma 6.2.7 Suppose T is a binary tree language. If STA(T ) ∈ K, then
σSTA(T )(p, q) = p holds for every p, q ∈ STA(T )c.

Proof. Let N = STA(T ). If N ∈ K, then N � D × · · · × D, and then
by Lemma 6.2.4, N = N ′ � D′ × · · · × D′. Lemma 6.2.6 now implies that
σN (p, q) = p holds for every p, q. �

Lemma 6.2.8 D 6∈ Kta.

Proof. Assume D ∈ Kta. Then there are finite alphabets A1, . . . , An and
binary tree languages Tj ∈ Kt(Aj) (j = 1, . . . , n) such that

D � STA(T1)× · · · × STA(Tn).
For any j ∈ {1, . . . , n}, from Tj ∈ Kt(Aj) it follows that STA(Tj) ∈ K and
thus by Lemma 6.2.7, σSTA(Tj)(p, q) = p holds for every p, q ∈ STA(Tj)c.
So, the identity σD(p, q) = p must hold for every p, q ∈ A′ × {0, 1}, but this
is a contradiction, since for example σD((a′, 0), (b′, 1)) = (a′, 1) 6= (a′, 0). �

Summarizing, we have shown the following.

Proposition 6.2.9 There exists a variety of finite tree algebras K such that
K 6⊆ Kta.
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However, we note that the inclusion Kta ⊆ K and the identity V at = V
always hold for any variety K of finite tree algebras and any variety V of
binary tree languages (to be defined later). We do not need this fact here.

Wilke [60] anticipated a variety theorem for families of binary tree lan-
guages and special classes of l-generated tree algebras. In the sequel we
introduce reduced algebras which are more restricted than l-generated al-
gebras, and prove a variety theorem for families of recognizable binary tree
languages and varieties of finite reduced tree algebras.

Definition 6.2.10 A tree algebraM = (〈Ml,Mt,Mc〉,Γ) is called reduced,
if it is l-generated and

(1) for every a, b ∈ Ml, if ιM(a) = ιM(b) and κM(a, t, s) = κM(b, t, s)
hold for all t, s ∈Mt, then a = b;

(2) for every p, q ∈Mc, if ηM(p, t) = ηM(q, t) for all t ∈Mt, then p = q.

Every tree algebra M can be reduced as follows. Take M′ be the l-
subalgebra of M, and let θ be the following relation on M′:
θl = {(a, b) ∈M ′

l | ιM
′
(a) = ιM

′
(b) &

(∀t, s ∈M ′
t)(κ

M′
(a, t, s) = κM

′
(b, t, s))};

θt = {(t, s) ∈M ′
t | t = s};

θc = {(p, q) ∈M ′
c | (∀t ∈M ′

t)(η
M′

(p, t) = ηM
′
(q, t))}.

It can be shown that θ is a congruence on M′ and M′/θ is a reduced
tree algebra; moreover M′/θ � M.

We also note that the syntactic tree algebra of any binary tree language
is a reduced tree algebra by Lemma 6.2.1. The most important property of
reduced tree algebras is the following.

Lemma 6.2.11 For any reduced tree algebra M there are binary tree lan-
guages T1, . . . , Tn ⊆ TA for an alphabet A such that STA(Tj) � M for
j = 1, . . . , n, and M⊆ STA(T1)× · · · × STA(Tn).

Proof. Let A = Ml. Since M is l-generated, there exists an epimorphism
ϕ : FTA(A) → M. Suppose Mt = {m1, . . . ,mn} and for any mj ∈ Mt let
Tj = {mj}ϕ−1

t ⊆ TA. By Proposition 2.2.12(4) we have FTA(A)/〈Tj〉 ∼=
M/〈{mj}〉, so STA(Tj) �M for j = 1, . . . , n.

We show M⊆ STA(T1)× · · · × STA(Tn) for which it is enough to show
M⊆M/〈{m1}〉 × · · · ×M/〈{mn}〉.

Define the mapping
ı :M→M/〈{m1}〉 × · · · ×M/〈{mn}〉

by ı(u) =
(
u/〈{m1}〉, . . . u/〈{mn}〉

)
for u ∈ 〈Ml,Mt,Mc〉. Obviously, ı is a

homomorphism. It remains to show that it is a monomorphism.
If ıl(a) = ıl(b) for some a, b ∈ Ml, then a ≈〈{mj}〉

l b for every mj ∈ Mt.

