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Abstract: We take an argument of Gödel’s from his ground-breaking 1931 paper, generalize it, and
examine its validity. The argument in question is this: the sentence G says about itself that it is not
provable, and G is indeed not provable; therefore, G is true.
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1. Introduction

AS IS WELL KNOWN, Gödel begins his 1931 masterpiece with an introductory sec-
tion, Section 1, wherein he explains the main ideas behind the (first) incomplete-
ness theorem in an informal and intuitive way, with an explicit caveat that those
remarks are being made “without any claim to complete precision”. What he does
in that section is, among other things, to introduce, in a very lucid way, the idea
of encoding the syntax and that of diagonalization.1

Our primary purpose in this article is not to philosophize about the notion of
truth or to do exegetical work on its role in Gödel’s classic paper. Rather, we wish
to draw attention to an informal argument, to the effect that the Gödel sentence of
the system Principia Mathematica is true (that is, true in N), which is presented
by Gödel in his introductory section. The argument in question goes as follows
(Gödel, 1931, p. 151; original emphasis):

1 Gödel says that his method of proof is applicable to any formal system that has two conditions, the
second of which being “every provable formula is true in the interpretation considered” (Gödel, 1931,
p. 151, emphasis added). He then writes, “The purpose of carrying out the above proof with full preci-
sion in what follows is, among other things, to replace the second of the assumptions just mentioned by
a purely formal and much weaker one” (Gödel, 1931, emphasis added). This “much weaker” condition,
called ω-consistency by Gödel, is one of the points of focus in our discussion. Note that ω-consistency is
stronger than (simple) consistency: see, e.g., (Isaacson, 2011, Theorems 14,15).
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From the remark that [R(q);q] says about itself that it is not provable, it follows at once that
[R(q);q] is true, for [R(q);q] is indeed unprovable (being undecidable).

Here [R(q);q] is what is now called the Gödel sentence of a theory
(or “system”) which is subject to the first incompleteness theorem (e.g., Peano
Arithmetic PA, or any of its recursively axiomatizable ω-consistent extensions).
This is nowadays denoted by G, which is defined to be any sentence P which is
(provably) equivalent to ¬Pr(#P), where Pr is the provability predicate of the the-
ory and #P is the standard term for the Gödel number of P (see Section 3 below
for more on the definition).
As we understand the above passage, its logical form is the following, where

A is an arbitrary sentence expressible in the language of the theory:

(1) A says about itself that it has a property F.
(2) A indeed has the property F.
(3) Therefore: A is true.

That Gödel says that it follows at once2 that G is true suggests that, in
Gödel’s view, we are not dealing with an enthymeme–it seems to us that, for
Gödel, the argument scheme has no missing premises. It is our task in the next
section to argue that the (1)–(3) argument scheme is invalid, that is to say, there
are situations wherein the premises are true while the conclusion false. Naturally
enough, the validity of the argument hinges on its terms, in particular on what it
is for a sentence to be “true”, and what is meant by a sentence “saying about
itself ” that it has a certain property. As for the first term, it is almost obvious
from Gödel’s introductory section that, like many modern writers in mathematical
logic, when he writes “true” simpliciter, he means true in the standard model,
N.3 Regarding the notion of saying something about oneself, we shall consider
two interpretations that might be ascribed to Gödel.

2. The Invalidity of the Argument Scheme

How are we to understand the expression “A says about itself that it has
the property F”? Modulo an agreement over the meaning of “holding”, to
which we shall return shortly, we find it quite plausible to think that if the condi-
tional A ! F(#A) holds, then A says, inter alia, that A has property F. Now, to
stop here would provide us an easy–perhaps too easy–invalidation of Gödel’s
informal argument, for if we take, as we should, “holding” to mean being true in

