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Abstract

Pin’s variety theorem for positive varieties of string languages and varieties of finite ordered semi-
groups is proved for trees, i.e., a bijective correspondence between positive varieties of tree languages
and varieties of finite ordered algebras is established. This, in turn, is extended to generalized vari-
eties of finite ordered algebras, which corresponds to Steinby’s generalized variety theorem. Also,
families of tree languages and classes of ordered algebras that are definable by ordered (syntactic or
translation) monoids are characterized.
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2 T. Petković, S. Salehi / Theoretical Computer Science 347 (2005) 1–35

3. Positive variety theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1. Recognizability by ordered algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2. Positive variety theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1. Cofinite tree languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2. Semilattice and symbolic tree languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4. Generalized positive variety theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5. Definability by ordered monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1. Ordered algebras definable by ordered monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3. Tree languages definable by ordered monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7. Index of notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1. Introduction

The story of variety theory begins with Eilenberg’s celebrated variety theorem [5] which
was motivated by characterizations of several families of string languages by syntactic
monoids or semigroups (see [5,12]), above all by Schützenberger’s [19] theorem connecting
star-free languages and aperiodic monoids. A fascinating feature of this variety theorem is
the existence of its many instances. Indeed, most of interesting classes of algebraic structures
form varieties, and similarly, most of interesting families of tree or string languages in the
literature turn out to be varieties of some kind.

Eilenberg’s theorem has since been extended in various directions. One of these exten-
sions, which is generalized in this paper for trees, is Pin’s positive variety theorem [13]
which established a bijective correspondence between positive varieties of string languages
and varieties of ordered semigroups. Another extension is Thérien’s [24] which includes
also varieties of congruences on free monoids.

Concerning trees, which are studied on the level of universal algebra, Steinby’s variety
theorem [21] for varieties of tree languages and varieties of finite algebras was the first one of
this kind. The correspondence with varieties of congruences, and some other generalizations,
were added later by Almeida [1] and Steinby [22,23]. Another variety theorem for trees is
Ésik’s [6] correspondence between families of tree languages and theories (see also [7]).

As Ésik [6] notes any variety theorem connects families of tree languages with classes
of some structures via their “syntactic structures’’. One of these syntactic structures is the
syntactic semigroup, or monoid, of a tree language introduced by Thomas [25] and further
studied by Salomaa [18]. A different formalism, based on essentially the same concept, was
brought up by Nivat and Podelski [10,15]. Very recently a variety theorem for syntactic
semigroups, or monoids, was proved by Salehi [16]. The newest syntactic structure for
binary trees is the syntactic tree algebra introduced by Wilke [27] for which a variety
theorem is proved by Salehi and Steinby [17].

In Section 2, we review basic notions of ordered algebras, ideals and quotient alge-
bras. Ordered algebras play an important role in the field, as Bloom and Wright [4] put it
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“Ever since Scott popularized their use in [20], ordered algebras have been used in many
places in theoretical computer science’’.

In Section 3, positive varieties of tree languages are introduced and a variety theorem
for these varieties and varieties of finite ordered algebras is proved. Informally speaking,
a positive variety is a family of recognizable languages which satisfies the definition of
a variety except for being closed under complements. Several families of (tree or string)
languages are known to be closed under all the variety operations, including intersections
and unions, but not under complementation. Pin’s positive variety theorem [13] provides a
characterization for these families via ordered semigroups, see also [8,14].

In Section 4, positive variety theorem from Section 3 is extended to generalized varieties.
Generalized varieties were introduced by Steinby [23], where generalization refers to omit-
ting the condition of having a fixed ranked alphabet. Namely, a generalized variety of tree
languages or of finite algebras contains tree languages or algebras over any ranked alphabet.
This is used for proving a variety theorem for trees and ordered monoids in Section 5.

In Section 5, the results of Salehi [16] are extended to ordered monoids. Roughly speaking,
a triple correspondence between generalized varieties of finite ordered algebras, generalized
positive varieties of tree languages and varieties of finite ordered monoids is presented. This
suggests the thesis that once the condition of being closed under complements is removed
from the definition of variety, the resulted family, called positive variety, corresponds to a
class of ordered syntactic structures of the variety; see also the positive variety theorem by
Ésik in [6, Section 12].

Throughout the paper some examples are presented for illustrating the theories and their
applicabilities. They are motivated by the string case examples from [13]. Although the
obtained correspondences are expected, the tree case appears to be technically more difficult
than the string case.

At the end of the paper, Index of notation is provided for readers’ convenience.

2. Ordered algebras

In this section, after reviewing the terminology of ordered sets and ordered algebras,
we define the notions of ideals, quotient ordered algebras and syntactic ordered algebras;
see also [3,26].

2.1. Basic notions

Let A be a set. The diagonal relation on A is denoted by �A. For binary relations � and
� on A, the inverse of � and the composition of � and � are denoted by �−1 and � ◦ �,
respectively. For an equivalence relation � on A, the equivalence �-class of an a ∈ A is
a/� = {b ∈ A | a�b} and the quotient set A/� is {a/� | a ∈ A}.

It is easy to see that for a quasi-order (i.e. a reflexive and transitive binary relation) � on
A, the relation � = �∩�−1 is an equivalence relation on A, called the equivalence relation
of �, and the relation � defined on the quotient set A/� by a/� � b/� ⇐⇒ a�b for
a, b ∈ A, is a well-defined order on A/�. This order � on A/� is called the order induced
by the quasi-order � on A.
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A finite set of function symbols is called a ranked alphabet. If � is a ranked alphabet,
the set of m-ary function symbols of � is denoted by �m (m�0). In particular, �0 is the set
of constant symbols of �. For a ranked alphabet �, a �-algebra is a structure A = (A, �)

where A is a set, and the operations of � are interpreted in A, that is to say, any c ∈ �0 is
interpreted by an element cA ∈ A, and any f ∈ �m (m > 0) is interpreted by an m-ary
function f A : Am→ A.

An equivalence relation � on A is a �-congruence on A if for any f ∈ �m and
a1, . . . , am, b1, . . . , bm ∈ A, the relation f A(a1, . . . , am) � f A(b1, . . . , bm) holds when-
ever a1 � b1, . . . , am � bm.

Let � be a ranked alphabet. An ordered �-algebra is a structure A = (A, �, �) where the
structure (A, �) is an algebra and � is an order on A which satisfies the following property:
for any f ∈ �m (m > 0) and a1, . . . , am, b1, . . . , bm ∈ A, if a1 �b1, . . . , am �bm then
f A(a1, . . . , am)�f A(b1, . . . , bm); cf. [26, Section 4.2.1]. We note that any algebra (A, �)

in the classical sense is an ordered algebra (A, �, �A) in which the order relation is equality.
Let A = (A, �, �) and B = (B, �, � ′) be two ordered algebras.
The structure B is an order subalgebra of A, in notation B ⊆ A, if (B, �) is a subalgebra

of (A, �) and � ′ is the restriction of � to B.
A mapping � : A → B is an order morphism if it is a �-morphism, i.e., cA� = cB

and f A(a1, . . . , am)� = f B(a1�, . . . , am�) for any c ∈ �0, f ∈ �m (m > 0), and
a1, . . . , am ∈ A, and preserves the orders, i.e., for any a, b ∈ A if a�b then a�� ′b�. In
that case we write � : A → B. The order morphism � is an order epimorphism if it is
surjective, and then B is an order epimorphic image of A, in notation B ← A. If B is an
order epimorphic image of an order subalgebra of A, then B is said to divide A, in notation
B ≺ A. If � is injective then it is an order monomorphism. When � is bijective and its
inverse is also an order morphism, then it is an order isomorphism. We write A�B when
A and B are order isomorphic.

The direct product of A and B is the structure (A× B, �, �×� ′) where (A× B, �) is
the product of the algebras (A, �) and (B, �), and the relation �×� ′ is defined on A×B

by (a, b)�×� ′(c, d) ⇐⇒ a�c & b� ′d for (a, b), (c, d) ∈ A× B. It is easy to see that
the structure (A× B, �, �×� ′) is an ordered algebra which is denoted by A× B.

A variety of finite ordered algebras, abbreviated by VFOA, is a class of finite ordered
algebras closed under order subalgebras, order epimorphic images, and direct products.

2.2. Ideals and quotient ordered algebras

Let A = (A, �, �) be an ordered algebra.

Definition 2.1. A quasi-order on A is a quasi-order � on A that contains � , i.e., � ⊇ � ,
and is compatible with �, i.e., for any f ∈ �m (m > 0) and a1, . . . , am, b1, . . . , bm ∈ A,
f A(a1, . . . , am)�f A(b1, . . . , bm) holds whenever a1� b1, . . . , am� bm.

Definition 2.2. For a quasi-order � on A, the quotient of A under � is the structure
A/� = (A/�, �, �) where � = � ∩ �−1 is the �-congruence induced by � and � is
the order induced by �; cf. [26].
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For sets A and B and a mapping � : A→ B, if � is a relation on B then � ◦ � ◦ �−1 is a
relation on A determined by

a � ◦ � ◦ �−1 b ⇐⇒ (a�) � (b�).

Proposition 2.3. For ordered algebras A = (A, �, �) and B = (B, �, � ′) and order
morphism � : A→ B, if � is a quasi-order on B then � ◦� ◦ �−1 is a quasi-order on A.
Moreover, the following hold:
(1) the image of A, A� = (A�, �, � ′′) where � ′′ is the restriction of � ′ on A�, is an

order subalgebra of B,
(2) A/� ◦� ◦ �−1�A�/�′ where �′ is the restriction of � on A�, and
(3) if � is an order epimorphism then A/� ◦� ◦ �−1�B/�.

Proof. The fact that �◦�◦�−1 is a quasi-order on A and statement (1) are straightforward,
and (3) follows from (2). For proving (2) we note that the mapping 	 : A/� ◦� ◦ �−1 →
A�/�′ defined by (a/� ◦ � ◦ �−1)	 = a�/� for a ∈ A, where � = �∩�−1, is an order
isomorphism. �

The particular case of the Proposition 2.3 when � = � ′ is of interest: then � = �B and
�◦�◦�−1 = ker�, and hence we get the first homomorphism theorem for ordered algebras,
i.e., A/� ◦� ′◦ �−1�A�, see [26]. Results similar to Proposition 2.3 for semigroups can
be found in [9].

Proposition 2.4. Let A = (A, �, �) be an ordered algebra, and �, �′ be two quasi-orders
on A.
(1) If � ⊆ �′ then A/�′ ← A/�.
(2) The relation �∩�′ is a quasi-order on A and A/�∩�′ is an order subalgebra of

A/�× A/�′.

The proof is straightforward.
Let us recall the definition of translations of an algebra (see e.g. [21–23]). For an algebra

A = (A, �), an m-ary function symbol f ∈ �m (m > 0) and elements a1, . . . , am ∈ A,
the term f A(a1, . . . , 
, . . . , am) where the new symbol 
 sits in the ith position, for some
i�m, determines a unary function A→ A defined by a → f A(a1, . . . , a, . . . , am) which
is an elementary translation of A. The set of translations of A, denoted by Tr(A), is the
smallest set that contains the identity function and elementary translations and is closed
under composition of unary functions. The composition of translations p and q is denoted
by q · p, that is (q · p)(a) = p(q(a)) for any a ∈ A. The set Tr(A) equipped with the
composition operation is a monoid, called the translation monoid of A.

Definition 2.5. An ideal of A = (A, �, �), in notation I �A, is a subset I ⊆ A such that
a�b ∈ I implies a ∈ I for every a, b ∈ A. For any a ∈ A, (a] = {b ∈ A | b�a} is the
ideal of A generated by a.

The syntactic quasi-order of an ideal I �A, denoted by �I , is defined by

a�I b ⇐⇒
(∀p ∈ Tr(A)

)(
p(b) ∈ I ⇒ p(a) ∈ I

)
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for a, b ∈ A. The syntactic ordered algebra of I is the quotient ordered algebra SOA(I ) =
A/�I , also denoted by A/I (cf. [13]).

We note that for any ideal I the equivalence relation �I of �I is the syntactic congruence
of I in the classical sense (see e.g. [21,22]):

a �I b ⇐⇒ (∀p ∈ Tr(A))(p(a) ∈ I ⇔ p(b) ∈ I ).

It is known that the syntactic congruence of I is the greatest congruence that saturates I
[21,22]. Correspondingly, the syntactic quasi-order of I is the greatest quasi-order on A that
satisfies a�b ∈ I ⇒ a ∈ I for all a, b ∈ A.

Trivially, any subset I ⊆ A of the ordered algebra A = (A, �, �A) is an ideal of A. The
following is essentially Lemma 3.2 of Steinby [22].

