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ABSTRACT
We argue that, under the usual assumptions for sufficiently strong arithmetical
theories that are subject to Gödel’s First Incompleteness Theorem, one cannot,
without impropriety, talk about the Gödel sentence of the theory. The reason
is that, without violating the requirements of Gödel’s theorem, there could be
a true sentence and a false one each of which is provably equivalent to its own
unprovability in the theory if the theory is unsound.

1. INTRODUCTION AND PRELIMINARIES
In the course of proving what is now known as the First Incompleteness
Theorem for every arithmetical theory T satisfying certain conditions, Gödel
constructs a sentence which “says about itself” that it is T -unprovable. He
then shows that that sentence is unprovable if the theory is consistent, and is
irrefutable if the theory is ω-consistent.1

Year after year, and decade after decade, whether authoring textbook pre-
sentations of Gödel’s theorem or writing research papers, a considerable number
of world-class logicians and philosophers seem to have called each and every
such sentence (i.e., each and every sentence which is provably equivalent to its
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1Simple consistency is obviously sufficient for showing the unprovability of that sen-

tence; Gödel evidently introduced the stronger assumption of ω-consistency in order
to show its irrefutability. As is well known, Rosser later weakened the requirement
of ω-consistency to that of simple consistency — though, of course, Rosser shows the
independence of another sentence (different from the one constructed by Gödel).
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own unprovability), or a variant thereof, the Gödel sentence of the theory. In
this short note we aim at showing that this is a misnomer. More specifically,
we argue that the use of the definite article here is unjustified — and this we
hold despite the initial plausibility of the the talk.

One main reason for speaking of the Gödel sentence, with its implied unique-
ness, seems to be the well-known fact that for every theory T presented in a
certain way, if each of the sentences A and B is, in the eye of T , equivalent
to its own T -unprovability, then A and B are, in the eye of T , equivalent —
in fact, A and B are both equivalent to a quite distinguished sentence, one
which is normally taken to state the consistency of T . Many authors who write
about Gödel’s theorems are of course aware of this logical fact — a fact thus
stated as Remark 2.2.5 in one of the technically most elegant papers on the
incompleteness theorems:

By the proof of the Second [Incompleteness] Theorem, the self-referential
sentence which asserts its own unprovability is equivalent to the sentence
asserting consistency. Hence, this sentence is unique up to provable equiv-
alence and one may correctly speak of the sentence that asserts its own
unprovability. [Smoryński, 1977, p. 829, emphasis original]

While the equivalence mentioned by Smoryński is of course the case, we think
it does not warrant the the talk — the fact that there is, up to T -equivalence,
only one sentence which asserts its own unprovability does not guarantee that
there is just one Gödelian sentence, not even up to truth value. Or so we will
argue.

How could that be?
As is well known, while in his introductory section Gödel takes theories to be

sound (i.e., having all their theorems true in the standard model N of natural
numbers), in the official statement of the First Incompleteness Theorem the
theories in question need not be sound. In fact, Gödel makes it explicit that
one purpose for giving formally precise proofs of what he informally argues
for in his Section 1 is to replace the requirement of soundness with a “much
weaker” one, namely ω-consistency [1931, p. 151].
Fact 1 Theories subject to the First Incompleteness Theorem need not be sound.
Hence some of their theorems may be false (i.e., false in N).
Fact 2 There are unsound theories which are ω-consistent.

Gödel does not elaborate on how or why ω-consistency is weaker than
soundness; for some examples of ω-consistent theories which are unsound, see
[Isaacson, 2011, Proposition 19] (credited to Kreisel) or [Lindström, 1997, Chap-
ter 2, Exercise 7(d)]. The oldest example of an ω-consistent and unsound theory
seems to go back to Rosser [1937, Theorem 1], who shows that if ¬ω-ConT is a
sentence saying that the theory T is not ω-consistent, and if T is ω-consistent,
then T ∪{¬ω-ConT } is ω-consistent too. Of course, T ∪{¬ω-ConT } is not sound
if T is ω-consistent; see also [Boolos, 1993, Chap. 15].