In particular, a ≈〈{ι
M(a)}〉

l b which implies that ιM(a) = ιM(b). Also, for
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every t, s ∈ Mt, a ≈〈{κ
M(a,t,s)}〉

l b and so κM(a, t, s) = κM(b, t, s). Since M
is reduced, it follows that a = b.

Similarly, if ıt(t) = ıt(s) for some t, s ∈ Mt, then t ≈〈{t}〉t s, and hence
t = s.

Finally, if ıc(p) = ıc(q) for some p, q ∈ Mc, then for every t ∈ Mt,
p ≈〈{η

M(p,t)}〉
c q, and so ηM(p, t) = ηM(q, t) for every t ∈ Mt. Since M is

reduced, it follows that p = q.
All in all we showed that ı is injective which finishes the proof. �

We note that by Lemma 6.2.6, the tree algebra D of Definition 6.2.5 is
not reduced (D 6= D′) and the proof of Lemma 6.2.8 shows that Lemma
6.2.11 does not hold for D.

Definition 6.2.12 An r-variety is a class K of finite reduced tree algebras
such that for any M1, . . . ,Mn ∈ K and any reduced tree algebra N , if
N �M1 × · · · ×Mn then N ∈ K.

A b-variety is a family V = {V (A)} of binary tree languages such that
for any finite alphabets A and B,

(1) if T, T ′ ∈ V (A), then TA \ T, T ∩ T ′ ∈ V (A),
(2) if T ∈ V (A) and p ∈ CA, then p−1(T ) ∈ V (A), and
(3) if T ∈ V (A) and ϕ : FTA(B) → FTA(A) is a homomorphism, then
Tϕ−1 ∈ V (B).

We note that the collection of all the r-varieties of finite reduced tree
algebras and the collection of all the b-varieties of recognizable binary tree
languages are complete lattices with respect to the inclusion relation. So,
we may speak about the r-variety generated by a collection of finite reduced
tree algebras.

Definition 6.2.13 For any class of finite reduced tree algebras K, let Kt =
{Kt(A)} be the family of recognizable binary tree languages defined by

Kt(A) = {T ⊆ TA | STA(T ) ∈ K}
for any finite alphabet A.

For any family of recognizable binary tree languages V = {V (A)}, let
V a be the r-variety of finite reduced tree algebras generated by the collection

{STA(T ) | T ∈ V (A)}
where A ranges over finite alphabets.

By Lemma 6.2.3, the family Kt is a b-variety for any r-variety K. Thus
the operations K 7→ Kt and V 7→ V a map r-varieties to b-varieties and the
other way round. It is also easy to see that the operations preserve inclusion,
i.e., if K1 ⊆ K2 and V1 ⊆ V2, then Kt

1 ⊆ Kt
2 and V a

1 ⊆ V a
2 . In the variety

theorem below, we will show that they are bijective correspondences between
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r-varieties and b-varieties which are the inverses of each other, i.e., Kta = K
and V at = V for any r-variety K and b-variety V .

Proposition 6.2.14 For any r-variety K, Kta = K.

Proof. The inclusion Kta ⊆ K is obvious. For the inverse inclusion, suppose
M ∈ K. Since M is a reduced tree algebra, there are by Lemma 6.2.11 for
some alphabet A, recognizable binary tree languages T1, . . . , Tn ⊆ TA such
that STA(Tj) � M for j = 1, . . . , n, and M ⊆ STA(T1) × · · · × STA(Tn).
Then STA(Tj) ∈ K and thus Tj ∈ Kt(A) for j = 1, . . . , n. Now the relation
M⊆ STA(T1)× · · · × STA(Tn) implies that M∈ Kta. �

Proposition 6.2.15 For any b-variety V , V at = V .