Proposition 2.6. Let A = (A, �, �) and B = (B, �, � ′) be two ordered algebras, and
� : A→ B be an order morphism. The mapping � induces a monoid morphism Tr(A)→
Tr(B), p → p�, such that p(a)� = p�(a�) for any a ∈ A. Moreover, if � is an order
epimorphism then the induced mapping is a monoid epimorphism.

For a subset D ⊆ A and a translation p ∈ Tr(A), the inverse translation of D under p is
p−1(D) = {a ∈ A | p(a) ∈ D}, and for an order morphism � : B→ A, the inverse image
of D under � is D�−1 = {b ∈ B | b� ∈ D}.

Positive Boolean operations are intersection and union of sets, while Boolean operations
also include the complement operation. It can be easily proved that for ordered algebras
A and B, ideals I, J�A, K�B, and order morphism � : A → B, the sets I ∩ J, I ∪
J, p−1(I ) and K�−1 are ideals of A. This is formulated in the following lemma whose
proof is straightforward (cf. [13]). Note that the complement of an ideal is not necessarily
an ideal.

Lemma 2.7. The collection of all ideals of any ordered algebra is closed under positive
Boolean operations, inverse translations and inverse order morphisms.

Proposition 2.8. Let A = (A, �, �) and B = (B, �, � ′) be ordered algebras and
I, J�A, K�B be ideals. Then the following inclusions hold:
(1) �I∩J , �I∪J ⊇ �I ∩�J ;
(2) �p−1(I ) ⊇ �I for any p ∈ Tr(A);
(3) �K�−1 ⊇ � ◦ �K ◦ �−1 for any order morphism � : A → B, and �K�−1 =

� ◦�K ◦ �−1 if � is an order epimorphism.

Proof. Statements (1) and (2) are obvious. We prove (3). Assume (a, b) ∈ � ◦�K ◦ �−1

for some a, b ∈ A. Then a� �K b�. Hence, for any p ∈ Tr(A), if p(b) ∈ K�−1 then
p(b)� ∈ K , what means p�(b�) ∈ K . This implies now p�(a�) ∈ K , i.e., p(a)� ∈ K ,
and so p(a) ∈ K�−1.

Therefore a�K�−1b, and hence �◦�K ◦�−1 ⊆ �K�−1 . In the case when � is surjective
we note that, by Proposition 2.6, every translation q ∈ Tr(B) is of the form p� for some
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p ∈ Tr(A). Thus in this case �K�−1 ⊆ � ◦ �K ◦ �−1 holds, and so does the equality

�K�−1 = � ◦�K ◦ �−1. �

Combining Propositions 2.8, 2.4 and 2.3 we get the following.

Corollary 2.9. For ordered algebras A = (A, �, �) and B = (B, �, � ′), ideals I, J�A
and K�B, translation p ∈ Tr(A) and order morphism � : A→ B,
(1) SOA(I ∩ J ), SOA(I ∪ J ) ≺ SOA(I )× SOA(J );
(2) SOA(p−1(I ))← SOA(I );
(3) SOA(K�−1)≺SOA(K) and if � is an order epimorphism then SOA(K�−1)

�SOA(K).

2.3. Examples

For an algebra A = (A, �), the set of non-trivial translations TrS(A) of A consists
of elementary translations f A(a1, . . . , 
, . . . , am) for any f ∈ �m and a1, . . . , am ∈ A,
and their compositions. We note that TrS(A) does not automatically include the identity
translation 1A. The set TrS(A) with the composition operation is a semigroup, called the
translation semigroup of A.

2.3.1. Ordered nilpotent algebras
Definition 2.10. An ordered algebra A = (A, �, �) is ordered n-nilpotent (n ∈ N) if
p1 · · ·pn(a)�b holds for all a, b ∈ A and non-trivial translations p1, . . . , pn ∈ TrS(A).
An ordered algebra is ordered nilpotent if it is ordered n-nilpotent for some n ∈ N. The
class of all ordered nilpotent �-algebras is denoted by Nil(�).

An element a0 ∈ A is a trap of A if p(a0) = a0 holds for any p ∈ Tr(A).

Lemma 2.11. Every ordered n-nilpotent algebra A = (A, �, �) has a unique trap which
is the least element of the algebra.

Proof. Clearly p1 · · ·pn(a)�q1 · · · qn(b)�p1 · · ·pn(a) holds for all non-trivial transla-
tions p1, . . . , pn, q1, . . . , qn ∈ TrS(A) and a, b ∈ A. Thus p1 · · ·pn(a) = q1 · · · qn(b)

and let a0 be this element. Then p(a0) = a0 and a0 �a for any p ∈ TrS(A) and a ∈ A.
Therefore, a0 is the unique trap of A and it is the least element. �

Proposition 2.12. Class Nil(�) of all ordered nilpotent �-algebras is a variety of finite
ordered algebras.

Proof. It can be easily seen that the class of ordered n-nilpotent algebras is closed under
order subalgebras and direct products. To see that it is closed under order epimorphic images,
let A = (A, �, �) and B = (B, �, � ′) be two ordered algebras, such that A is an ordered
n-nilpotent algebra and let � : A → B be an order epimorphism. Let b, d ∈ B be two
elements and q1, . . . , qn ∈ TrS(B) be non-trivial translations. There are a, c ∈ A, such
that b = a� and d = c�, and by Proposition 2.6, there are p1, . . . , pn ∈ TrS(A) such
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that (pj )� = qj for every j �n. From p1 · · ·pn(a)�c, the inequality p1 · · ·pn(a)�� ′c�
follows and this implies (p1)� · · · (pn)�(a�)� ′c�. Thus q1 · · · qn(b)� ′d holds. Hence, B
is an ordered n-nilpotent algebra.

Finally, the claim follows from the fact that an ordered n-nilpotent algebra is an ordered
(n+ 1)-nilpotent algebra as well. �

2.3.2. Semilattice algebras and symbolic ordered algebras
Finite sequences of elements of a set D are displayed in the bold face, for example d

is a (possibly empty) sequence 〈d1, . . . , dm〉 where d1, . . . , dm are all members of D. For
simplicity we write d ∈ D when all components of the sequence d belong to D. In that case
for a function symbol f ∈ �m+1, f (d, d) stands for f (d, d1, . . . , dm).

Definition 2.13. An algebra A = (A, �) is a semilattice algebra if it satisfies the following
two identities for any f, g ∈ � and a, b, c, d, a ∈ A:

f A(a, f A(a, a, b), b) = f A(a, a, b);

f A(a, gA(c, a, d), b) = gA(c, f A(a, a, b), d).

A monoid (M, ·) is a semilattice monoid if it is commutative and idempotent, i.e., a · a = a

and a · b = b · a for any a, b ∈ M .

Lemma 2.14. An algebra is semilattice if and only if its translation monoid is semilattice.

Lemma 2.15. Let A = (A, �) be a semilattice algebra. For a, b ∈ A and translations
p, q ∈ Tr(A) the following hold:
(1) if p(q(a)) = a then p(a) = q(a) = a;
(2) if p(a) = b and a = q(b) then a = b.

Proof. The claim (2) is an immediate corollary of (1). Let us prove (1). Suppose p, q ∈
Tr(A). Since q · q = q, p · p = p and q · p = p · q, we have q(a) = q(p(q(a))) =
q(q(p(a))) = q(p(a)) = p(q(a)) = a, and similarly p(a) = p(p(q(a))) = p(q(a)) = a.

Lemma 2.16. Let A = (A, �) be a semilattice algebra. For f, g ∈ � and a, b, c, a, b ∈ A

the following identities are satisfied:
(s1) f A(a, a, b, b, c) = f A(a, b, b, a, c),

(s2) f A(a, a, b, a) = f A(a, b, b, a),

(s3) f A(gA(a, a), b, b) = f A(gA(b, a), a, b),

(s4) f A(f A(a, . . . , a), a) = f A(a, a),

(s5) f A(gA(a, b, a), a, b) = f A(gA(a, b, a), b, b),

(s6) f A(f A(gA(a, b, a), b), c) = f A(gA(gA(a, b, b), b, a), c),
where f ∈ �m, g ∈ �n, m�n and sequence b consists of n−m times b.
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Proof. We are going to prove here only identities (s1) and (s5), the proofs for the other
identities can be found in [11]. For (s1) we note that

f A(a, a, b, b, c)= f A(a, f A(a, a, b, b, c), b, b, c)
= f A(a, a, b, f A(a, b, b, b, c), c)
= f A(a, b, b, f A(a, a, b, b, c), c)
= f A(a, f A(a, b, b, a, c), b, b, c) = p(f A(a, b, b, a, c)),

where p = f A(a, 
, b, b, c). By the same argument and swapping a and b, it can be proved

that f A(a, b, b, a, c) = q(f A(a, a, b, b, c)) for some q ∈ Tr(A). Thus, from Lemma
2.15, it follows that f A(a, a, b, b, c) = f A(a, b, b, a, c).

Now, suppose (s2)–(s4) have been already proved [11].
For (s5) we distinguish two cases. First, suppose sequence a is empty. By using identities

(s4), (s3), (s1), (s3), (s3) and (s4) consecutively, we get

f A(gA(a, b), a, b)= f A(gA(a, gA(b, b)), a, b)

= f A(gA(b, gA(a, b)), a, b) = f A(gA(gA(a, b), b), a, b)

= f A(gA(gA(a, b), a), b, b) = f A(gA(gA(a, a), b), b, b)

= f A(gA(a, b), b, b).

Second, suppose that sequence a is not empty and that it has the form a = (c, c). By using
identities (s3), (s1), (s2) and (s3) consecutively, we get

f A(gA(a, b, a), a, b)= f A(gA(a, b, c, c), a, b)

= f A(gA(a, b, a, c), c, b) = f A(gA(a, a, b, c), c, b)

= f A(gA(a, b, b, c), c, b) = f A(gA(a, b, c, c), b, b)

= f A(gA(a, b, a), b, b). �

Definition 2.17. An ordered algebra A = (A, �, �) is symbolic if it is a semilattice algebra
and f A(a1, . . . , am)�aj holds for every a1, . . . , am ∈ A, f ∈ �m (m > 0) and j �m.

The class of all semilattice �-algebras is denoted by SL(�) and Sym(�) denotes the
class of all symbolic ordered �-algebras.

Proposition 2.18. Class SL(�) is a variety of finite algebras and class Sym(�) is a variety
of finite ordered algebras.

3. Positive variety theorem

Recall that a ranked alphabet is a finite set of function symbols, and if � is a ranked
alphabet, the set of m-ary function symbols from � is denoted by �m (for every m�0); in
particular, �0 is the set of constant symbols from �. For a ranked alphabet � and a leaf
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alphabet X, the set T(�, X) of �X-trees is the smallest set satisfying
(1) �0 ∪X ⊆ T(�, X), and
(2) f (t1, . . . , tm) ∈ T(�, X) for all m > 0, f ∈ �m, t1, . . . , tm ∈ T(�, X).
Any subset of T(�, X) is a tree language.

The �X-term algebra T (�, X) = (T(�, X), �) is defined by setting
(1) cT (�,X) = c for each c ∈ �0, and
(2) f T (�,X)(t1, . . . , tm) = f (t1, . . . , tm) for all m > 0, function symbols f ∈ �m and

trees t1, . . . , tm ∈ T(�, X).
Let 
 be a (special) symbol which does not appear in any ranked alphabet or leaf alphabet
considered here. The set of �X-contexts, denoted by C(�, X), consists of the �(X ∪ {
})-
trees in which 
 appears exactly once. For P, Q ∈ C(�, X) and t ∈ T(�, X) the context
Q · P , the composition of P and Q, results from P by replacing the special leaf 
 with Q,
while the term P(t), also denoted by t · P , results from P by replacing 
 with t. Note that
C(�, X) is a monoid with the composition operation, and that t · (Q ·P) = (t ·Q) ·P holds
for all P, Q ∈ C(�, X), t ∈ T(�, X). There is a bijective correspondence between C(�, X)

and translations of the term algebra Tr(T (�, X)) in a natural way: an elementary context
P = f (t1, . . . , 
, . . . , tm) corresponds to P T (�,X) = f T (�,X)(t1, . . . , 
, . . . , tm), and the
composition P ·Q of the contexts P and Q corresponds to the composition P T (�,X)·QT (�,X)

of translations.

Definition 3.1. For a tree language T ⊆ T(�, X), the syntactic quasi-order �T of T is
defined by the following: for t, s ∈ T(�, X)

t �T s ⇐⇒ (∀P ∈ C(�, X))
(
s · P ∈ T ⇒ t · P ∈ T

)
.