Now suppose that U is an ω-consistent but unsound arithmetical theory
which is sufficiently strong. Let A and B be two sentences each of which is
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U -provably equivalent to its own U -unprovability. Then of course we have U �
A ↔ B. However, the equivalence of A and B might be one of those theorems
of our unsound U which are false, in which case one of A and B is true and
the other false, so that “in reality” they are not equivalent. Even setting aside
the realist talk, when one of the Gödelian sentences of U is true in N while the
other false, it seems bizarre to talk about the Gödel sentence of the theory U .

To see some of the many places where the expression ‘the Gödel sentence’
(with definite article) obtrudes, we ask our readers to look at the titles of oth-
erwise excellent works of Boolos [1990]; Shapiro [1998]; Serény [2011]; Isaacson
[2011], and also [Raatikainen, 2005, p. 520]. As far as we know, only Milne
[2007] talks about Gödel sentences (in the plural). It was noted by Lajevardi
and Salehi [2019, pp. 12–13] that some unsound theories may have both true
Gödel sentences and false ones. While the argument there was based on a par-
ticular unsound theory, here we demonstrate that this applies to every unsound
theory.

In this note we elaborate on these points. Readers who are more philosoph-
ically inclined may skip Subsection 1.1 and the entire Section 2, where we fix
our notation and prove a number of technical results which we summarize here
without using technical jargon. Theorem 1 shows that a sentence G is unprov-
able in a theory T if and only if there exists a consistent extension T ′ of T
such that G is equivalent to the T ′-unprovability of G inside T ′. (Half of this
theorem follows from Gödel’s proof: all the sentences that are provably equiva-
lent to their unprovability in a consistent sufficiently strong arithmetical theory
are unprovable in that theory.) We then show in Theorem 2 that for a suffi-
ciently strong arithmetical theory T , the following are equivalent: (i) the truth
of every sentence which is T -equivalent to its own T -unprovability (recall that
the sentence constructed by Gödel is one of these), and (ii) the soundness of
the theory. Therefore, given an unsound theory, there is a false sentence which
is provably equivalent to its own unprovability. To complete our argument, we
go on to show (Corollary 3) that every unsound theory has a true such sentence
as well.

At the end of our technical discussion we provide an alternative proof for
Theorem 1 and derive a corollary which may be seen as a cute refinement of
Theorem 2: not only for every unsound theory is there a false I-am-unprovable
sentence, but every false sentence whatsoever is an I-am-unprovable one with
respect to some consistent and sufficiently strong arithmetical theory.

A word of caution might be in order before getting into the details. Beware of
what we are not saying. We do not claim that an appeal to provable equivalence
under an arithmetical theory — even if done properly and even if the theory
is sound — will warrant the the talk. For all we know, the process of “dividing
out” (i.e., basically thinking of the Gödel sentence of a theory T as the set of
all sentences that are T -provably equivalent to their T -unprovability) may have
its own problems or shortcomings: for instance, while it does make sense, and
it may be of some interest, to say that the number of symbols in the original
sentence constructed by Gödel is less than the one constructed by Rosser, many
such differences will be gone (or at least marginalized) after dividing out. All
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we say is this: (1) it seems that one alleged way of justifying the use of the
definite article in the phrase ‘the Gödel sentence’ is to use the mathematical
fact that all the I-am-unprovable sentences are provably equivalent, and (2) this
provable equivalence does not help if the theory is unsound. We do not claim
that we have solved the question of how to define the Gödel sentence (neither
are we sure that it is possible at all).