2 Gödel’s adverb “sofort” could also be translated as immediately.
3 Thus Gödel’s (1931) footnote 4 on page 145: “no other notions occur but + (addition) and (multipli-
cation), both for natural numbers, and in which the quantifiers (x), too, apply to natural numbers only.”
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the standard model of natural numbers N, and take “saying” to mean implying,
then, taking γ to be the sentence G ^ (0 = 1), the sentences γ ! ¬Pr (#γ) and
¬Pr(#γ) both hold but γ does not. Let us then assume that Gödel intended each
sentence in question in premise (1) to say exactly about itself that it has property
F; to wit: the biconditional A $ F(#A) holds. And this, in fact, is what is taken
by some authors to be the meaning of “A says about A that it has property F” (see
Halbach & Visser, 2014; Milne, 2007; and references therein).
As for the meaning of “holding”, we already presented evidence for the claim

that by this, Gödel meant satisfaction in the standard model, N. However, let us
recognize another reading of it–which is also suggested in the literature (see Hal-
bach & Visser, 2014; Milne, 2007 and references therein)–namely, being provable
in a given theory. Having fixed a theory T (which we suppose to be an ω-consis-
tent, recursively axiomatizable extension of PA), we then have eight possible
ways of interpreting the (1)–(3) argument scheme. Here is the complete list, of
which we find (VII), (V) and (III) the most interesting.4

Ið Þ N⊨ A$F #Að Þ, N⊨F #Að Þ
N⊨A

IIð Þ N⊨A$F #Að Þ, N⊨F #Að Þ
T ‘A

IIIð Þ N⊨A$F #Að Þ, T ‘F #Að Þ
N⊨A

IVð Þ N⊨A$F #Að Þ, T ‘F #Að Þ
T ‘A

Vð Þ T ‘A$F #Að Þ, N⊨ F #Að Þ
N⊨A

VIð Þ T ‘A$F #Að Þ, N⊨F #Að Þ
T ‘A

VIIð Þ T ‘A$F #Að Þ, T ‘F #Að Þ
N⊨A

VIIIð Þ T ‘F #Að Þ
T ‘A

Of these, (I) and (VIII) are of course valid because of the truth-condition of the
material conditional and Modus Ponens, respectively. For all other cases, we will
present triples (A, F, T) which invalidate them.

Theorem 2.1. The argument (IV) is invalid for A = G, F(x) ≡ (x = #G),
and T = PA.

4 With the wisdom of hindsight, we now know that some of these schemata unduly overgeneralize
Gödel’s informal argument, for according to the second incompleteness theorem, which Gödel intended
to present in a never written sequel to his 1931 work, no (consistent) theory can prove its own consis-
tency. Thus, no consistent theory can prove the unprovability of any sentence, but each of (III), (IV),
(VII) and (VIII) has a premise to the effect that the F of (the Gödel number of ) A is provable in the the-
ory. It is for the sake of comprehensiveness that we list all the eight possible readings.
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Proof. Obviously, N ⊨ F(#G) and T ‘ F(#G). By Gödel’s proof, N ⊨ G holds
and so N ⊨ G $ F(#G). On the other hand, by Gödel’s theorem, T ⊬ G. □

Theorem 2.2. The arguments (II) and (VI) are invalid for A = G, F(x) ≡ ¬Pr(x),
and T = PA.

Proof. We already have N ⊨ G $ ¬Pr(#G). Since by Gödel’s theorem we have
PA ⊬ G, it follows that ¬Pr(#G) is true, i.e., N ⊨ ¬Pr(#G). □

Of course the arguments (III), (V) and (VII) are all valid if T is a sound theory
(i.e., when N ⊨ T). As we mentioned in the Introduction, Gödel replaces the sound-
ness condition with the weaker condition of ω-consistency. As Isaacson (2011)
mentions, Gödel states in (1931), without giving any argument, that ω-consistency
is “much weaker” than soundness. It is shown in Isaacson (2011, Proposition 19),
(with a proof attributed to Kreisel in the 1950s) that there exists a false sentence
K such that the theory PA + K is ω-consistent. Moreover, the sentence K can be
taken to be a diagonal sentence of a formula H(x); i.e., K $ H(#K) holds (is PA-
provable and true in N).

Theorem 2.3. The argument (V) does not hold for A = K, F(x) ≡ (x = #K),
and T = PA + K.