Proof. The inclusion V ⊆ V at is obvious. We show V at ⊆ V . Suppose
that T ∈ V at(A) for some alphabet A. Then STA(T ) ∈ V a implies that
STA(T ) � STA(T1)× · · · × STA(Tn) for some n ≥ 1, some finite alphabets
Ai, and some binary tree languages Ti ∈ V (Ai) (i = 1, . . . , n). For each
i = 1, . . . , n, let ϕi denote the syntactic homomorphisms ϕTi : FTA(Ai) →
STA(Ti). Then there is a homomorphism

η : FTA(A1)× · · · × FTA(An) −→ STA(T1)× · · · × STA(Tn)
such that for every i = 1, . . . , n, ηπi = ϕiτ i, where

πi : STA(T1)× · · · × STA(Tn) −→ STA(Ti),
and

τ i : FTA(A1)× · · · × FTA(An) −→ FTA(Ai)
are the respective projection functions. By Lemma 2.2.11 there exist a
homomorphism ϕ : FTA(A)→ STA(T1)× · · · × STA(Tn) and a subset H of
STA(T1)t×· · ·×STA(Tn)t such that T = Hϕ−1

t . Since η is an epimorphism,
there is a homomorphism ψ : FTA(A)→ FTA(T1)×· · ·×FTA(An) such that
ψη = ϕ. Because H is finite, T =

⋃
u∈H uϕ

−1
t is the union of finitely many

sets uϕ−1
t with u = (u1, . . . , uk) ∈ STA(T1)t × · · · × STA(Tn)t. Noting

that ψτ i : FTA(A) → FTA(Ai) for any 1 ≤ i ≤ n, for each such u ∈ H,
uϕ−1

t =
⋂
{ui(ϕtπ

i
t)
−1 | 1 ≤ i ≤ n} =

⋂
{ui(ϕit)−1(ψτ i)−1

t | 1 ≤ i ≤ n}.
Now, by Corollary 6.2.2, ui(ϕit)

−1 ∈ V (Ti) for each 1 ≤ i ≤ n, and thus we
have T ∈ V (A). �

Summing up, we proved the following variety theorem for b-varieties
of recognizable binary tree languages and r-varieties of finite reduced tree
algebras.

Proposition 6.2.16 The operations K 7→ Kt and V 7→ V a form a pair of
lattice isomorphism between the class of all r-varieties and the class of all
b-varieties that are inverses of each other, i.e., Kta = K and V at = V for
each r-variety K and each b-variety V .
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Finally, we note that every generalized variety of tree languages yields
in a natural way a variety of binary tree languages.

Proposition 6.2.17 For any gVTL V = {V (Σ, X)} the family V ∗ =
{V ∗(A)} where V ∗(A) = V(ΣA, ∅) for each finite alphabet A, is a b-variety.

Proof. It is clear that V ∗ is closed under all the finite Boolean operations
and inverse translations. To show that it is also closed under inverse ho-
momorphisms, we note that for any such homomorphism ϕ : FTA(B) →
FTA(A) where A and B are finite alphabets, the mapping ζ : ΣB → ΣA

defined by cbζ = cbϕl
and fbζ = fbϕl

for all b ∈ B, is an assignment and
the pair of mappings (ζ, ϕt) : (TB,ΣB) → (TA,ΣA) is a g-morphism (see
Definition 4.1.1 in Chapter 4). �

It follows from this proposition that, for the generalized varieties of nilpo-
tent, definite, reverse definite, generalized definite, locally testable tree lan-
guages, etc (Examples 7.5–7.7 of [54]) we have b-varieties of the correspond-
ing kind. The following example shows that not every b-variety can be
obtained in such a way.

Example 6.2.18 Define the family V = {V (A)} by
V (A) = {T ⊆ TA | (∀a ∈ A)(∀t ∈ TA)

(
fa(ca, t) ≈T t

)
}

for any finite alphabet A.
It is easy to see that V is a b-variety. We show that there is no gVTL

W = {W(Σ, X)} such that V (A) = W(ΣA, ∅) for all finite alphabets A.
Assume there is such a W. Let A = {a, b}, and let T be the smallest subset
of TA that contains ca and satisfies t ∈ T ⇒ fa(ca, t), fb(cb, t) ∈ T for every
t ∈ TA. Then T ∈ V (A). Let the assignment ς : ΣA → ΣA be defined
by caς = ca, cbς = cb, faς = fb, and fbς = fa. It can be easily seen that
(ς, 1TA

) : (TA,ΣA)→ (TA,ΣA) is a g-morphism, where 1TA
: TA → TA is the

identity map. However, T (ς, 1TA
)−1 is not in V (A), since t = fb(ca, ca) ∈

T (ς, 1TA
)−1 as t(ς, 1TA

) = fa(ca, ca) ∈ T , but fa(ca, t) 6∈ T (ς, 1TA
)−1 as

fa(ca, t)(ς, 1TA
) = fb(ca, fa(ca, ca)) 6∈ T . So, W is not closed under inverse

g-morphisms, a contradiction.