1.1. Terminology and Background.
Let us fix our language of arithmetic as in [Boolos, 1993, Chapter 2], where PA
(Peano’s Arithmetic) and a Gödel coding A �→ �A� are defined. We will use the
terminology of [Boolos, 1993] with a minor update: we write ‘Pr’ instead of his
‘Bew’ for provability. Boolos’s whole discussion is about PA, but can be easily
generalized to any recursively enumerable (re) super-theory of it. It is well
known that a set is re if and only if it is definable by a Σ1-formula [Feferman,
1960]. For a formula σ(x), let Thσ = {A | N � σ(�A�)} be the theory defined by
σ, where A ranges over the sentences of the language.2 Throughout this short
note, we work only with Σ1-definable theories that extend PA.3

For a given Σ1-formula σ(x), there exists a Σ1-formula Prσ(x) that defines
the provable sentences of the theory Thσ; see [Boolos, 1993, p. 44] or
[Feferman, 1960, Theorem 4.5]. One particular such provability predicate can
be constructed in a way that it satisfies the following:

Fact 3 (The Derivability Conditions, and more). For every Σ1-formula σ(x)
with Thσ ⊇PA, the following hold for every sentences A and B:

(D0) If N � Prσ(�A�), then Thσ � A;
(D1) If Thσ � B, then PA � Prσ(�B�);
(D2) PA � Prσ(�A→B�) → [Prσ(�A�)→Prσ(�B�)];
(D3) PA � Prσ(�A�) → Prσ(�Prσ(�A�)�).

Let σ ·A(x) abbreviate the formula σ(x)∨(x = �A�). Note that the formula
σ·A defines the theory Thσ∪{A}. We have:

(i) PA � Prσ·A(�B�) ↔ Prσ(�A→B�).
Put Conσ = ¬Prσ(�⊥�), which is normally understood as saying that the

theory Thσ is consistent. Now, we have:
(ii) PA � ¬Conσ → Prσ(�A�).

For a proof of Fact 3(ii) it suffices to note that ⊥ → A is Thσ-provable,
and so by Fact 3(D1) the sentence Prσ(�⊥ → A�) is PA-provable; so is
Prσ(�⊥�) → Prσ(�A�) by Fact 3(D2). Fact 3(i) appears in [Feferman, 1960,

2Note that our use of the term ‘theory’ might be considered non-standard as Thσ need
not be deductively closed.

3 Indeed, one can work with consistent Σ1-definable extensions of a sufficiently strong
sub-theory of PA such as IΣ1 or EA+BΣ1(≡ IΔ1). Theories without BΣ1 would not be
suitable since, as a referee of this journal remarked, the usual constructions of Prσ (for
a given Σ1-formula σ) need not be equivalently Σ1 if Σ1-collection is not provable in the
base theory; see Visser [2020]. For the readers’ convenience, we confine ourselves to Σ1-
definable extensions of PA, as their properties are more accessible in the literature. Let us
note that Σ1 is denoted simply by ‘Σ’ in [Boolos, 1993].
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Theorem 4.8]. Let us say, by way of definition, that A is a Gödelian sentence of
σ when Thσ � A↔¬Prσ(�A�). Famously, [Gödel, 1931, Section 2] constructs, by
means of what is now called the Diagonal Lemma, a Gödelian sentence G. Then
Gödel shows Thσ � G if Thσ is consistent, and also Thσ � ¬G if Thσ is (also)
ω-consistent. Note that we call G a Gödelian sentence of the formula σ(x) and
not of the theory Thσ since a theory may have different presentations (defining
formulas) that are not equivalent even inside the theory itself; see [Feferman,
1960, Theorem 7.5].

2. MANY GÖDELIAN SENTENCES: SOME TRUE, SOME FALSE.
Let us start with a theorem which is interesting in its own right, as it
characterizes the Gödelian sentences of super-theories.
Theorem 1 (Unprovable1 sentences are Gödelian). Let σ(x) be a Σ1-formula
such that Thσ ⊇PA. Any sentence G is unprovable in Thσ if and only if G is a
Gödelian sentence of a consistent super-theory of Thσ.