Proof. By PA ‘ F(#K), we have PA + K ‘ K $ F(#K). Now, N ⊨ F(#K)
holds trivially. By Isaacson (2011, Proposition 19), N ⊭ K. □

Theorem 2.4. Neither (III) nor (VII) holds for A = K, F(x) ≡ H(x), and
T = PA + K.

Proof. We already have PA ‘ K $ H(#K) and N ⊨ K $ H(#K) by definition,
and so PA + K ‘ K $ H(#K) holds too. The latter also implies that PA + K ‘
H(#K). Finally, by Isaacson (2011, Proposition 19), we have N ⊭ K. □

Let us acknowledge the fact that perhaps it is only by overgeneralizing Gödel’s
informal argument that we are making it invalid. Had we not abstracted from the
specific properties of A, F and T, Gödel’s informal argument would be valid, even
in the interesting cases of (III), (V) and (VII) (though it would lose much of its
appeal). This is substantiated in the following:

Proposition 2.5. If A, F are both Π1 and T is an ω-consistent extension of PA,
then the arguments (III), (V) and (VII) are valid.

Proof. If A,F(x)2Π1, then F(#A) and A $ F(#A) are both Σ2. By Isaacson
(2011, Theorem 17), all the T-provable, Σ2-sentences are true. So, the provability
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of F(#A) or A $ F(#A) in T implies their truth. Whence (III), (V) and (VII) all
reduce to (I). □

3. Back to the Truth of the Gödel Sentence

Traditionally, the sentence G is called the Gödel sentence of the theory in consid-
eration (say, of PA). One probable reason for this is that if G0 is any other sen-
tence which is equivalent to its unprovability, then G and G0 are equivalent (see,
e.g., Lindström, 1996).
But this is not a convincing argument when the theory is not sound. To see

this, let S be the theory PA + ¬Con(PA), where Con(PA) is the consistency
statement of PA, to wit: ¬Pr(#[0 = 1]). Then S is not sound, but it is consistent
by Gödel’s second incompleteness theorem. We show that for every true sentence
τ, the sentence τ0 = Con(S) ^ τ is equivalent to its unprovability in S; later we
show that this holds for every false S-refutable sentence ρ too. Now, take τ to be
an arbitrary sentence (which need not be true). We note that S‘¬Con(S)
(because S‘¬Con(PA) and PA � S) and so:

S ‘Con Sð Þ^ τ!¬PrS # Con Sð Þ^ τ½ �ð Þ:

Also, S‘PrS(#θ) for any θ; in particular, S‘PrS(#[Con(S) ^ τ]), whence:

S ‘¬PrS # Con Sð Þ^ τ½ �ð Þ!Con Sð Þ^ τ,

which shows that τ0 = Con(S) ^ τ is equivalent to its unprovability in S:

S ‘ τ0 $¬PrS #τ0ð Þ:

Now, take ρ to be a false S-refutable sentence (i.e., any ρ with N ⊭ ρ and
S ‘¬ρ); for example, any false Π1-sentence is S-refutable by the Σ1-completeness
of S. Then by S ‘PrS(#ρ) we have:

S ‘ ρ$¬PrS #ρð Þ,

which shows that ρ is equivalent to its unprovability in S.
It should be noted that no true sentence of the form Con(S) ^ τ is equivalent

to any false S-refutable sentence, even though they are all provably equivalent
inside S.
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The moral is that mere equivalence (inside the theory) to its own unprovabil-
ity does not make a sentence worthy of the title “the Gödel sentence”, simply
because there could be more than one such sentences, even up to equivalence.
We submit the following as an improvement upon the usual convention:

Definition 3.1. By the Gödel sentence of a recursively enumerable theory T we
mean any sentence P satisfying the following properties:

ið Þ T ‘P$¬PrT #Pð Þ and iið Þ N⊨P$¬PrT #Pð Þ:

(As mentioned above, all such sentences are equivalent–in N, and provably in
T whenever T � PA.)

Following the advice of an anonymous referee for Theoria, in the Appendix we
present an alternative definition which works for theories extending a sound ‘base’
theory strong enough to prove the uniqueness of the Gödel sentence of those theories.