6.3 Some algebraic properties of tree algebras

In this last section we study some other algebraic properties of term algebras
and free tree algebras which are not directly related to the variety theory of
tree languages. Our motivation for this research was the wish to understand
the significance of the particular choice of Wilke’s functions for the signature
of tree algebras.

A completeness property of Wilke’s functions is that they generate all
the functions involving labels, trees and contexts that preserve the syntactic



Saeed Salehi, Varieties of tree languages 101

TA-congruences (Lemma 6.2.1) of all binary tree languages, provided that
the alphabet is large enough (contains at least seven labels). Translating
this into an algebraic terminology it reads as “the free tree algebra over
an alphabet A is affine-complete if |A| ≥ 7”. An algebra is called affine-
complete [15] if every of its congruence preserving function is a polynomial
(i.e., can be constructed from the fundamental operations of the algebra,
the projections, and the constant operations corresponding to the elements
of the algebra). We note that every polynomial function in any algebra is
congruence preserving. We also realized that term algebras are also affine-
complete if their ranked alphabet contains at least seven constant symbols.
Here we formulate these results without proofs. Interested readers are in-
vited to consult [43, 44] for full presentations and technical details.

Let Σ be a ranked alphabet with the property that Σ 6= Σ0 and let X be
a leaf alphabet. For technical reasons and convenience we sometimes write
T(Σ, X) as TΣ(X). When X = ∅, TΣ is a shorthand for T(Σ, ∅) or TΣ(∅).

Definition 6.3.1 For an algebra A = (A,Σ), a function F : An → A is
called congruence preserving, if for every congruence relation θ on A and
for all a1, . . . , an, b1, . . . , bn ∈ A, F (a1, . . . , an) θ F (b1, . . . , bn) whenever
a1 θ b1, . . . , an θ bn.

Remark 6.3.2 It is known that every congruence relation over an algebra
is the intersection of some syntactic congruence relations (see Remark 2.12 of
[1] or Lemma 6.2 of [53].) So, a function preserves all congruence relations of
an algebra iff it preserves the syntactic congruence relations of all subsets of
the algebra. Thus, an equivalent condition for a function F : An → A to be
congruence preserving is that for all L ⊆ A and all a1, . . . , an, b1, . . . , bn ∈ A,
if a1 ≈L b1, . . . , an ≈L bn, then F (a1, . . . , an) ≈L F (b1, . . . , bn).

Remark 6.3.3 A congruence preserving function F : An → A induces, for
any congruence θ on A, a well-defined function Fθ : (A/θ)n → A/θ on any
quotient algebra, defined by Fθ(a1/θ, . . . , an/θ) = F (a1, . . . , an)/θ.

In the sequel we will be interested in the congruence preserving functions
on term algebras T (Σ, X). Let u1, . . . , un ∈ TΣ(X) be some terms and let
t ∈ TΣ(X ∪ {x1, . . . , xn}) where x1, . . . , xn 6∈ X. The term t[u1, . . . , un] in
TΣ(X) is resulted from t by replacing all the occurrences of xi with ui for i =
1, . . . , n. The induced function (TΣ)n → TΣ(X) defined by (u1, . . . , un) 7→
t[u1, . . . , un] for all u1, . . . , un ∈ TΣ, is called the term function defined by
t. It is also called the tree substitution operation, see e.g. [21]. It is easy
to show that every term function is a congruence preserving function (on
T (Σ, X)). The following proposition is proved in [43].

Proposition 6.3.4 If |Σ0| ≥ 7, then every congruence preserving function
F : (TΣ)n → TΣ, for every n ≥ 0, is a term function.
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We note that the proposition dose not hold for |Σ0| = 1: Let Σ = Σ0∪Σ1

be a ranked alphabet with Σ1 = {f} and Σ0 = {c}. The term algebra (TΣ,Σ)
is isomorphic to (N,0,S), where 0 is the constant zero and S is the successor
function. Let F : N → N be defined by F (n) = 2n. It is easy to see that
F is congruence preserving: for every congruence relation θ, if n θ m then
Sn θ Sm and by repeating the same argument n times we get Snn θ Snm
or 2n θ n + m. Similarly Smn θ Smm, so m + n θ 2m, and hence 2m θ 2n
that is F (n) θ F (m). But F is not a term function, since all term functions
are of the form n 7→ Skn = k + n for a fixed k ∈ N. It is not clear at the
moment whether Proposition 6.3.4 holds for 2 ≤ |Σ0| ≤ 6.