Proof. First, suppose that for a Σ1-formula τ(x) the theory Thτ is consistent
and Thτ ⊇Thσ, and let G be a Gödelian sentence of Thτ . Then, (∗) Thτ � G↔
¬Prτ (�G�). We show that Thτ � G. Assume that Thτ � G. Then Thτ � Prτ (�G�)
by Fact 3 (D1), and so Thτ � ¬G by (∗), contradicting the consistency of Thτ .
As a result, Thτ � G; hence Thσ � G, i.e., G is unprovable in Thσ.

Secondly, suppose that G is unprovable in Thσ. By the Diagonal Lemma
there exists some sentence A such that4

PA � A↔ [G↔¬Prσ·A(�G�)].

Let τ = σ ·A. Then Thτ = Thσ ∪{A}, and so we have Thτ � G ↔ ¬Prτ (�G�);
thus G is a Gödelian sentence of τ . It remains to show that Thτ is consistent. If
not, then Thσ � ¬A, and so (∗∗) Thσ � ¬[G↔¬Prτ (�G�)]. On the other hand,
Thσ � A → G follows from Thσ � ¬A, and so we have PA � Prσ(�A → G�) by
Fact 3(D1), therefore PA � Prτ (�G�) by Fact 3(i). Thus, Thσ � G follows from
(∗∗), a contradiction. �

Theorem 2 (The Gödelian sentences of only sound theories are all true) Let
σ(x) be a Σ1-formula such that Thσ ⊇ PA. Then all of the Gödelian sentences
of σ are collectively true if and only if Thσ is a sound theory.5

Proof. If Thσ is sound and G is a Gödelian sentence of σ, then N � G ↔
¬Prσ(�G�). On the other hand, from Fact 3(D0) and Thσ � G (Theorem 1) we
have N � ¬Prσ(�G�). Thus, N � G.

Now, suppose that all the Gödelian sentences of σ are true. The theory Thσ

is consistent, since otherwise every false sentence would be a Gödelian sentence

4Cf. [McGee, 1992, p. 238].
5Cf. [Smith, 2013, Theorem 24.7].

Free Hand
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of σ. We show that Thσ is sound. Suppose that Thσ � A for a sentence A; we
aim at showing the truth of A, i.e., that N � A. By the Diagonal Lemma there
exists a sentence G such that

PA � G↔ [A↔¬Prσ(�G�)].

Hence Thσ � G ↔ ¬Prσ(�G�), and so G is a Gödelian sentence of σ. Thus
N � G by the assumption. Assuming that PA is sound, we have N � A ↔
¬Prσ(�G�). On the other hand, by Theorem 1, Thσ � G and so N � ¬Prσ(�G�)
by Fact 3(D0). Therefore, N � A. �

So, an unsound theory does have some false Gödelian sentences. Below we
show that it has some true Gödelian sentences as well.

Corollary 3 (Gödelian sentences of unsound theories: Some true, some false)
Every Σ1-formula σ(x) whose Thσ is an unsound extension of PA has at least
one true and one false Gödelian sentence.

Proof. If Thσ is inconsistent, then every sentence is a Gödelian sentence of σ; so,
suppose that the unsound theory Thσ is consistent. Then σ has a false Gödelian
sentence by Theorem 2. By the Diagonal Lemma we have PA � G↔¬Prσ(�G�)
for some sentence G. Now G is a Gödelian sentence of σ, and so by Theorem 2
and Fact 3(D0) we have N � ¬Prσ(�G�). Thus N � G (by the assumed soundness
of PA), and so σ has a true Gödelian sentence G. �

Before concluding this section, let us see another proof for Theorem 1 and
an interesting consequence of it:

Theorem 1. Let σ(x) be a Σ1-formula such that Thσ ⊇ PA. Any sentence G
is unprovable in Thσ if and only if G is a Gödelian sentence of a consistent
super-theory of Thσ.