The corresponding equivalence relation �T = �T ∩�−1
T of �T is the syntactic congruence

of T

t �T s ⇐⇒ (∀P ∈ C(�, X))
(
t · P ∈ T ⇔ s · P ∈ T

)
.

The syntactic ordered algebra of T is SOA(T ) = (T(�, X)/�T , �, �T ), where �T is the
order induced by �T : t/�T �T s/�T ⇔ t�T s for t, s ∈ T(�, X).

It can be easily seen that not every ordered algebra is the syntactic ordered algebra of a
tree language. However, syntactic ordered algebras can be characterized as follows (cf. [22,
Proposition 3.6]).

Proposition 3.2. A finite ordered algebra A = (A, �, �) is order isomorphic to the syn-
tactic ordered algebra of a tree language if and only if there exists an ideal I� A such that
�I = � .

Proof. First, suppose A�SOA(T ) for some tree language T. Then the subset I = T/�T =
{t/�T | t ∈ T } is an ideal of SOA(T ) and �I = �T holds.

Conversely, suppose �I = � for some I �A. Let the �-morphism � : T (�, A)→ A
be obtained by extending the identity mapping 1A : A → A. Since � is an epimorphism,
then �I�−1 = � ◦ �I ◦ �−1 by Proposition 2.8(3). Hence, Proposition 2.3 implies that

T (�, A)/�I�−1�A/�I , and since �I = � , then SOA(I�−1)�A. �
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3.1. Recognizability by ordered algebras

Let � be a ranked alphabet, X be a leaf alphabet, and A = (A, �, �) be an ordered
algebra. A tree language T ⊆ T(�, X) is recognized by A if there exists an ideal I �A
and a �-morphism � : T (�, X)→ A such that T = I�−1. An initial assignment for A is
a mapping � : X → A. It can be uniquely extended to an order morphism T (�, X)→ A
which is denoted by �A. For an ideal I�A, the tree language recognized by (A, �, I ) is
{t ∈ T(�, X) | t�A ∈ I } = I (�A)−1.

Proposition 3.3. For a tree languageT ⊆ T(�, X)and an ordered algebraA = (A, �, �),
SOA(T ) ≺ A if and only if T is recognized by A.

Proof. Suppose T = I�−1 for a morphism � : T (�, X) → A and an ideal I �A. Let
the ordered �-algebra B be the image of �, and define the mapping 	 : B → SOA(T ) by
(t�)	 = t/�T for t ∈ T(�, X). We show that t��s� implies t�T s for any t, s ∈ T(�, X).
This also proves that 	 is well-defined. Suppose t��s�, then t��I s� since � ⊆ �I .
Now, for any p ∈ Tr(A),

p(s) ∈ T ⇒ p(s)� ∈ I ⇒ p�(s�) ∈ I ⇒ p�(t�) ∈ I

⇒ p(t)� ∈ I ⇒ p(t) ∈ T ,

so t�T s. It can also be seen that 	 is a �-morphism. Thus 	 is an order epimorphism, hence
SOA(T )← B ⊆ A.

Now suppose for an ordered algebra B that SOA(T )← B ⊆ A, and let 	 : B→ SOA(T )

be an order epimorphism. A �-morphism � : T (�, X) → A can be defined by choosing
x� ∈ B, such that (x�)	 = x/�T for every x ∈ X ∪�0. By induction on t it can be shown
that t�	 = t/�T holds for every t ∈ T(�, X). The set {t/�T ∈ SOA(T ) | t ∈ T }	−1 is an
ideal of B. If I is the ideal of A generated by this set, then T = I�−1. �

From Proposition 3.3 it follows that the syntactic ordered algebra of a tree language is
the least ordered algebra which recognizes the tree language.

Let us recall that for a tree language T ⊆ T(�, X), a context P ∈ C(�, X), and a
�-morphism � : T (�, Y ) → T (�, X), the inverse translation of T under P is P−1(T ) =
{t ∈ T(�, X) | t ·P ∈ T }, and the inverse morphism of T under � is T �−1 = {t ∈ T(�, Y ) |
t� ∈ T } (cf. [22]).

The following is an immediate consequence of Corollary 2.9.

Corollary 3.4. For tree languages T , T ′ ⊆ T(�, X), a context P ∈ C(�, X), and a
�-morphism � : T (�, Y )→ T (�, X),
(1) SOA(T ∩ T ′), SOA(T ∪ T ′) ≺ SOA(T )× SOA(T ′);
(2) SOA(P−1(T ))← SOA(T );
(3) SOA(T �−1) ≺ SOA(T ), and if � is surjective then SOA(T �−1)�SOA(T ).

3.2. Positive variety theorem

Let � be a fixed ranked alphabet. Let us recall that a class of finite ordered �-algebras is a
variety (of finite ordered algebras) if it is closed under order subalgebras, order epimorphic
images, and finite direct products.
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Definition 3.5. An indexed family of recognizable tree languages is a family V = {V(X)}
whereV(X) consists of recognizable �X-tree languages for any leaf alphabet X. An indexed
family is a positive variety of tree languages, abbreviated by PVTL, if it is closed under
finite positive Boolean operations (finite intersections and unions), inverse translations, and
inverse morphisms.

Definition 3.6. For a variety of finite ordered algebras K, let the indexed family Kt =
{Kt(X)} be the family of tree languages whose syntactic ordered algebras are in K,
that is

Kt(X) = {T ⊆ T(�, X) | SOA(T ) ∈K}.
For a positive variety of tree languages V, let Va be the variety of finite ordered algebras
generated by syntactic ordered algebras of tree languages in V, that is Va is the VFOA
generated by the class

{SOA(T ) | T ∈V(X) for a leaf alphabet X}.

By Corollary 3.4, for a variety of finite ordered algebras K, the family Kt is a positive
variety of tree languages.

Lemma 3.7. Let K and L be PVTLs, and let V and W be VFOAs.
(1) The operations K →Kt and V →Va are monotone, i.e., if K ⊆L and V ⊆W,

then Kt ⊆Lt and Va ⊆Wa.
(2) V ⊆Vat and Kta ⊆K.

Proof. The statement (1) and the inclusion V ⊆ Vat are obvious. In order to prove
Kta ⊆ K, we note that if A ∈ Kta then A ≺ SOA(T1) × · · · × SOA(Tn) for some
T1, . . . , Tn in Kt, what by definition means that SOA(Tj ) ∈ K for every j, and hence
A ∈K. �

The following was proved for classical algebras in [18].

Lemma 3.8. For any finite ordered algebra A = (A, �, �) there are tree languages
T1, . . . , Tm recognizable by A, such that

A ⊆ SOA(T1)× · · · × SOA(Tm).

Proof. Let A = (A, �, �) be a finite ordered algebra, and suppose the epimorphism
	 : T (�, A)→ A is obtained by extending the identity mapping 1A : A→ A. Recall that
for any a ∈ A, (a] = {b ∈ A | b�a} is the ideal of A generated by a. By Corollary 2.9(3),
SOA((a]	−1)�A/(a] for every a ∈ A. We are proving A ⊆∏

a∈A A/(a]. This will finish
the proof since (a]	−1 is recognizable by A. Define the mapping � : A → ∏

a∈A A/(a]
by u� = (

u/�(a]
)
a∈A for u ∈ A. Clearly � is an order morphism. It suffices to show that

� is injective. Suppose u� = v� for u, v ∈ A. Then u/�(a] = v/�(a] for every a ∈ A.
In particular u/�(u] = v/�(u] and u/�(v] = v/�(v], what imply v ∈ (u] and u ∈ (v],
respectively. So, u�v and v�u, thus u = v. �
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Corollary 3.9. (1) Every VFOA is generated by syntactic ordered algebras of some tree
languages.

(2) For any PVTLV and any finite ordered algebra A, if every tree language recognizable
by A belongs to V, then A ∈Va.

Lemma 3.10. For every variety of finite ordered algebras K, K ⊆Kta.

Proof. By Corollary 3.9(1), it is enough to show that syntactic ordered algebras of tree
languages that belong to K are in Kta. Suppose SOA(T ) ∈K for a tree language T. Then
T is in Kt by definition, so SOA(T ) ∈Kta, which finishes the proof. �

The essential part of the positive variety theorem is the following.

Lemma 3.11. For every positive variety of tree languages V, Vat ⊆V.

Proof. Suppose T ∈Vat(X). Then there are leaf alphabets X1, . . . , Xn and tree languages
T1 ∈ V(X1), . . . , Tn ∈ V(Xn), such that SOA(T ) divides the product A = SOA(T1) ×
· · · × SOA(Tn). Thus, by Proposition 3.3, T is recognized by A, and so there is an order
morphism � : T (�, X) → A and an ideal I �A such that T = I�−1. Let SOA(Tj ) =
Aj = (Aj , �, � j ) for each j �n.

For any a = (a1, . . . , an) ∈ ∏n
i=1 Ai we have

(
a
] = (a1] × · · · × (an]. Let �j :

T (�, X)→ Aj be the composition of � with the jth projection mapping
∏n

i=1 Ai → Aj .
Then T = I�−1 =⋃

a∈I (a]�−1 =⋃
(a1,...,an)∈I

⋂
j �n (aj ]�−1

j .

We aim at showing T ∈ V(X). It is enough to show (aj ]�−1
j ∈ V(X) for every j �n.

Fix a j �n. Let �Tj
: T (�, Xj ) → Aj be the syntactic morphism of Tj . A �-morphism

�j : T (�, X) → T (�, Xj ), such that �j�Tj
= �j can be constructed. Then (aj ]�−1

j =
(aj ]�−1

Tj
�−1
j and, sinceV is closed under inverse morphisms, for showing (aj ]�−1

j ∈V(X)

it suffices to show (aj ]�−1
Tj
∈ V(Xj ). Choose a t ∈ T(�, Xj ), such that aj = t�Tj

. We
show

(aj ]�−1
Tj
=

⋂
{P−1(Tj ) | P ∈ C(�, Xj ), P (t) ∈ Tj }.

The intersection on the right-hand side is finite since Tj is recognizable. For any
s ∈ T(�, Xj ), we have that s ∈ (aj ]�−1

Tj
iff s�Tj

� j aj = t�Tj
, i.e., s�Tj

t , what by defi-
nition means that P(t) ∈ Tj implies P(s) ∈ Tj for any P ∈ C(�, Xj ). This is further equi-
valent to s ∈ P−1(Tj ) whenever P(t) ∈ Tj for any P ∈ C(�, Xj ), what finally
means s ∈ ⋂{P−1(Tj ) | P ∈ C(�, Xj ), P (t) ∈ Tj }. From Tj ∈ V(Xj ) and the fact
that V is closed under inverse translations and positive Boolean operations, it follows that
(aj ]�−1

Tj
∈V(Xj ). Therefore, (aj ]�−1

j belongs to V(X) for any j, thus T ∈V(X). �

Summing up, we have shown the following.

Proposition 3.12 (Positive Variety Theorem). The operations K → Kt and V → Va

are mutually inverse lattice isomorphisms between the class of all varieties of finite ordered
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algebras and the class of all positive varieties of recognizable tree languages, i.e.,Vat =V
and Kta =K.

3.3. Examples

Families of tree languages that correspond, in the sense of Positive Variety Theorem
(Proposition 3.12), to varieties of algebras introduced earlier are studied here.

3.3.1. Cofinite tree languages
Definition 3.13. A tree language T ⊆ T(�, X) is cofinite if it is empty or its complement
T(�, X) \ T is finite. The family of cofinite �X-tree languages is denoted by Cof(�, X),
and Cof� = {Cof(�, X)} is the family of cofinite tree languages for all leaf alphabets X.

Proposition 3.14. A language T ⊆ T(�, X) is cofinite if and only if it can be recognized
by a finite ordered nilpotent algebra.