An algebra is called congruence-primal or hemi-primal, if all its congru-
ence preserving functions are term functions, and affine-complete, if all its
congruence preserving functions are polynomials, see e.g. [26]. We note that
since in term algebras with empty leaf alphabets polynomials coincide with
term functions, a term algebra with empty leaf alphabet is affine-complete
iff it is congruence-primal.

Proposition 6.3.4 above can be generalized to contexts. The set of ΣX-
contexts is denoted by C(Σ, X). Again for technical reasons and convenience
we write it as CΣ(X). For empty X = ∅, CΣ is a shorthand for C(Σ, ∅).
Recall the notation ∼L from Chapter 4.

Definition 6.3.5 A functions F : (CΣ)m×(TΣ)n → TΣ is called congruence
preserving, if for all p1, q1, . . . , pm, qm ∈ CΣ, t1, s1, . . . , tn, sn ∈ TΣ and every
subset L ⊆ TΣ,
whenever p1 ∼L q1, . . . , pm ∼L qm and t1 ≈L s1, . . . , tn ≈L sn, then

F (p1, . . . , pm, t1, . . . , tn) ≈L F (q1, . . . , qm, s1, . . . , sn).
Likewise, F : (CΣ)m× (TΣ)n → CΣ is called congruence preserving, if for all
p1, q1, . . . , pm, qm ∈ CΣ, t1, s1, . . . , tn, sn ∈ TΣ and every subset L ⊆ TΣ,
whenever p1 ∼L q1, . . . , pm ∼L qm and t1 ≈L s1, . . . , tn ≈L sn, then

F (p1, . . . , pm, t1, . . . , tn) ∼L F (q1, . . . , qm, s1, . . . , sn).

In the following definition term functions are generalized to substitution
functions including contexts. Let {%1, %2, %3, . . .} be a set of unary function
symbols disjoint from Σ, and for each m ≥ 1, Σ{%1, . . . , %m} be the signature
Σ augmented by {%1, . . . , %m}.

Definition 6.3.6 Let r ∈ TΣ{%1,...,%m} be a term. We write r as r[%1, . . . , %m]
to emphasize the possible presence of %i’s. For contexts p1, . . . , pm ∈ CΣ, the
term r[p1, . . . , pm] ∈ TΣ is obtained from r by replacing all the occurrences
of %i(t), for any t ∈ TΣ{%1,...,%m}, with pi(t) for all i = 1, . . . ,m}.

We call the function (CΣ)m → TΣ defined by (p1, . . . , pm) 7→ r[p1, . . . , pm]
for all p1, . . . , pm ∈ CΣ, a substitution function defined by r[%1, . . . , %m].

For a set of variables {x1, . . . , xn}, the term
t ∈ T

(
Σ{%1, . . . , %m}, {x1, . . . , xn}

)
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is also written as t[x1, . . . , xn, %1, . . . , %m]. The term t[s1, . . . , sn, p1, . . . , pm],
for terms s1, . . . , sn and contexts p1, . . . , pm, is obtained from t by replacing
each xi with the corresponding si and each %j with pj for all i, j. This
induces a function

(TΣ)n × (CΣ)m → TΣ, (s1, . . . , sn, p1, . . . , pm) 7→ t[s1, . . . , sn, p1, . . . , pm]
which is also called a substitution function defined by t.

Similarly, the substitution function (TΣ)n × (CΣ)m → CΣ defined by a
context q[x1, . . . , xn, %1, . . . , %m] maps a tuple (s1, . . . , sn, p1, . . . , pm) to the
context q[s1, . . . , sn, p1, . . . , pm] for all trees s1, . . . , sn ∈ TΣ and contexts
p1, . . . , pm ∈ CΣ.

Example 6.3.7 The composition of contexts CΣ × CΣ → CΣ, (p1, p2) 7→
p1(p2) is a substitution function defined by %1(%2(ξ)) ∈ CΣ{%1,%2}. Also, the
function TΣ × CΣ → TΣ, (t, p) 7→ p(t), is a substitution function defined by
%1(x1) ∈ TΣ{%1}({x1}).

Again it is easy to see that all the substitution functions are congruence
preserving. Less trivial is the following proposition proved in [44].