(Alternative) Proof. The “if” part is as before (all Gödelian sentences of con-
sistent theories are unprovable). For the “only if” part, suppose Thσ � G.
Let τ = σ ·¬G. Then the theory Thτ = Thσ ∪{¬G} is consistent, and so is
the theory Thτ ∪ {¬Conτ} by Gödel’s Second Incompleteness Theorem. Put
ν = τ ·¬Conτ . Then Thν = Thσ ∪{¬G, ¬Conτ} is a consistent super-theory of
Thσ, and it remains to show that G is a Gödelian sentence of ν. By Thν � ¬Conτ

and Fact 3(ii) we have Thν � Prτ (�¬Conτ → G�), and so Fact 3(i) implies
Thν � Prν(�G�). Now we have Thν � ¬G and Thν � Prν(�G�); therefore,
Thν � G↔¬Prν(�G�). This proves that G is a Gödelian sentence of ν. �

Corollary 4. (All the false sentences are Gödelian) Every false sentence is a
Gödelian sentence of a consistent theory.

Proof. If a sentence is false, then (by the assumed soundness of PA) it is PA-
unprovable, and so by Theorem 1 it is a Gödelian sentence of a consistent
super-theory of PA. �
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Indeed, every false sentence is a Gödelian sentence of a consistent super-
theory of an arbitrary sound extension of PA.

Remark 5. (Gödelian sentences relative to a sound sub-theory). So far, we
have dealt with the issue of the Gödel sentence in a mono-theoretic way, in the
sense of having one and the same theory Thσ functioning as both the theory
with respect to which we define the provability predicate (Prσ) and the theory
within which the equivalence of a Gödelian sentence to its unprovability in
Thσ is proved. One may think of going di-theoretically (or “bitheoretically” as
[Detlefsen, 2001] puts it), namely choosing a different theory S (preferably a
sub-theory of Thσ) as meta-theory and defining a sentence G to be a σ-Gödelian
sentence relative to the theory S when we have S � G ↔ ¬Prσ(�G�). Now, if
S is taken to be a sound sub-theory of Thσ, then our objection to the use of
definite article seems to be defused. One may think of taking S to be Peano’s
Arithmetic PA itself, which is reasonably supposed to be sound; so, talking
of the Gödel sentences of such theories relative to PA does not seem to be
unreasonable here.6 Let us note that this is the method employed by many
textbooks for defining (and proving the existence of) Gödelian sentences; see
[Lajevardi and Salehi, 2019, Appendix].

3. CONCLUDING REMARKS, AND THE (IN)-SIGNIFICANCE OF OUR
OBSERVATION

Corollary 3 is the reason for our discomfort at the use of definite article
in the phrase ‘the Gödel sentence’. Let us anticipate a rejoinder, to the effect
that a logician who talks about the Gödel sentence of a theory may have some
particular syntactic object in mind — e.g., she may be thinking of the exact
same sentence constructed by Gödel [1931, p. 173], called ‘v Gen r’.

Logically speaking, we think that this is not a very exciting way to go.
For one thing, there is an arbitrariness in such a choice, as it depends on a
number of inessential things like the particular coding (so why not use Quine’s
more elegant coding instead?). Insofar as the First Incompleteness Theorem is
concerned, it seems that what is crucial for the particular sentence constructed
by Gödel is its possession of certain properties à propos of provability, not that
it is constructed in this or that particular way.7 To concentrate on a particular
syntactic object is to overlook the main idea.

More importantly, the suggestion of the first paragraph of this section may
result in the unwelcome situation that while arguing for, e.g., the truth of the
Gödel sentence of PA, different logicians or philosophers are, strictly speaking,
talking past each other: one is dealing with the particular sentence constructed

6We acknowledge that some of the authors we referred to in Section 1 might have had
some such ideas in mind — see, in particular, [Smoryński, 1977, §2] or [Isaacson, 2011,
§2,§3].