Remark 3.2. Apart from worries about unsound theories considered at the beginning
of this section, we admit that there is some infelicity in calling each member of a class
of sentences “the Gödel sentence” of a theory: after all, each sentence is a specific syn-
tactic object. For want of a better term, one may think of calling the totality of that class
of mutually equivalent sentences the Gödel proposition of the theory, where “proposi-
tion” is understood to denote what is said by each and every one of those sentences.5

We can now show that the Gödel sentence/sentences of a theory, as defined
by 3.1, is/are true if and only if the theory is consistent (cf. Isaacson, 2011, Theo-
rems 10, 11]):

Theorem 3.3. Let P be a Gödel sentence of a recursively enumerable, Σ1-
complete theory T. Then P is true if and only if T is consistent.

Proof. If P is true then, by Definition 3.1(ii), so is ¬PrT (#P), hence T is consistent.
Conversely, if T is consistent then it cannot prove P (for if P were T-provable,
then on the one hand by Definition 3.1(i) T would prove ¬PrT (#P), and on the
other hand PrT (#P) would be a true Σ1-sentence, hence provable in T, which
would contradict the consistency of T). Thus ¬PrT (#P) is true, whence, by Defi-
nition 3.1(ii), P is true. □

5 As the same anonymous referee puts it, in the main part of this article we are using the term “the
Gödel sentence” par abus de langage (such abuse of the language is of course abundant in the literature
on the axiomatic incompleteness phenomenon). However, the connoisseur of the philosophy of language
will testify that the very concept of proposition has its own problems, too.
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It has been argued in the literature (see Boolos, 1990, or Raatikainen, 2005, and
references therein) that since the consistency of the theory implies (in fact: is equiva-
lent to) its Gödel sentence(s), even provably so inside the theory, for the theory to be
able to ‘see’ the truth of its Gödel sentence(s) it is required that the consistency of the
theory should be seen by the theory. Let us note, en passant, that a sentence which is
equivalent to its own provability inside the theory is not thereby (equivalent to) the
Gödel sentence of the theory: at the beginning of Section 3 we had S ‘ Con(S) $ ρ
for every false Π1-sentence ρ (noting that since false Π1-sentences are refutable
in Σ1-complete theories, we have S ‘¬ρ and so by S ‘PrS(#ρ) we also have that
S‘ ρ $ ¬PrS(#ρ)), but Con(S) is a true Π1-sentence while ρ is not.
Our last result provides a necessary and sufficient condition for the truth of all

the Π1-sentences that are equivalent to their unprovability inside the theory.

Theorem 3.4. For a recursively axiomatizable extension T of PA, all of the Π1-
sentences θ which satisfy T ‘ θ $ ¬PrT (#θ) are true if and only if T + Con(T)
is consistent.

Proof. If T + Con(T) is not consistent then T ‘¬Con(T), and so T ‘ Pr(#ψ)
for every ψ. Also, for every false Π1-sentence ρ we have T ‘¬ρ. Whence,
T ‘ ρ $ ¬PrT (#ρ) holds, which shows that every false Π1-sentence is equiva-
lent to its unprovability in T. Suppose now that a false Π1-sentence θ satisfies
T ‘ θ $ ¬PrT (#θ). Then ¬θ is a true Σ1-sentence, whence T‘¬θ. This, by
T ‘ θ $ Con(T), implies that T‘¬Con(T), and so the theory T + Con(T) is not
consistent. □

The consistency of T + Con(T) is a strictly stronger condition than the simple con-
sistency of T (see Isaacson, 2011, Corollary 37), a condition satisfied by all ω-consistent
(or even Σ1-sound) theories (see Isaacson, 2011, Theorem 36). Thus, if a Π1-sentence ρ
says, inside a consistent theory, that it is not provable in that theory, this, in itself, is no
reason for believing that ρ is true, unless the theory is also consistent with its own consis-
tency statement. Finally, let us note that the consistency of T + Con(T) is a necessary
and sufficient condition for the independence (unprovability and unrefutability)
of the Gödel sentences from the theory (see Isaacson, 2011, Theorem 35).