Proposition 6.3.8 For a ranked alphabet Σ such that Σ = Σ0 ∪ Σ2 and
|Σ0|, |Σ2| ≥ 7, every congruence preserving function (TΣ)n × (CΣ)m → TΣ

and (TΣ)n × (CΣ)m → CΣ is a substitution function.

We showed by an example that when Σ = Σ0 ∪Σ1 with |Σ0| = |Σ1| = 1,
there is a congruence preserving function TΣ → TΣ which is not a sub-
stitution function. So, some lower bound must be set on |Σ0| in Proposi-
tion 6.3.8, but it is not yet known whether the bound 7 is the best possi-
ble. Here we show that Proposition 6.3.8 does not hold for Σ = Σ0 ∪ Σ1,
with |Σ1| = 1 and any non-empty Σ0. For such a Σ suppose Σ1 = {α}
(note that no condition is set on |Σ0|). So, CΣ = {αn(ξ) | n ≥ 0}, and
TΣ{%1} = {αn1%m1 · · ·αnk%mk(c) | n1,m1, . . . , nk,mk ≥ 0, c ∈ Σ0}. Hence,
all the substitution functions CΣ → TΣ are of the form αm(ξ) 7→ αkm+n(c)
for some fixed k,n ≥ 0 and c ∈ Σ0. Let, for a fixed c0 ∈ Σ0, F : CΣ → TΣ

be defined by F (αm(ξ)) = αm
2
(c0) for all m ≥ 0. Obviously F is not a

substitution function, but we show that it is congruence preserving. For
any subset L ⊆ TΣ and any m,n ≥ 0, if αm(ξ) ∼L αn(ξ), then by induction
on j it can be shown that αj+m(c0) ≈L αj+n(c0). By once putting j = m
and another time j = n, we can conclude that α2m(c0) ≈L α2n(c0). From
this and αm(ξ) ∼L αn(ξ) we infer that αm(α2m(c0)) ≈L αn(α2n(c0)), and so
on, by induction on j, it can be shown that αjm(c0) ≈L αjn(c0). Again by
putting once j = m and once j = n, we can infer that αm

2
(c0) ≈L αn2

(c0),
or in other words, F (αm(ξ)) ≈L F (αn(ξ)).
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Finally, we observe that if A contains at least seven labels, then Wilke’s
functions over A generate all the congruence preserving functions that in-
volve labels from A, A-trees and A-contexts. This implies that the free tree
algebra FTA(A) over A is affine-complete.

For simplicity we write Wilke’s functions on the free tree algebra FTA(A)
as ιFTA(A) = ιA, κFTA(A) = κA, etc (see Section 6.1).

Definition 6.3.9 A function F : A
n × C

k

A × T
m

A → X, where X is ei-
ther A, TA or CA, is called congruence preserving, if for every tree lan-
guage L ⊆ TA and for all a1, b1, . . . , an, bn ∈ A, t1, s1, . . . , tm, sm ∈ TA and
p1, q1, . . . , pk, qk ∈ CA, whenever a1 ≈Ll b1, . . . , an ≈Ll bn,
t1 ≈Lt s1, . . . , tm ≈Lt sm, and p1 ≈Lc q1, . . . , pk ≈Lc qk, then
F (a1, . . . , an, p1, . . . , pk, t1, . . . , tm) ≈Lx F (b1, . . . , bn, q1, . . . , qk, s1, . . . , sm),
where x is l, t, or c, if X = A, X = TA, or X = CA, respectively.

We borrow the notion of a “clone” from universal algebra (cf. e.g. [26])
and introduce the notion of a “Pclone” for our purpose.

Definition 6.3.10 The projection functions πnj : B1 × · · · × Bn → Bj
(j = 1, · · · , n) for sets B1, . . . , Bn, are defined by πnj (b1, . . . , bn) = bj . Each
element b ∈ Bj determines the constant function B1 × · · · × Bn → Bj ,
(b1, . . . , bn) 7→ b.

A Pclone over a collection of sets is a collection of functions over the sets
of the collection which includes the constant and projection functions and
is closed under composition.

Let B be a collection of sets, and let C be a collection of functions of the
form B1×· · ·×Bn → B for any B1, . . . , Bn, B ∈ B. The Pclone generated by
C is the smallest class Pclone〈C〉, of functions of the form B1×· · ·×Bn → B
for some B1, . . . , Bn, B ∈ B, that contains C, the projection and constant
functions, and is closed under the composition of functions (cf. the definition
of clone in [26].)