7Even its being self-referential is inessential for Gödel’s theorem — see below.
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by Gödel [1931], another is considering a particular sentence constructed by
Feferman [1960], and so on.

Let us also note that there is of course another reason that makes the use of
the definite article problematic here: there are different ways of arithmetizing
the syntax, and, a fortiori, different Gödelian sentences — and this seems to be
what Serény [2011, p. 68] is worried about. Of course our concern is different:
we have argued that even with a fixed arithmetization, there might be true
Gödelian sentences and false ones.8

Let us recapitulate. We say that a sentence A is a Gödelian sentence of
a theory T iff A is T -provably equivalent to its own T -unprovability (with
respect to a fixed arithmetization). Insofar as Gödel’s theorem is concerned,
our theories may be taken to be unsound. If our theory is not just unsound
but even inconsistent, then every sentence is a Gödelian sentence of it, hence
the theory has, in an insipid way, true Gödelian sentences as well as false ones.
If the theory is unsound but (ω-)consistent, then Corollary 3 provides a false
Gödelian sentence and a true one. Of course all these sentences are equivalent
in the eye of the theory, but in this situation it is rather odd to talk about the
Gödel sentence of the theory.

Does this in any way affect the validity of Gödel’s incompleteness theorems
as presented in textbooks or papers which talk about the Gödel sentence? Not
really. In fact, every Gödelian sentence of a consistent re extension of Peano’s
Arithmetic is unprovable in that theory. Yet perhaps one should be more careful
and avoid talking as if there is only one such sentence (even up to truth value).
For the sheer purpose of proving the First Incompleteness Theorem, it does not
matter if we get this right. Our point in this note is a modest (and perhaps
pedantic) one: the correction of an impropriety of speech.9

Compare to a related issue, that of self-reference. In many of those same
textbooks and papers, authors speak of Gödelian sentences each of which “says
about itself” that it is unprovable. Now it is by no means an easy task to
give a satisfactory analysis of the notion of a sentence saying something about
itself; for the purpose of proving the First Incompleteness Theorem, however,
we need not trouble ourselves with that notion — see [Smoryński, 1991, p. 122]
and [Kripke, 2014, p. 239].

Having said that, let us conclude by drawing attention to the fact that our
observation here may well affect some philosophical discussions concerning the

8For a recent investigation of a similar worry concerning Gödel’s second theorem see
[Grabmayr, forthcoming].

9We wholeheartedly agree with a referee of this journal who wrote, ‘Provable equiv-
alence in a theory is not a criterion of synonymy (else all theorems of the theory mean
the same!) so why people make an exception in the case of Gödel sentences is unclear’. As
another referee commented, although identifying provably equivalent sentences turns out
to be mathematically fruitful with respect to some background theories (as evidenced by
the notion of Lindenbaum–Tarski Algebra, or Magari Algebra in the case of provability
logic), provable equivalence does not guarantee truth preservation of Gödelian sentences,
as illustrated in our note; thus we seem to have, philosophically speaking, further qualms
about taking provable equivalence as a criterion for synonymy.
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truth of Gödelian sentences, as discussed in many logico-philosophical texts.
But that is the topic of another, much longer, paper than this short note.
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Vol. I, pp. 135–152. Oxford University Press, 1986.

Grabmayr, Balthasar [forthcoming]: ‘On the invariance of Gödel’s second
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Gödel sentence and its truth’, in D. DeVidi, M. Hallett, P. Clarke, eds, Logic,
Mathematics, Philosophy: Vintage Enthusiasms: Essays in Honour of John L.
Bell, pp. 135–152. Springer. doi.org/10.1007/978-94-007-0214-1 7.
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Rosser, Barkley [1937]: ‘Gödel theorems for non-constructive logics’, Journal of
Symbolic Logic 2, 129–137. doi.org/10.2307/2266293.
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