Proof. Suppose T ⊆ T(�, X) is cofinite. There exists an n ∈ N such that P1 · · · Pn(t) ∈ T

holds for all P1, . . . , Pn ∈ C(�, X)\{
} and t ∈ T(�, X). Therefore, P1 · · · Pn(t)�T s holds
for all P1, . . . , Pn ∈ C(�, X) \ {
} and t, s ∈ T(�, X). This immediately implies that the
syntactic algebra SOA(T ) satisfies p1 · · · pn(a)�T b for all p1, . . . , pn ∈ TrS(SOA(T ))

and a, b ∈ SOA(T ). Thus, SOA(T ) is an ordered n-nilpotent algebra.
Conversely, suppose that a tree language T ⊆ T(�, X) is recognized by an ordered

n-nilpotent algebra A = (A, �, �). Let � : T(�, X) → A be an order morphism and
I�A be an ideal, such that T = I�−1. The mapping �∗ : C(�, X) \ {
} → TrS(A)

obtained from setting f (t1, . . . , 
, . . . , tm)�∗ = f A(t1�, . . . , 
, . . . , tm�) for all f ∈ �m

(m > 0) and t1, . . . , tm ∈ T(�, X), and (P ·Q)�∗ = P�∗ ·Q�∗, is a semigroup morphism
which satisfies P�∗(t�) = P(t)� for all t ∈ T(�, X), P ∈ C(�, X) \ {
}. Since A is
an ordered n-nilpotent algebra, then p1 · · ·pn(a) ∈ I holds for all p1, . . . , pn ∈ TrS(A)

and a ∈ A. In particular, P1�∗ · · ·Pn�∗(t�) ∈ I holds for all P1, . . . , Pn ∈ C(�, X) \ {
}
and t ∈ T(�, X), i.e., P1 · · ·Pn(t)� ∈ I , and so P1 · · ·Pn(t) ∈ I�−1 = T . Hence, T is
cofinite. �

Corollary 3.15. Family Cof� is a PVTL and Cof� = Nil(�)t.

Proof. This follows immediately from Propositions 3.14, 2.12 and 3.12. �

3.3.2. Semilattice and symbolic tree languages
We can assume that the leaf alphabets X are always disjoint from the ranked alphabet �.

Definition 3.16. For a tree t ∈ T(�, X), the contents c(t) of t is the set of symbols from
� ∪X which appear in t. It can be defined inductively as:
(1) c(x) = {x} for x ∈ �0 ∪X;
(2) c(f (t1, . . . , tm)) = {f } ∪ c(t1) ∪ · · · ∪ c(tm) for t1, . . . , tm ∈ T(�, X) and f ∈ �m.
For a subset Z ⊆ �∪X, the tree language T (Z) consists of trees in which all symbols from
Z appear, i.e.,

T (Z) = {t ∈ T(�, X) | Z ⊆ c(t)}.
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A tree language T ⊆ T(�, X) is symbolic if it is a finite union of tree languages of the
form T (Z) for some subsets Z ⊆ � ∪X. The family of all symbolic �X-tree languages is
denoted by Sym(�, X), and Sym� = {Sym(�, X)} is the family of symbolic tree languages
for all leaf alphabets X.

Lemma 3.17. For a tree language T ⊆ T(�, X) the following properties are equivalent:
(1) T is symbolic;
(2) for all trees t, t ′ ∈ T(�, X), c(t) ⊆ c(t ′) and t ∈ T imply t ′ ∈ T ;
(3) T =⋃

t∈T T (c(t)).

Proof. The implications (1)⇒ (2) and (3)⇒ (1) are straightforward. For the implication
(2)⇒ (3), the inclusion T ⊆ ⋃

t∈T T (c(t)) always holds. Suppose t ′ ∈ T (c(t)) for some
t ∈ T . Then c(t) ⊆ c(t ′), and so t ′ ∈ T , what implies

⋃
t∈T T (c(t)) ⊆ T . �

Definition 3.18. A tree language T ⊆ T(�, X) is a semilattice tree language if c(t) = c(t ′)
and t ∈ T imply t ′ ∈ T for all t, t ′ ∈ T(�, X). The family of semilattice �X-tree languages
is denoted by SL(�, X), and SL� = {SL(�, X)} is the family of semilattice tree languages
for all leaf alphabets X.

The rest of this subsection is devoted to proving the fact that semilattice and symbolic
tree languages are definable by semilattice and symbolic algebras respectively, i.e., SL� =
SL(�)t and Sym� = Sym(�)t.

Fix a ranked alphabet � and a leaf alphabet X. Finite sequences of trees are denoted by
bold face letters, e.g., t is a sequence 〈t1, . . . , tm〉 for some trees t1, . . . , tm ∈ T(�, X).

Let � be a �-congruence on T (�, X) such that T (�, X)/� is a semilattice algebra, i.e.,
it satisfies the following relations for all function symbols f, g ∈ � and trees t, r, u, v,

t ∈ T(�, X):
(d1) f (t, f (t, t, r), r) � f (t, t, r),
(d2) f (t, g(u, t, v), r) � g(u, f (t, t, r), v).
In particular, as a corollary of Lemma 2.16, algebra T (�, X)/� satisfies identities (s1)–(s6)
of Lemma 2.16.

The family of �-congruences on T (�, X) satisfying (d1) and (d2) is closed under in-
tersections and contains the universal relation T(�, X)× T(�, X), and so has the smallest
element . Our aim is to prove that  is determined by

t1  t2 ⇐⇒ c(t1) = c(t2)

for any trees t1 and t2.
Suppose that the elements of � \ �0 are linearly ordered in such a way that function

symbols with smaller arity are smaller than function symbols with greater arity. Assume
also that the leaves X ∪ �0 are linearly ordered.

Let c�(t) = (� \ �0) ∩ c(t) be the set of nodes of a tree t ∈ T(�, X) and cX(t) =
(X ∪ �0) ∩ c(t) be its set of leaves.
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A tree t is in the canonical form if
(1) either t ∈ X ∪ �0, or
(2) t = f (t1, x2, . . . , xm) where

(a) t1 is in the canonical form and x2 � · · · �xm ∈ �0 ∪X,
(b) f is the smallest in c�(t),
(c) either f /∈ c�(t1) or c�(t1) = {f } and then |cX(t1)| > 1,
(d) if |cX(t)| > m−1 then x2 � · · ·� xm are the smallest m−1 elements in cX(t), and
(e) otherwise if cX(t) = {x2, . . . , xn} with n�m, then x2 � · · ·� xn, xn+1 = · · · =

xm = xn and cX(t1) = {xn}.
In other words, a tree is in the canonical form if on each its level only the leftmost node may
be from � \�0, all the others are leaves from �0 ∪X, nodes grow from the root downwards
and leaves grow from left to right and from top to down. As soon as the set of nodes or
leaves is exhausted, the last symbol from the exhausted set is repeated as long as there are
still symbols in the other set to be used.

Let us fix � to be any congruence on T (�, X) satisfying (d1) and (d2). Our aim is to
show that every tree t is �-equivalent to a tree t ′ in the canonical form, where c(t) = c(t ′).
A tree is called leftmost branching if its every subtree is either a leaf or of the form, f (t, x),
where t is a tree and x is a sequence of leaves (from X ∪ �0). For a tree t, the root of t, in
notation root(t), is its topmost symbol. Transformation of a tree into a �-equivalent tree in
the canonical form consists of the following steps.

Step 1: Shaping the tree into a leftmost branching tree while arranging the nodes in
the increasing order from top to down: We show that this can be done by induction on
the number of nodes and leaves in t. The claim clearly holds for t ∈ �0 ∪ X. Suppose
that t = f (t1, t2, . . . , tn) where t1, . . . , tm have the shape of a leftmost branching tree and
the nodes are in increasing order. Let g = min{root(t1), . . . , root(tm)}. Without loosing
generality, by (s1), we can assume that g = root(t1), and let t1 = g(t ′1, x2, . . . , xn). We
distinguish two cases

If g�f then by (d2),

t = f (g(t ′1, x2, . . . , xn), t2, . . . , tm) � g(f (t ′1, t2, . . . , tm), x2, . . . , xn)

and now we can apply the induction hypotheses to f (t ′1, t2, . . . , tm).

If f < g then m�n and by (s3), we have

t = f (g(t ′1, x2, . . . , xn), t2, . . . , tm)

�f (g(t ′1, t2, . . . , tm, x2, . . . , xn−m+1), xn−m+2, . . . , xn)

and then we can continue by induction.
We get a tree of the desired shape with nodes increasing from top to down, but there may
be repetitions of same nodes.

Step 2: Removing repetitions of nodes different from the greatest node: The clause (s6)
of Lemma 2.16 provides a transformation that pushes repetitions, i.e., if f �g and ffg is a
subsequence of the sequence of nodes, then the transformation will replace an extra copy of
f by a copy of g. Namely, let f1, . . . , fi−1, fi, . . . , fi, fi+1, . . . , fk , k ∈ N, be the sequence
of nodes read from the root downwards after Step 1, and assume that fi is the first repeated
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symbol. By applying (s6) from Lemma 2.16, the last copy of fi is replaced by a new copy
of fi+1. This is repeated as long as there is more than one fi in the sequence. Thus, all
repetitions of fi are replaced by repetitions of fi+1. After that, the last copy of fi+1 is
replaced by a new copy of fi+2, etc. Finally, only the last symbol fk may have multiple
copies, all the others appear only once.
After these transformations we get a tree �-equivalent to t, branching only in the leftmost
node and with increasing nodes where only the greatest node is possibly repeated. The tree
is still not in the canonical form since leaves are not necessarily already arranged.

Step 3: Arranging leaves into increasing order: The sequence of leaves is read starting
from left to right and from top downwards. This sequence can be sorted using standard
algorithms for sorting sequences what assumes comparing the first symbol with the rest one
by one and when a smaller one appears swap them and continue comparing the new first
symbol with the rest of the sequence. After this the smallest leaf is on the first place. Repeat
the same with the second one and the rest of the sequence, etc. We note that this swapping
is supported by �, since places of leaves on the same level can be changed by (s1), and if
they are on different levels then (s3) is applied.
After this, leaves will be in increasing order, but there are possibly repetitions of those
leaves which are not the greatest.

Step 4: Removing repetitions of leaves different from the greatest leaf: The idea is the
same as in Step 2, the repetition of a smaller leaf is replaced by a repetition of the next
greater leaf, so that repetitions are pushed trough the sequence and finally only the greatest
leaf may be repeated. In other words, if x < y then the subsequence of leaves of the form
xxy is replaced by xyy. We distinguish four cases.

First, xxy appears on the same level, i.e., as the components of the same node. This case is
solved by applying (s2).

Second, the first x is on one level and the second x and y are both on the next. This is solved
easily by applying first (s1), then (s5) and so changing the first x into y, then applying (s3)
to swap x and outer y, and finally once more (s1):

f (g(t, x, y, x), y, x) � f (g(t, x, y, x), x, y)

�f (g(t, x, y, x), y, y) � f (g(t, y, y, x), x, y) � f (g(t, y, y, x), y, x).

Third, both x’s are on the upper level and y is on the lower. We proceed as

f (g(t, y, x), y, x, x) � f (g(x, y, x), y, x, t)

�f (g(x, y, x), y, y, t) � f (g(t, y, x), y, y, x) � f (g(t, y, x), y, x, y).

Note that t plays an important role here and existence of such a symbol follows from the
fact that f �g and thus the arity of g is at least 2.

Fourth, all three leaves appear on different levels. The tree is of the form f (g(h(t, y, z),
x), x) where f, g ∈ �2, and so the arity of h is at least two. The first x should be changed
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into y. The transformation is:

f (g(h(t, y, z), x), x) � f (g(h(x, y, z), t), x)

�f (g(h(x, y, z), x), t) � f (g(h(x, y, z), y), t) � f (g(h(x, y, z), t), y) �

�f (g(h(t, y, z), x), y) � f (g(h(t, y, z), y), x).

After this, our tree almost has the canonical form, the only disturbing thing may be too long
subtree at the end having only the greatest symbol from c�(t) as nodes and the greatest
element from cX(t) as leaves.

Step 5: Fold the unnecessary part: Applying (s4) as many times as needed the tree is
folded into one without repetitions of the greatest symbol from c�(t), or with its repetitions
but not with only the greatest element of cX(t) as leaves on the deepest level.
This finishes the procedure.

Clearly, the procedure results in a unique tree in the canonical form which is �-equivalent
to a given tree.

For example, suppose h ∈ �3, f, g ∈ �2, c ∈ �0, x ∈ X, and the orders of symbols are
f < g < h and x < c. Let t = h(g(x, f (x, c)), x, g(x, c)). Then by applying the above
steps we get the tree rj in the jth step as follows:

t � r1 = f (g(g(h(x, x, x), c), x), c)

� r2 = f (g(h(h(x, c, x), x, x), x), c)

� r3 = f (g(h(h(c, c, x), x, x), x), x)

� r4 = f (g(h(h(c, c, c), c, c), c), x)

� r5 = f (g(h(c, c, c), c), x).