4. Conclusion

Gödel’s original argument was this: the sentence G says about itself that it is
not provable in T, and G is indeed not provable in T; therefore G is true. A neces-
sary condition for the validity of this argument is the consistency of T (see Theo-
rem 3.3; note that here G need not be a Π1-sentence). If it is only inside the
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theory that G says that it is not provable in T (i.e., if T ‘ G $ ¬PrT(#G) but
N ⊭ G $ ¬PrT (#G)), then G need not be true (see the remark before Defini-
tion 3.1), for T might not be sound, so that T might tell lies about G or might be
mistaken about what G says. So, Gödel’s argument is invalid in this case, even if
G is a Π1-sentence. But it is valid if G is a Π1-sentence and if T is ω-consistent
(as Gödel wanted to be–see Theorem 3.4 and the explanations after its proof ).
Over-generalizing Gödel’s informal argument makes it invalid, whether we take
“saying” to be inside the theory or ‘in the real world’ (N), and whether we take
“holding” to mean being true (in N) or to mean provable (in an ω-consistent,
recursively axiomatizable extension of Peano Arithmetic)–see Theorems 2.1, 2.2,
2.3, and 2.4. However, the argument remains valid for Π1-sentences and Π1-prop-
erties, as they were in Gödel’s case (Gödel, 1931)–see Proposition 2.5 above.
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Appendix

Definition 3.1 quenches our thirst for a pretty precise talk about the validity of
Gödel’s informal argument and our quest for the truth of the Gödel sentences of
consistent theories (Theorem 3.3). Yet, arguably, it may not be considered a fully
satisfactory definition, for the (Π1) Rosser sentence RS of S = PA +
¬Con(PA) satisfies both requirements of Definition 3.1 for U = S + ¬RS (which
is consistent by Rosser’s theorem). As a matter of fact, this Rosser sentence is
U-equivalent to what our suggested definition would announce to be the Gödel
sentence of the theory (i.e., the Gödel sentence of the theory U).6

Depending on one’s philosophical views (or lack thereof ) on what the Gödel
sentence and Rosser sentence of theories really say, this fact may be considered
either as an observation about the equivalence of the Gödel sentence of a theory
to the Rosser sentence of a super-theory, or else as showing the inadequacy of
Definition 3.1. In this short article we chose not to get involved in such issues;
neither do we want to become over-technical here–the more “purely logical”
aspect of our topic will be further investigated in a work with a more logico-
mathematical flavour. However, if the above-mentioned fact turns out to be a
defect of our Definition 3.1, here is our attempt at a remedy.
We isolate a ‘base theory’ B such that:

(α) the theory B is sound (i.e., N ⊨ B);
(β) for every recursively enumerable theory T there exists some sentence φ such

that B ‘ φ $ ¬PrT (#φ); and
(γ) it has the uniqueness property, in the sense that for every sentences φ and ψ

and for every recursively enumerable theory T � B, if B ‘ φ $ ¬PrT (#φ)
and B ‘ ψ $ ¬PrT(#ψ ) then B ‘ φ $ ψ .

Certainly PA can be such a base theory.7 We can now have:

Definition 4.1. Let T be a recursively enumerable extension of B. The sentence
P is called a Gödel proposition of T when B ‘ P $ ¬PrT(#P) holds.

6 For this point we are indebted to an anonymous referee of Theoria.
7 The weakest theory that is known to satisfy all the three conditions is S12 (or equivalently, IΔ0 + Ω1);
it is currently not known whether the condition (γ) holds for weaker theories like IΔ0, IE1, Q or R,
though it is a proven fact that they all satisfy (β). Let us also note that while the satisfaction of (β) and
(γ) by PA are mathematically proven theorems, the satisfaction of (α) by it, or by any other theory, is
something like an article of faith (or, as the same anonymous referee suggested, a basic insight). The
structure of N almost forces us, intuitively, to believe that PA is a sound theory (and so are its sub-
theories).
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Where the theory under consideration is an extension of the base theory, Defi-
nition 4.1 is more general than Definition 3.1, and Theorem 3.3 holds for it too.
In most of the textbooks that deal with Gödel’s incompleteness theorems, this is
how “the Gödel sentence” is constructed for recursively enumerable theories that
extend a base theory.
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