It is easy to see that all functions in the Pclone generated by Wilke’s
functions are congruence preserving. The main result of [44] states that
for an alphabet A which contains at least seven labels, every congruence
preserving function over A is in the Pclone generated by Wilke’s functions.
More precisely, the following can be shown.

Proposition 6.3.11 If |A| ≥ 3, then every congruence preserving function
A

n×Ck

A×T
m

A → A (n,m, k ≥ 0) is in Pclone〈∅〉, i.e., it is either a constant
function or a projection to A.

Proposition 6.3.12 If |A| ≥ 7, then every congruence preserving function
A

n × Ck

A × T
m

A → TA (n,m, k ≥ 0) is in Pclone〈{ιA, κA, ηA}〉.
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Proposition 6.3.13 If |A| ≥ 7, then every congruence preserving function
A

n × Ck

A × T
m

A → CA (n,m, k ≥ 0) is in Pclone〈{ιA, κA, ηA, λA, ρA, σA}〉.

We note that the condition |A| ≥ 3 in Proposition 6.3.11 can not be
improved: for A = {a, b} the function F : A → A defined by F (a) = b and
F (b) = a is obviously congruence preserving but not a constant or projection
function. We close the dissertation with some examples.

Example 6.3.14 Let A = {a, b}. The function F : A × TA × CA → CA

defined by F (a1, t1, p1) = fa
(
fa1

(
fb(ca, ca), ξ

)
, p1

(
fb(t1, ca1)

))
for a1 ∈ A,

t1 ∈ TA and p1 ∈ CA, is congruence preserving and moreover it belongs to
Pclone〈{ιA, κA, ηA, λA, ρA, σA}〉, since

F (a1, t1, p1) =
σA

(
λA

(
a, ηA

(
p1, κ

A(b, t1, ιA(a1))
))
, ρA

(
a1, κ

A(b, ιA(a), ιA(a))
))
.

On the other hand, the root function root: TA → A, which maps a tree
to its root label, is not congruence preserving: for L = {fa(cb, cb)} we have
fa(ca, ca) ≈Lt fb(ca, ca), but since fa(cb, cb) ∈ L and fb(cb, cb) 6∈ L, then
root

(
fa(ca, ca)

)
= a 6≈Ll b = root

(
fb(ca, ca)

)
.





Epilogue

In this thesis, families of tree languages were characterized by various syn-
tactic structures: (i) syntactic monoids, (ii) syntactic ordered algebras, (iii)
syntactic ordered monoids, and (iv) syntactic tree algebras (for binary trees).
Also, the classical variety theorem [53] was extended to the many-sorted
case, and an algebraic property of free tree algebras and term algebras was
investigated. A detailed case study of semilattice and symbolic tree lan-
guages was presented.

There are some other aspects of the variety theory of tree automata and
tree languages which are not touched here. One of them is (ultimately) defin-
ability by equations or inequations. It is known that varieties of (ordered)
algebras can be characterized by sequences of (in)equalities. It would be
nice to determine those sequences which characterize varieties of (ordered)
algebras that are definable by (ordered) monoids.

Another aspect is the link between logic and tree languages, and decid-
ability: is it decidable to determine if a given family of tree languages is
definable by (ordered) monoids? Decidability of tree languages is treated
e.g. in the recent PhD thesis of Miko laj Bojańczyk, “Decidable properties of
tree languages”, Warsaw University, 2004. Logical characterizations of fam-
ilies of tree languages which are definable by (ordered) monoids is another
domain to explore.

One line of extension of our results is proving variety theorems for fam-
ilies of tree languages which are less demanding than (positive) varieties.
It seems that when a richer syntactic structure is considered for character-
izing families of tree languages, fewer conditions are put upon them. For
example, positive varieties are less restricted than varieties, while ordered
algebras are more restricted than algebras. Characterizing families of tree
languages by richer structures (e.g. relational or first-order structures) could
be an interesting subject for research in future.

The last open problems we would like to mention here are: whether
Propositions 6.3.12 and 6.3.13 hold, when 3≤|A|≤6; and similarly, whether
Proposition 6.3.4 holds for 2 ≤ |Σ0| ≤ 6, and Proposition 6.3.8 holds for
2≤|Σ0|, |Σ2|≤6.
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