It can be noticed that the canonical form tree corresponding to a given tree t is determined by
c(t) and can be constructed directly from this set. The procedure can roughly be described
as follows:
1. put the smallest node in the root of the tree, draw the necessary branches, put the next

smallest symbol from c�(t) in the left most node, continue doing this as long as c�(t)

is not exhausted;
2. put the smallest leaf in the topmost leftmost free place, choose the next smallest and put

in the next place, etc., as long as there are free places in the tree or the set cX(t) of leaves
is not empty;

3. if not all cX(t) is used, continue building the tree by shifting all symbols on the last level
by one place to the right, return the last leaf to cX(t), put the greatest element of c�(t)

to the leftmost place, add its arity new branches, fill them with remaining symbols from
cX(t) in the manner explained in 2, and repeat this step until the whole cX(t) is used;

4. if there are still free places put the greatest symbol from cX(t) there.
Recall that  denotes the smallest congruence satisfying (d1) and (d2).

Lemma 3.19. For any trees t1 and t2, t1t2 ⇐⇒ c(t1) = c(t2).

Proof. Define ′ by t1′t2 iff c(t1) = c(t2). Obviously ′ satisfies (d1) and (d2). Let � be any
congruence satisfying (d1) and (d2). We are proving ′ ⊆ �. Assume t1′t2. There are trees
t ′1 and t ′2 in canonical form such that t1�t ′1 and t2�t ′2. Then c(t ′1) = c(t1) = c(t2) = c(t ′2)
and since the canonical tree is uniquely determined by its contents, it follows that t ′1 = t ′2
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which immediately implies that t1�t2. Therefore, ′ is the smallest congruence satisfying
(d1) and (d2), and thus  = ′. �

For a context P ∈ C(�, X), the contents c(P ) of P is the set of symbols from �∪X that
appear in P. We note that c(P (t)) = c(P ) ∪ c(t) holds for any context P ∈ C(�, X) and
tree t ∈ T(�, X).

Proposition 3.20. (1) A tree language T ⊆ T(�, X) is semilattice if and only if it is
recognizable by a finite semilattice algebra.

(2) A tree language T ⊆ T(�, X) is symbolic if and only if it is recognizable by a finite
symbolic ordered algebra.

Proof. (1) Since semilattice algebras form a variety of finite algebras, it suffices to prove
that a tree language is semilattice iff its syntactic algebra is semilattice. By Lemma 3.19,
T is a semilattice tree language iff  ⊆ �T iff the syntactic algebra of T is a semilattice
algebra.

(2) Similarly to (1), it suffices to prove that a tree language is symbolic iff its syntactic
ordered algebra is symbolic. Every symbolic tree language is also a semilattice tree language.
So, if T is symbolic then the syntactic algebra of T is semilattice. On the other hand, since
c(t) ⊆ c(P (t)) holds for all t ∈ T(�, X) and P ∈ C(�, X), then P(t)�T t always holds.
This shows that SOA(T ) is a symbolic ordered algebra. Conversely, if SOA(T ) is a symbolic
ordered algebra then  ⊆ �T and P(t)�T t for all t ∈ T(�, X) and P ∈ C(�, X). Suppose
for trees t and t ′, c(t) ⊆ c(t ′) and t ∈ T hold. Then there exists a context P, such that
c(t ′) = c(P (t)). By Lemma 3.19, t ′  P(t), and so t ′ �T P (t) holds. On the other hand,
P(t)�T t implies t ′�T t , and this implies t ′ ∈ T , since t ∈ T . Hence, T is a symbolic tree
language by Lemma 3.17. �

Corollary 3.21. Family SL� is a variety of tree languages and SL� = SL(�)t, also family
Sym� is a positive variety of tree languages and Sym� = Sym(�)t.

Another characterization of symbolic tree languages is given below. We will show that
they are exactly those semilattice languages recognized by so-called translation closed
subsets of semilattice algebras.

Proposition 3.22. For a semilattice algebra A = (A, �) the structure As = (A, �, �),
where � is defined by

a�b ⇐⇒ a = p(b) for some p ∈ Tr(A)

for any a, b ∈ A, is a symbolic ordered algebra.

Proof. It is clear that the relation � is reflexive and transitive, and it is anti-symmetric by
Lemma 2.15. It is also compatible with � since for any a, b ∈ A, such that a�b, it follows
that a = p(b) for some p ∈ Tr(A). Hence q(a) = q(p(b)) = p(q(b)), and so q(a)�q(b)

for every q ∈ Tr(A). Obviously, � satisfies p(a)�a what implies that As is a symbolic
ordered algebra. �
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Definition 3.23. For an algebra (A, �), a subset D ⊆ A is translation closed if d ∈ D

implies p(d) ∈ D for any p ∈ Tr(A).

Translation closed subsets are known as ideals of algebras, but we have chosen a different
name since this notion already has a different meaning here.

Lemma 3.24. A subset D ⊆ A of a semilattice algebra A = (A, �) is translation closed
if and only if D is an ideal of the symbolic ordered algebra As , where As is defined in
Proposition 3.22.

Proposition 3.25. A tree language T ⊆ T(�, X) is a symbolic tree language if and only if
there exist a finite semilattice algebra A = (A, �), a morphism � : T (�, X)→ A and a
translation closed subset F ⊆ A, such that T = F�−1.

4. Generalized positive variety theorem

Generalized varieties of tree languages and generalized varieties of finite algebras were
introduced by Steinby [23] who proved a generalized variety theorem for these classes. A
variety of finite algebras is a class of finite algebras over a fixed ranked alphabet as the
notions of subalgebras, homomorphic images and direct products are defined for algebras
over the same ranked alphabet. These notions can be generalized for algebras over differ-
ent ranked alphabets. A generalized variety of finite algebras is a class of finite algebras
over any ranked alphabet that satisfies certain closure properties. Similarly a generalized
variety of tree languages is defined. In this section, we generalize our Positive Variety
Theorem (Proposition 3.12) to generalized positive varieties of tree languages and general-
ized varieties of finite ordered algebras. The following definition is the ordered version of
Definitions 3.1–3.3, 3.14 in [23].

Definition 4.1. Let A = (A, �, �) and B = (B, �, � ′) be ordered algebras.
• The ordered algebra B is an order g-subalgebra of A, in notation B ⊆g A, if B ⊆ A,

�m ⊆ �m for any m�0, f B is the restriction of f A to B for every f ∈ �m, and � ′ is
the restriction of � on B.
• An assignment is a mapping � : �→ �, such that �(�m) ⊆ �m for any m�0. An order

g-morphism from A to B is a pair (�, �) where the mapping � : � → � is an assign-
ment and � : A → B is an order preserving mapping satisfying f A(a1, . . . , am)� =
(f �)B(a1�, . . . , am�) for any m�0, f ∈ �m, and a1, . . . , am ∈ A. Note that order pre-
serving means that a�b implies a�� ′b� for all a, b ∈ A. If both � and � are surjective,
then (�, �) is an order g-epimorphism, and in that case we write B←g A meaning that B
is an order g-epimorphic image of A. When B is an order g-epimorphic image of an order
g-subalgebra of A, we write B ≺g A. When both � and � are bijective and (�−1, �−1) is
an order g-morphism, (�, �) is an order g-isomorphism, and B�g A means that B and
A are order g-isomorphic.
• Let �1, . . . ,�n and � be ranked alphabets. The product �1 × · · · × �n is a ranked

alphabet, such that (�1 × · · · × �n)m = �1
m × · · · × �n

m for every m�0. For any
assignment � : � → �1 × · · · × �n and any finite number of ordered algebras A1 =
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(A1, �1, �1), . . . ,An = (An, �n, �n), the �-product of A1, . . . ,An is the ordered �-
algebra �(A1, . . . ,An) = (A1×· · ·×An, �, �1×· · ·×�n), where the following hold:
for any c ∈ �0, f ∈ �m (m > 0) and ai = (ai1, . . . , ain) ∈ A1 × · · · × An (i�m),
(1) c�(A1,...,An) = (c

A1
1 , . . . , c

An
n ), where c� = (c1, . . . , cn),

(2) f �(A1,...,An)(a1, . . . , am) = (f
A1
1 (a11, . . . , am1), . . . , f

An
n (a1n, . . . , amn)),

where f � = (f1, . . . , fn), and
(3) a1 �1× · · · ×�n a2 ⇐⇒ a11 �1 a21 & . . . & a1n �n a2n.

Without specifying the assignment �, such algebras are g-products.
A generalized variety of finite ordered algebras, a gVFOA for short, is a class K =
{K(�)} which consists of a class of finite ordered �-algebras K(�) for any ranked
alphabet �, and is closed under order g-subalgebras, order g-epimorphic images, and
g-products.

Proposition 4.2. If A = (A, �, �) and B = (B, �, � ′) are ordered algebras, � is a
quasi-order on B and (�, �) : A→ B is an order g-morphism, then
(1) the image of A, A(�, �) = (A�, ��, � ′′), where � ′′ is the restriction of � ′ on A�,

is an order g-subalgebra of B,
(2) � ◦ � ◦ �−1 is a quasi-order on A and A/� ◦ � ◦ �−1�gA�/�′, where �′ is the

restriction of � on A�, and
(3) if � is an order g-epimorphism then A/� ◦� ◦ �−1�gB/�.

The proof is a direct generalization of that of Proposition 2.3. Also, many of the al-
ready presented results have their “generalized’’ counterparts with slightly different proofs.
For example, a result analogous to Proposition 2.8 can be proved. As a corollary, we get
that for any g-morphism (�, �) : T (�, Y )→ T (�, X) and tree language T ⊆ T(�, X),
SOA(T �−1) ≺g SOA(T ) holds, and if (�, �) is a g-epimorphism then SOA(T �−1)�g

SOA(T ).
Let � and � be ranked alphabets, X be a leaf alphabet, and A = (A, �, �) be an ordered

algebra. A tree language T ⊆ T(�, X) is g-recognized by A if there exist an ideal I�A and
an order g-morphism (�, �) : T (�, X)→ A such that T = I�−1. Similarly to Proposition
3.3 it can be proved that a tree language T is g-recognized by A if SOA(T ) ≺g A. Contrary
to Proposition 3.3, the converse of this statement does not hold, for more details see the
definition of reduced syntactic algebra in Section 6 of Steinby [23].

Definition 4.3. A family of recognizable tree languages V = {V(�, X)}, where V(�, X)

consists of recognizable �X-tree languages for any ranked alphabet � and leaf alphabet X, is
a generalized positive variety of tree languages, abbreviated by gPVTL, if it is closed under
positive Boolean operations (intersections and unions), inverse translations, and inverse
g-morphisms.

Definition 4.4. Let K = {K(�)} be a gVFOA. Define the family Kt = {Kt(�, X)}
to be the family of tree languages whose syntactic ordered algebras are in K, that is
Kt(�, X) = {T ⊆ T(�, X) | SOA(T ) ∈K(�)}.

For a gPVTL V = {V(�, X)}, let Va = {Va(�)} be the gVFOA generated by the class
{SOA(T ) | T ∈V(�, X) for some �, X}.
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It can be proved similarly to Lemmas 3.7, 3.10 and Corollary 3.9 that every gVFOA is gen-
erated by syntactic ordered algebras of some tree languages and that if every
tree language recognizable by a finite ordered algebra A belongs to a gPVTL V then
A ∈Va.

Proposition 4.5 (Generalized Positive Variety Theorem). The operations K → Kt and
V →Va are mutually inverse lattice isomorphisms between the class of all gVFOA’s and
the class of gPVTL’s, i.e., Vat =V and Kta =K.

Proof. The facts that for a gVFOA K the family Kt is a gPVTL and that the mappings
K →Kt andV →Va are monotone, as well as the relationsV ⊆Vat andKta =K,
can be proved in a way similar to the proofs of the corresponding claims in Section 3.2. We
are proving here only the inclusion Vat ⊆V.

Suppose T ∈ Vat(�, X). There exist some ranked alphabets �1, . . . ,�n, leaf alpha-
bets X1, . . . , Xn and tree languages T1 ∈ V(�1, X1), . . . , Tn ∈ V(�n, Xn) such that
SOA(T ) ≺g �(SOA(T1), . . . , SOA(Tn)) where � : � → �1 × · · · × �n is an assign-
ment for a ranked alphabet �. Let Aj = SOA(Tj ) for j �n. Then T is g-recognized by
�(A1, . . . ,An), and so there exist an order g-morphism (�, �) : T (�, X)→ �(A1, . . . ,An)

and an ideal I � �(A1, . . . ,An) such that T = I�−1. Let �j : T(�, X)→ Aj be the com-
position of � with the jth projection function

∏n
i=1 Ai → Aj , and �j : � → �j be the

composition of �� : �→ �1×· · ·×�n with the j th projection �1×· · ·×�n→ �j . Then
(�j , �j ) : T (�, X) → Aj is an order g-morphism, and similarly to the proof of Lemma

3.11, T = I�−1 =⋃
a∈I (a]�−1 =⋃

(a1,...,an)∈I
⋂

j �n (aj ]�−1
j .

For showing T ∈V(�, X) it suffices to show (aj ]�−1
j ∈V(�, X) for every j �n. Fix

a j �n. Let �Tj
: T (�j , Xj ) → Aj be the syntactic morphism of Tj . A g-morphism

(�j , �j ) : T (�, X) → T (�j , Xj ) such that �j�Tj
= �j can be constructed. Then

(aj ]�−1
j = (aj ]�−1

Tj
�−1
j , and since V is closed under inverse g-morphisms, for show-

ing (aj ]�−1
j ∈ V(�, X) it is enough to show (aj ]�−1

Tj
∈ V(�j , Xj ). It was shown in

the proof of Lemma 3.11 that (aj ]�−1
Tj
= ⋂{P−1(Tj ) | P ∈ C(�j , Xj ), P (t) ∈ Tj } for

some t ∈ T(�j , Xj ). Hence, from Tj ∈ V(�j , Xj ) and the fact that V is closed under
inverse translations and positive Boolean operations, it follows that (aj ]�−1

Tj
∈V(�j , Xj ).

Therefore, (aj ]�−1
j ∈V(�, X) for any j, thus T ∈V(�, X). �

4.1. Examples

The examples of families of recognizable tree languages and classes of finite ordered
algebras in the previous sections do not heavily depend on their ranked alphabets. Here, we
will see that the collection of those varieties for various ranked alphabets form generalized
varieties.

Let Nil = {Nil(�)} be the class of all ordered nilpotent algebras for every ranked alphabet
�, and Cof = {Cof(�, X)} be the family of all cofinite tree languages for all ranked
alphabets � and leaf alphabets X.
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Proposition 4.6. Class Nil is a gVFOA, family Cof is a gPVTL, and Cof = Nilt.

That Cof is a gPVTL can be verified directly: the family is closed under positive Boolean
operations, inverse translations and inverse g-morphisms. Similarly, Nil can be proved to
be a gVFOA. From Proposition 3.14 it follows that T ∈ Cof(�, X) iff SOA(T ) ∈ Nil(�)

for any T ⊆ T(�, X), which implies that Cof = Nilt.
Let SL = {SL(�)} and Sym = {Sym(�)} be, respectively, the classes of all semilattice

algebras and symbolic ordered algebras for every ranked alphabet �, and SL = {SL(�, X)}
and Sym = {Sym(�, X)} be, respectively, the families of all semilattice and symbolic tree
languages for all ranked alphabets � and leaf alphabets X.

Proposition 4.7. (1) Class SL is a generalized variety of finite algebras, family SL is a
generalized variety of recognizable tree languages, and SL = SLt.

(2) Class Sym is a gVFOA, family Sym is a gPVTL, and Sym = Symt.

5. Definability by ordered monoids

An important class of ordered algebras is the class of ordered monoids. Let us recall that
an ordered monoid is a structure M = (M, ·, �) where (M, ·) is a monoid and � is an
order on M compatible with · (called “stable order’’ in [13]), i.e., for any a, b, m, m′ ∈ M

if a � b then m · a ·m′�m · b ·m′.
5.1. Ordered algebras definable by ordered monoids

Translations of ordered algebras can be ordered as follows:

Definition 5.1. The ordered translation monoid of an ordered algebra A is the structure
OTr(A) = (Tr(A), ·, �A), where (Tr(A), ·) is the translation monoid of A and the binary
relation �A is defined on Tr(A) by

p �A q ⇐⇒ (∀a ∈ A)
(
p(a)�q(a)

)

for p, q ∈ Tr(A).

The relation �A is indeed an order on Tr(A) compatible with the composition of trans-
lations: if p �A q then p · r �A q · r and r · p �A r · q for any p, q, r ∈ Tr(A).

The following proposition is the ordered version of Steinby [23, Lemma 10.7].

Proposition 5.2. For any finite ordered algebras A and B,
(1) if A ⊆g B then OTr(A) ≺ OTr(B);
(2) if A←g B then OTr(A)← OTr(B);
(3) OTr(�(A, B)) ⊆ OTr(A)× OTr(B) for any g-product �(A, B).

Proof. Let A = (A, �, �) and B = (B, �, � ′).
(1) Let M be the order submonoid of OTr(B) generated by the elementary translations of

the form f B(a1, . . . , 
, . . . , am) for any f ∈ �m (m > 0) and a1, . . . , am ∈ A. The
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mapping f B(a1, . . . , 
, . . . , am) → f A(a1, . . . , 
, . . . , am) can be uniquely extended
to an order epimorphism M→ OTr(A). Thus OTr(A)←M ⊆ OTr(B).

(2) Suppose (�, �) : B → A is an order g-epimorphism. By a generalized counterpart of
Proposition 2.6, the mapping (�, �) induces a monoid epimorphism Tr(A)→ Tr(B),
p → p(�,�), such that p(a)� = p(�,�)(a�) for a ∈ A. It also preserves the translation
order. Indeed, for any p, q ∈ OTr(B), from p �B q follows that p(b)� ′q(b) for any
b ∈ B, what further implies p(b)��q(b)�, and so p(�,�)(b�)�q(�,�)(b�) for any
b ∈ B. This gives p(�,�)(a)�q(�,�)(a) for any a ∈ A, and so p(�,�) �A q(�,�).

(3) Let � be a ranked alphabet and � : �→ � × � be an assignment. It is easy to verify
that the mapping

g�(A,B)
(
(a1, b1), . . . , 
, . . . , (am, bm)

)

→
(
f A(a1, . . . , 
, . . . , am), hB(b1, . . . , 
, . . . , bm)

)

for a1, . . . , am ∈ A, b1, . . . , bm ∈ B and g ∈ �m (m > 0), where g� = (f, h),
can be extended to a monomorphism 	 : OTr(�(A, B))→ OTr(A) × OTr(B) which
satisfies p(a, b) = (p	1(a), p	2(b)) for all a ∈ A, b ∈ B and p ∈ Tr(�(A, B)),
where 	1 and 	2 are the components of 	, i.e., p	 = (p	1, p	2). The mapping
	 is also order preserving. Indeed, for p, q ∈ Tr(�(A, B)), such that p ��(A,B) q,
i.e., p(a, b)�×� ′q(a, b) for all a ∈ A, b ∈ B, it follows p	1(a)�q	1(a) and
p	2(b)� ′q	2(b) for all a ∈ A, b ∈ B, what means p	1 �A q	1 and p	2 �B q	2,
and so (p	1, p	2) �A×�B(q	1, q	2), i.e., p	�A×�Bq	. �

Definition 5.3. A variety of finite ordered monoids, in notation VFOM, is a class of finite
ordered monoids closed under order submonoids, order epimorphic images and finite direct
products.

For a VFOM M, Ma is the class of all finite ordered algebras whose ordered translation
monoids are in M, i.e.,

Ma = {A | A is an ordered algebra such that OTr(A) ∈M}.
A class of finite ordered algebras K is said to be definable by ordered translation monoids
if there is a VFOM M, such that Ma =K.

The next result follows from Proposition 5.2.

Corollary 5.4. For any VFOM M, the class Ma is a gVFOA.

It is well-known that not every gVFOA is definable by syntactic ordered monoids. In this
section, we give necessary and sufficient conditions for a class of algebras to be of the form
Ma for some VFOA M.

Definition 5.5. For any set D, let �D = {d | d ∈ D} be the unary ranked alphabet

consisting of unary function symbols d for each d ∈ D. For a finite ordered monoid M =
(M, ·, �) the unary ordered algebra M� = (M, �M, �) is defined by mM�

(a) = a ·m for
all a, m ∈ M .
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The structure M� for a finite ordered monoid M is indeed an ordered algebra since for
any a, b, m ∈ M ,

a�b ⇒ a ·m�b ·m ⇒ mM�
(a)�mM�

(b).

Proposition 5.6. For a finite ordered monoid M = (M, ·, �),

OTr(M�)�M.

Proof. For the sake of simplicity, operations of M� are denoted by m instead of mM�
.

Elementary translations of M� are of the form m(
) where m ∈ M , and clearly m(
) ·
m′(
) = m ·m′(
) for all m, m′ ∈ M . For the unit element 1M of M, the translation
1M(
) is the identity translation of M�. This means that Tr(M�) = {m(
) | m ∈ M}.
Moreover, m(
) �= m′(
) whenever m �= m′, since m(
) = m′(
) implies m = 1M · m =
m(1M) = m′(1M) = 1M ·m′ = m′. Hence, the mapping M→ OTr(M�), m → m(
) is a
monoid isomorphism. It is also an order isomorphism. Indeed, for any m, m′ ∈ M , m �m′
iff a ·m � a ·m′ for any a ∈ M , i.e., m(a) �m′(a) for any a ∈ M , what is, by definition,
equivalent to m(
) �M� m′(
). �

Proposition 5.7. For all finite ordered monoids M and P ,
(1) if M ⊆ P then M� ⊆g P�;
(2) if M← P then M�←g P�;
(3) (M× P)��g�(M�, P�) for some g-product �(M�, P�).

Proof. Assume M = (M, ·, �) and P = (P, ·, �′). The statement (1) is obvious. For (2)
we note that if � : P →M is an order monoid epimorphism, then (�, �) : P� →M�,
where � : �P → �M is defined by (m)� = m�, is an order g-epimorphism. For proving
(3) define the assignment � : �M×P → �M×�P by (m, p)� = (m, p) for m ∈ M, p ∈ P ,
and let �(M�, P�) be the corresponding g-product of M� and P�. It is easy to verify that
the mappings (�, �) : (M×P)�→ �(M�, P�), where � is the identity mapping on �M×P

and � is the identity mapping on M × P , is an order g-isomorphism. �

The clause (3) of Proposition 5.7 can be generalized to any finite number of finite ordered
monoids M1, . . . ,Mn, i.e., (M1 × · · · ×Mn)

��g�(M�
1, . . . ,M�

n) for some g-product
�(M�

1, . . . ,M�
n).

Definition 5.8. For a finite ordered algebra A, the unary algebra A� is defined to be(
OTr(A)

)�.

Corollary 5.9. If OTr(A) ≺ OTr(A1)× · · · × OTr(An) holds for finite ordered algebras
A, A1, . . . ,An (n > 0), then A� ≺g �(A�

1 , . . . ,A�
n) for some g-product �(A�

1 , . . . ,A�
n).

This is an immediate consequence of Proposition 5.7.
Our characterization of gVFOA’s definable by syntactic ordered monoids is the

following.
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Proposition 5.10. For a class K of finite ordered algebras the following conditions are
equivalent:
(1) K is definable by ordered translation monoids;
(2) K is a gVFOA, such that for all finite ordered algebras A and B, if OTr(A)�OTr(B)

and A ∈K then B ∈K;
(3) K is a gVFOA, such that A ∈K⇐⇒ A� ∈K for any A.

Proof. Implication (1) ⇒ (2) is obvious, and (2) ⇒ (3) follows from Proposition 5.6.
For (3) ⇒ (1), suppose that a gVFOA K satisfies the equivalence A ∈ K ⇔ A� ∈ K
for any finite ordered algebra A. Let M be the VFOM generated by {OTr(A) | A ∈ K}.
We are showing that K =Ma. Obviously, the inclusion K ⊆Ma holds. For the opposite
inclusion, let B ∈ Ma. So, OTr(B) ≺ OTr(A1)× · · · × OTr(An) for some A1, . . . ,An ∈
K. By Corollary 5.9, B� ≺g �(A�

1 , . . . ,A�
n) for some g-product �(A�

1 , . . . ,A�
n). Since

A�
1 , . . . ,A�

n ∈K then B� ∈K, and hence B ∈K. Thus Ma ⊆K. �

Remark 5.11. Proposition 5.7 and the proof of Proposition 5.10 also yield the fact that for
any gVFOA K definable by ordered translation monoids, the class {OTr(A) | A ∈K} is
a variety of finite ordered monoids.

5.2. Examples

A semigroup with zero is n-nilpotent, n ∈ N, if product of any n elements is zero, and it
is nilpotent if it is n-nilpotent for some n ∈ N.

Lemma 5.12. If A = (A, �, �) is an ordered n-nilpotent algebra, then the ordered trans-
lation semigroup OTrS(A) = (TrS(A), ·, �A) is a nilpotent semigroup where zero element
is the least element.

Proof. Since p1 · · ·pn(a)�q1 · · · qn(a)�p1 · · ·pn(a) for every a ∈ A, it follows that
p1 · · ·pn = q1 · · · qn for all p1, . . . , pn, q1, . . . , qn ∈ TrS(A). Therefore, p1 · · ·pn ∈
TrS(A) is the zero element of TrS(A) and it is n-nilpotent. Moreover, p1 · · ·pn(a)�q(a)

holds for all q ∈ TrS(A) and a ∈ A, and so p1 · · ·pn �A q. Hence, zero is the least element
in TrS(A). �

The converse of Lemma 5.12 does not hold. Indeed, let � = �1 = {f } and A = {a, b},
B = {a, b, c}. Define the ordered �-algebras A = (A, �, �) and B = (B, �, � ′) by
f A(a) = f A(b) = b, f B(a) = f B(b) = b, f B(c) = c, and � = {(a, a), (b, a), (b, b)},
� ′ = {(a, a), (b, a), (b, b), (c, c)}. Then the ordered translation semigroups of A and B
are the trivial one-element semigroups, while A is an ordered nilpotent algebra and B is
not. Hence, Nil is not definable by ordered translation monoids or semigroups.

By Lemma 2.14 class SL is definable by semilattice monoids.
An ordered monoid M = (M, ·, �) is symbolic if it is a semilattice monoid and the unit

1M is the greatest element of the monoid, i.e., m�1M for every m ∈ M .

Lemma 5.13. An ordered algebra is symbolic if and only if its ordered translation monoid
is symbolic.
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Proof. It is easy to see that an ordered algebra A = (A, �, �) is symbolic if and only if
(A, �) is a semilattice algebra and p(a)�a holds for all a ∈ A and p ∈ Tr(A), what is
equivalent to p�A1A. Thus, from Lemma 2.14, it follows that A is symbolic if and only if
OTr(A) is a symbolic ordered monoid. �

Therefore, class Sym is definable by ordered translation monoids.

5.3. Tree languages definable by ordered monoids

Let � be a ranked alphabet and X be a leaf alphabet.

Definition 5.14. For any tree language T ⊆ T(�, X), the quasi-order �T is defined on
�X-contexts by the following: for P, Q ∈ C(�, X),

P�T Q ⇐⇒ (∀R∈C(�, X))(∀t∈T(�, X))
(
t ·Q · R∈T ⇒ t · P · R∈T )

.

We note that the equivalence relation of �T is the m-congruence of T [23]:

P�T Q ⇐⇒ (∀R∈C(�, X))(∀t∈T(�, X))
(
t · P · R∈T ⇔ t ·Q · R∈T )

.

The quotient monoid (C(�, X)/�T , ·) is called the syntactic monoid of T.
The syntactic ordered monoid of T is SOM(T ) = (C(�, X)/�T , ·, �T ), where �T is the

order induced by �T :

P/�T �T Q/�T ⇔ P�T Q

for P, Q ∈ C(�, X); cf. [23] or [25]. It is easy to verify that the relation P�T Q implies
R ·P · S�T R ·Q · S for any P, Q, R, S ∈ C(�, X). Thus, the structure SOM(T ) is indeed
an ordered monoid.

It is known that the syntactic monoid of a tree language is the translation monoid of the
syntactic algebra of the language ([18,23]). The following is the corresponding proposition
for ordered translation monoids and syntactic ordered algebras.

Proposition 5.15. For a tree language T ⊆ T(�, X),

OTr(SOA(T )) � SOM(T ).

Proof. It is easy to see that the mapping

f (t1, . . . , 
, . . . , tm) → f SOA(T )(t1/�T , . . . , 
, . . . , tm/�T )

can be extended to a monoid epimorphism � : C(�, X)→ OTr(SOA(T )) which satisfies
P�(t/�T ) = (t · P)/�T for all t ∈ T(�, X), P ∈ C(�, X). We are proving that for any
P, Q ∈ C(�, X), P�T Q iff P� �SOA(T )Q�. Indeed, P �T Q means by definition that
t ·Q · R ∈ T implies t · P · R ∈ T for all t ∈ T(�, X), R ∈ C(�, X), i.e., t · P�T t ·Q
for every t ∈ T(�, X), or equivalently, (t · P)/�T �T (t · Q)/�T for every t ∈ T(�, X).
This is further equivalent to P�(t/�T )�T Q�(t/�T ) for every t ∈ T(�, X), or in other
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words, P� �SOA(T )Q�. Thus � ◦ �SOA(T ) ◦ �−1 = �T , and then, from Proposition 2.3,
it follows that SOM(T )�OTr(SOA(T )). �

The following is implied by Corollary 3.4 and Propositions 5.2 and 5.15.

Corollary 5.16. For ranked alphabets � and �, leaf alphabets X and Y , a �X-context
P ∈ C(�, X), an order g-morphism (�, �) : T (�, Y ) → T (�, X), and tree languages
T , T ′ ⊆ T(�, X),
(1) SOM(T ∩ T ′), SOM(T ∪ T ′) ≺ SOM(T )× SOM(T ′);
(2) SOM(P−1(T ))← SOM(T );
(3) SOM(T �−1)≺SOM(T ) and if (�, �) is a g-epimorphism then SOM(T �−1)

�SOM(T ).

Definition 5.17. For a VFOM M, let Mt be the family of all recognizable tree languages
whose syntactic ordered monoids are in M, that is to say, for any tree language T ⊆ T(�, X),
T ∈Mt(�, X)⇔ SOM(T ) ∈M.

A family of recognizable tree languages V is definable by syntactic ordered monoids if
there is a VFOM M such that Mt =V.

By Corollary 5.16, the family Mt is a gPVTL for any VFOM M. In this subsection, we
characterize the gPVTL’s that are definable by syntactic ordered monoids.

Lemma 5.18. For any VFOM M the following hold:
(1) Mat =Mt; (2) Mta =Ma.

Proof. (1) For any tree language T ⊆ T(�, X), by Proposition 5.15,
T ∈ Mat(�, X) ⇔ SOA(T ) ∈ Ma ⇔ OTr(SOA(T )) ∈ M ⇔ SOM(T ) ∈ M ⇔ T ∈

Mt(�, X).
(2) By (1) and Proposition 4.5, (Mt)a = (Mat)a = (Ma)ta =Ma. �

Corollary 5.19. (1) A gPVTL V is definable by syntactic ordered monoids if and only if
Va is a gVFOA definable by ordered translation monoids.

(2) A gVFOAK is definable by ordered translation monoids if and only ifKt is a gPVTL
definable by syntactic ordered monoids.

Definition 5.20. Let �, � be ranked alphabets and X, Y be leaf alphabets. A tree homo-
morphism is a mapping � : T(�, X)→ T(�, Y ) determined by some mappings �X : X→
T(�, Y ) and �m : �m → T(�, Y ∪ {
1, . . . , 
m}), where �m �= ∅ and the 
i’s are new
variables, inductively as follows:
(1) x� = �X(x) for x ∈ X, c� = �0(c) for c ∈ �0, and
(2) f (t1, . . . , tn)� = �n(f )[
1 ← t1�, . . . , 
n ← tn�] in which 
i is replaced with ti�

for any i�n (cf. [23, p. 7]).
A tree homomorphism � : T(�, X)→ T(�, Y ) is regular if for every f ∈�m (m�1) each

1, . . . , 
m appears exactly once in �m(f ), cf. [18].
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For a regular tree homomorphism � : T(�, X) → T(�, Y ), the unique extension �∗ :
C(�, X) → C(�, Y ) to contexts is obtained by setting �∗(
) = 
 (cf. [23, Proposition
10.3]). We note that the identities (Q ·P)�∗ = Q�∗ ·P�∗ and (t ·Q ·P)� = t� ·Q�∗ ·P�∗
hold for all P, Q ∈ C(�, X) and t ∈ T(�, X).

For a tree language T ⊆ T(�, X), the syntactic morphism and syntactic monoid morphism
of T are, respectively, the mappings �T : T (�, X) → SOA(T ) and �T : C(�, X) →
SOM(T ) defined by t�T = t/�T and P�T = P/�T for any t ∈ T(�, X) and P ∈ C(�, X).

Definition 5.21. A regular tree homomorphism � : T(�, X)→ T(�, Y ) is full with respect
to a tree language T ⊆ T(�, Y ) if both of the mappings ��T : T(�, X)→ SOA(T ) and
�∗�T : C(�, X)→ SOM(T ) are surjective.

An equivalent definition is:

Lemma 5.22. A regular tree homomorphism � : T(�, X)→ T(�, Y ) is full with respect
to T ⊆ T(�, Y ) if and only if for every Q ∈ C(�, Y ) and every s ∈ T(�, Y ) there are
P ∈ C(�, X) and t ∈ T(�, X), such that, Q �T P�∗ and s �T t�.

Lemma 5.23. If � : T(�, X) → T(�, Y ) is a regular tree homomorphism and T ⊆
T(�, Y ) then SOM(T �−1) ≺ SOM(T ), and if � is full with respect to T then SOM(T �−1)

�SOM(T ).

Proof. We note that �∗ : C(�, X) → C(�, Y ) is a monoid morphism. Let S ⊆ C(�, Y )

be the image of �∗, � be the restriction of �T to S and � be the equivalence relation of �.
Then S/� is a submonoid of C(�, Y )/�T . We show that P�∗�Q�∗ implies P �T �−1 Q

for all P, Q ∈ C(�, X).
Suppose P�∗�Q�∗ and take arbitrary t ∈ T(�, X) and R ∈ C(�, X). Then t ·

Q · R ∈ T �−1 implies t� · Q�∗ · R�∗ ∈ T , what further implies t� · P�∗ · R�∗ ∈
T , and so t · P · R ∈ T �−1, that is P �T �−1 Q. Hence, the mapping 	 : S/� →
C(�, X)/�T �−1 defined by ((P�∗)�)	 = P�T �−1 is well-defined, order preserving and
surjective. It is also a monoid morphism, since ((P�∗)�·(Q�∗)�)	= ((P ·Q)�∗�)	= (P ·
Q)�T �−1 =P�T �−1 ·Q�T �−1 = ((P�∗)�)	 · ((Q�∗)�)	 for all P, Q ∈ C(�, X). Hence

SOM(T �−1)← S/� ⊆ SOM(T ) holds, and so SOM(T �−1) ≺ SOM(T ).
Suppose now that � is full with respect to T. We show the equivalence P �T �−1 Q iff P�∗

�T Q�∗ for any P, Q ∈ C(�, X). It has already been proved that P�∗�T Q�∗ implies
P �T �−1 Q. For the converse, suppose P �T �−1 Q and take arbitrary R′ ∈ C(�, Y ) and
t ′ ∈ T(�, Y ). There are R ∈ C(�, X) and t ∈ T(�, X), such that R�∗ �T R′ and t� �T t ′.
Hence, t ′ ·Q�∗·R′ ∈ T implies t�·Q�∗·R�∗ ∈ T , so (t ·Q·R)� ∈ T , i.e., t ·Q·R ∈ T �−1,
what further gives t · P · R ∈ T �−1. This is equivalent to t� · P�∗ · R�∗ ∈ T , and hence
t ′ ·P�∗ ·R′ ∈ T , what shows that P�∗�T Q�∗. Hence P �T �−1 Q iff P�∗�T Q�∗, and
since the mapping �∗ : C(�, X) → C(�, Y ) is a monoid morphism, then by Proposition
2.3, SOM(T �−1)�SOM(T ). �

In the following two lemmas some connections between tree languages recognizable by
a finite ordered algebra A and tree languages recognizable by A� are presented. Recall that
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unary ranked alphabet of the algebra A� is {p | p ∈ Tr(A)}; for simplicity we denote this
alphabet by �A.

Suppose A = (A, �) is a finite algebra. Every context in C(�, A) corresponds to a
translation in Tr(A) in a natural way: to an elementary context f (a1, . . . , 
, . . . , am) the
elementary translation f A(a1, . . . , 
, . . . , am) corresponds, where f ∈ �m (m > 0) and
a1, . . . , am ∈ A. This correspondence can be extended to the mapping −A : C(�, A) →
Tr(A) which satisfies (P · Q)A = P A · QA for all P, Q ∈ C(�, A), and 
A = 1A

where 1A is the identity translation. We note that for any translation p ∈ Tr(A), there is a
P ∈ C(�, A), such that P A = p and this P may not be unique. In other words, −A is a
non-injective monoid epimorphism.

We also note that the mapping−A : C(�, A)\{
} → TrS(A) is a semigroup epimorphism
that assigns non-unit contexts of C(�, A) to non-trivial translations of A.

Lemma 5.24. Let A = (A, �, �) be a finite ordered algebra and X be a leaf alphabet
disjoint from A. For any tree language L ⊆ T(�A, X) recognized by A� there exists a
regular tree homomorphism � : T(�A, X) → T(�, X ∪ A) and a tree language T ⊆
T(�, X ∪ A), such that L = T �−1 and T can be recognized by a finite power An where
n = |A|.

Proof. Let � : X → Tr(A) be an initial assignment for A� and F ⊆ Tr(A) be an ideal
of OTr(A) such that L = {t ∈ T(�A, X) | t�A� ∈ F }. Define the tree homomorphism
� : T(�A, X) → T(�, X ∪ A) by �X(x) = x for x ∈ X, and for every p ∈ Tr(A)

choose a �1(p) ∈ C(�, A) such that �1(p)A = p. Obviously � is a regular tree ho-
momorphism. Suppose that A = {a1, . . . , an}. Let F ′ be the ideal of An generated by
{(p(a1), . . . , p(an)) ∈ An | p ∈ F }, i.e., (b1, . . . , bm) ∈ F ′ iff there is a p ∈ F , such
that bj �p(aj ) for every j �n. Define the initial assignment � : X ∪ A → An for An

by a� = (a, . . . , a) ∈ An and x� = (
(x�)(a1), . . . , (x�)(an)

)
for all a ∈ A and x ∈ X.

Let the tree language T be the subset of T(�, X ∪ A) recognized by (An, �, F ′), that is
T = {t ∈ T(�, X ∪ A) | t�An ∈ F ′}.

We are proving that L = T �−1. Every tree w in T(�A, X) is of the form w =
p1(p2(. . . pk(x) . . .)) for some p1, . . . , pk ∈ Tr(A) (k�0) and x ∈ X. For such a
tree w, w�A� = x� · pk · · ·p2 · p1 and (w�)�An = (x� · pk · · ·p2 · p1(a1), . . . , x� ·
pk · · ·p2 · p1(an)). Hence, w� ∈ T iff (w�)�An ∈ F ′, i.e., there is a p ∈ F , such that
x� · pk · · ·p2 · p1(a)�p(a) for every a ∈ A, or, equivalently, x� · pk · · ·p2 · p1�A p

for some p ∈ F , what means x� · pk · · ·p2 · p1 ∈ F , i.e., w�A� ∈ F , or equivalently
w ∈ L. �

Lemma 5.25. Let A = (A, �, �) be a finite ordered algebra and X be a leaf alphabet
disjoint from A ∪ �. For any tree language T ⊆ T(�, X) recognized by A there exists a
unary ranked alphabet � and a regular tree homomorphism � : T(�, X∪�0)→ T(�, X),
such that � is full with respect to T , and for every z ∈ X ∪ �0, T �−1 ∩ T(�, {z}) can be
recognized as a subset of T(�, {z}) by A�.

Proof. Let B = (B, �, � ′) be the syntactic ordered algebra of T. Then B ≺ A. Suppose
T = {t ∈ T(�, X) | t�B ∈ F }, where � : X→ B is an initial assignment for B and F�B.
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Since B is the least ordered algebra that recognizes T, the algebra B is generated by �(X).
The mapping � : X→ B can be uniquely extended to a monoid morphism �c : C(�, X)→
C(�, B). Since B is generated by �(X), the mapping �B

c : C(�, X) → Tr(B), �B
c (Q) =

�c(Q)B is surjective. Define the tree homomorphism � : T(�B, X ∪ �0) → T(�, X) by
�X(x) = x for any x ∈ X ∪ �0, and for every q ∈ Tr(B) choose a �1(q) = Q ∈ C(�, X),
such that �c(Q)B = q. Note that � is a regular tree homomorphism. It remains to show that
� is full with respect to T and that for every z ∈ X ∪ �0, Lz = T �−1 ∩ T(�, {z}) can be
recognized as a subset of T(�, {z}) by B�. This will finish the proof since OTr(B) ≺ OTr(A)

follows from B ≺ A by Proposition 5.2, and so B� ≺ A� by Proposition 5.7, which implies
that Lz can also be recognized by A�.

First, we show that � is full with respect to T . Let Q ∈ C(�, X) be a context. For
q = �c(Q)B ∈ Tr(B), q(
)�∗ �T Q holds. By induction on the height of t we show that
for any t ∈ T(�, X) there is an s ∈ T(�B, X ∪ �0), such that t �T s�. If t = x ∈ X ∪ �0
then s� �T t for s = t . If t = t ′ · P for some P ∈ C(�, X) and t ′ ∈ T(�, X), such that
the height of t ′ is less than the height of t, then, by the induction hypothesis, there is an
s′ ∈ T(�B, X∪�0), such that t ′ �T s′�. Also, p(
)�∗ �T P for some p ∈ Tr(B) holds. Let
s = p(s′). Then s� = s′� · p(
)�∗ �T t ′ · P = t . The claim follows from Lemma 5.22.

Second, we are proving that Lz can be recognized by B� for a fixed z ∈ X ∪ �0. Let
1B be the identity translation of B. Define the initial assignment � : {z} → Tr(B) for B�

by z� = 1B , and let Fz = {q ∈ Tr(B) | q(z�B) ∈ F }. We show that Fz� B� and Lz is
recognized by (B�, �, Fz). For p, q ∈ Tr(B), if p�Bq ∈ Fz then p(z�B)� ′q(z�B) ∈ F ,
so p(z�B) ∈ F , and hence p ∈ Fz. Thus Fz� B�. Every w ∈ T(�B, {z}) can be written
in the form w = q1(q2(. . . qh(z) . . .)) for some q1, . . . , qh ∈ Tr(B) (h�0). For such a

tree w, w�B� = 1B · qh · · · q2 · q1 and (w�)�B = qh · · · q2 · q1(z�
B). Thus, w ∈ Lz iff

w� ∈ T , i.e., (w�)�B ∈ F , what means qh · · · q2 · q1(z�
B) ∈ F . This is equivalent to

qh · · · q2 · q1 ∈ Fz, that is w�B� ∈ Fz. Hence, Lz = {w ∈ T(�, {z}) | w�B� ∈ Fz}. �

Before characterizing gPVTL’s definable by syntactic ordered monoids, we note a remark.

Remark 5.26. Let � be a unary ranked alphabet. For every leaf alphabet X and every subset
Y ⊆ X, C(�, Y ) = C(�, X), and the quasi-order �T for a tree language T ⊆ T(�, Y )

on C(�, Y ) is the same relation �T on C(�, X) when T is viewed as a subset of T(�, X).
Therefore, if a family of tree languages V = {V(�, X)} is definable by syntactic ordered
monoids, then for any unary ranked alphabet � and any leaf alphabets X and Y, if Y ⊆ X

then V(�, Y ) ⊆V(�, X).

Proposition 5.27. A family of recognizable tree languages V is definable by syntactic
ordered monoids if and only if V is a gPVTL that satisfies the following properties:
(1) the family V is closed under inverse regular tree homomorphisms;
(2) for every unary ranked alphabet �, and any leaf alphabets X and Y , if Y ⊆ X then

V(�, Y ) ⊆V(�, X);
(3) for a regular tree homomorphism � : T(�, X) → T(�, Y ) full with respect to a tree

language T ⊆ T(�, Y ), if T �−1 ∈V(�, X) then T ∈V(�, Y ).
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Proof. The fact that for any VFOM M, Mt is a gPVTL follows from Corollary 5.16, that
it satisfies the conditions (1) and (3) follows from Proposition 5.23 and that it satisfies the
condition (2) follows from Remark 5.26.

For the converse, suppose that a gPVTL V = {V(�, X)} satisfies the conditions of
the proposition. By Corollary 5.19 it is enough to show that Va satisfies the condition of
Proposition 5.10.

Let A = (A, �, �) be a finite ordered algebra in Va. By Lemma 5.24, any tree language
L ⊆ T(�A, X) recognizable by A� can be written as L = T �−1, where � : T(�A, X)→
T(�, X ∪A) is a regular tree homomorphism and T is a tree language recognized by some
power An of A. Then An ∈ Va implies that T ∈ V(�, X ∪ A), and hence L = T �−1 ∈
V(�A, X) by (1). This holds for every tree language L recognizable by A�, so A� ∈Va

by Corollary 3.9(2).
Suppose now that A� ∈ Va for a finite ordered algebra A = (A, �, �). Let T ⊆

T(�, X) be a tree language recognizable by A. By Lemma 5.25, there are a unary ranked
alphabet � and a regular tree homomorphism � : T(�, X ∪ �0) → T(�, X) full with
respect to T, such that for every z ∈ X ∪ �0, Lz = T �−1 ∩ T(�, {z}) can be recognized
as a subset of T(�, {z}) by A�. So, Lz ∈ V(�, {z}), thus Lz ∈ V(�, X ∪ �0) by (2).
Hence, T �−1 = ⋃

z∈X∪�0
Lz ∈ V(�, X ∪ �0). Since � is full with respect to T, then

T ∈V(�, X) by (3). This holds for every tree language T recognizable by A, so A ∈Va

by Corollary 3.9(2). �

5.4. Examples

Corollary 5.19, Proposition 4.5 and conclusions from Section 5.2 imply that gPVTL Cof
is not definable by syntactic ordered monoids, family SL is definable by syntactic monoids,
also family Sym is definable by syntactic ordered monoids. Anyway, these can be verified
directly.

Let � = �1 = {f } be a unary ranked alphabet and X = {x, y}, Y = {y} be leaf alphabets.
The language T1 = {f (f (x)), f (f (f (x))), . . .} is not cofinite in T (�, X), whereas the
language T2 = {f (f (y)), f (f (f (y))), . . .} is cofinite in T (�, Y ). However, they have
isomorphic syntactic ordered monoids. Therefore, Cof is not definable by syntactic ordered
monoids. The same conclusion follows from Proposition 5.27, since T2 ∈ Cof(�, {y}), but
T2 �∈ Cof(�, X), and hence Cof does not satisfy condition (2) of the proposition.

Family SL is definable by syntactic monoids, since a tree language is semilattice if and
only if its translation monoid is a semilattice monoid.

A tree language is symbolic if and only if its ordered translation monoid is a symbolic
ordered monoid, thus family Sym is definable by syntactic ordered monoids.

6. Conclusions

A variety theorem connecting families of recognizable tree languages to classes of finite
ordered algebras and a generalized form of the above variety theorem have been proved in
the paper. Besides that, classes of finite ordered algebras, as well as families of recognizable
tree languages, definable by ordered monoids have been characterized. Three examples have
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been studied along the paper:
(1) family Cof of cofinite tree languages, which is a gPVTL, characterizable by ordered

nilpotent algebras, but not definable by ordered monoids or semigroups,
(2) family SL of semilattice tree languages, which is a generalized variety of tree languages,

characterizable by semilattice algebras and definable by semilattice monoids, and
(3) family Sym of symbolic tree languages, which is a gPVTL, characterizable by symbolic

ordered algebras and definable by symbolic ordered monoids.

7. Index of notation

Notation Explanation Page
�, � Quasi-orders 3
� , � Orders 3
⊆, ⊆g Order (g-)subalgebra, Subset 4, 20
←,←g Order (g-)epimorphic image 4, 20
≺, ≺g (g-)divides 4, 20
�, �g Order (g-)isomorphism 4, 20
A× B, �(A1, . . . ,An) Direct (g-)product 4, 21
(g)VFOA (g-)Variety of finite ordered algebras 4, 21
A/� Quotient ordered algebra 4
� ◦� ◦ �−1 Inverse image of � under � 5
Tr(A) Translation monoid of the algebra A 5
I�A Ideal 5
�I , �I Syntactic quasi-order and congruence of I 5, 6
TrS(A) Translation semigroup of A 7
Nil(�) Variety of ordered nilpotent �-algebras 7
SL(�) Variety of semilattice �-algebras 9
Sym(�) Variety of symbolic ordered �-algebras 9
T(�, X), C(X, T ) Set of �X-trees and �X-contexts 10, 10
�T , �T Syntactic quasi-order and congruence of T 10, 10
SOA(T ) Syntactic ordered algebra of T 10
(A, �, I ) Tree recognizer 11
�A Extension of an initial assignment � for A 11
(g)PVTL Positive (g-)variety of tree languages 12, 21
Kt , Va Variety operations 12, 21
Cof(�, X), Cof� Cofinite tree languages 14
c(t) Contents of tree t 14
Sym(�, X), Sym� Symbolic tree languages 15
SL(�, X), SL� Semilattice tree languages 15
OTr(A) = (Tr(A), ·, �A) Ordered translation monoid of A 23
VFOM Variety of finite ordered monoids 24
Ma, Mt Variety operations on VFOM M 4, 28
�D = {d | d ∈ D} Unary ranked alphabet associated with D 25
M� = (M, �M, �) Unary ranked algebra associated with M 25
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A� Unary algebra associated with A 25
�T Quasi-order on contexts 27
�T Syntactic m-congruence of T 27
SOM(T ) Syntactic ordered monoid of T 27
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