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Abstract. Wilke’s tree algebra formalism for characterizing families of
tree languages is based on six operations involving letters, binary trees
and binary contexts. In this paper a completeness property of these oper-
ations is studied. It is claimed that all functions involving letters, binary
trees and binary contexts which preserve all syntactic tree algebra con-
gruence relations of tree languages are generated by Wilke’s functions,
if the alphabet contains at least seven letters. The long proof is omitted
due to page limit. Instead, a corresponding theorem for term algebras,
which yields a special case of the above mentioned theorem, is proved:
in every term algebra whose signature contains at least seven constant
symbols, all congruence preserving functions are term functions.

1 Introduction

A new formalism for characterizing families of tree languages was introduced
by Wilke [13], which can be regarded as a combination of universal algebraic
framework of Steinby [11] and Almeida [1], in the case of binary trees, based on
syntactic algebras, and syntactic monoid/semigroup framework of Thomas [12]
and of Nivat and Podelski [8],[9]. It is based on three-sorted algebras, whose
signature Σ consists of six operation symbols involving the sorts Alphabet,
Tree and Context. Binary trees over an alphabet are represented by terms
over Σ, namely as Σ-terms of sort Tree. A tree algebra is a Σ-algebra satisfying
certain identities which identify (some) pairs of Σ-terms representing the same
tree. The syntactic tree algebra congruence relation of a tree language is defined
in a natural way (see Definition 1 below.) The Tree-sort component of the
syntactic tree algebra of a tree language is the syntactic algebra of the language
in the sense of [11], while its Context-component is the semigroup part of the
syntactic monoid of the tree language, as in [12].

A tree language is regular iff its syntactic tree algebra is finite ([13], Proposi-
tion 2.) A special sub-class of regular tree languages, that of k-frontier testable
tree languages, is characterized in [13] by a set of identities satisfied by the cor-
responding syntactic tree algebra. For characterizing this sub-class, three-sorted
tree algebra framework appears to be more suitable, since “frontier testable tree
languages cannot be characterized by syntactic semigroups and there is no known
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finite characterization of frontier testability (for an arbitrary k) in the universal
algebra framework” [7].

This paper concerns Wilke’s functions (Definition 2) by which tree algebra
formalism is established for characterizing families of tree languages ([13]). We
claim that Wilke’s functions generate all congruence preserving operations on
the term algebra of trees, when the alphabet contains at least seven labels. For
the sake of brevity, we do not treat tree languages and Wilke’s functions in many-
sorted algebra framework as done in [13], our approach is rather a continuation
of the lines of the traditional framework, as of e.g. [11]. A more comprehensive
general study of tree algebras and Wilke’s formalism (independent from this
work) has been initiated by Steinby and Salehi [10].

2 Tree Algebraic Functions

For an alphabet A, let ΣA be the signature which contains a constant symbol
ca and a binary function symbol fa for every a ∈ A, that is ΣA = {ca | a ∈
A} ∪ {fa | a ∈ A}.

The set of binary trees over A, denoted by TA, is defined inductively by:

– ca ∈ TA for every a ∈ A; and
– fa(t1, t2) ∈ TA whenever t1, t2 ∈ TA and a ∈ A.

Fix a new symbol ξ which does not appear in A. Binary contexts over A are
binary trees over A ∪ {ξ} in which ξ appears exactly once. The set of binary
contexts over A, denoted by CA, can be defined inductively by:

– ξ, fa(t, ξ), fa(ξ, t) ∈ CA for every a ∈ A and every t ∈ TA; and
– fa(t, p), fa(p, t) ∈ CA for every a ∈ A, every t ∈ TA, and every p ∈ CA.

For p, q ∈ CA and t ∈ TA, p(q) ∈ CA and p(t) ∈ TA are obtained from p by
replacing the single occurrence of ξ by q or by t, respectively.

Definition 1. For a tree language L ⊆ TA we define the syntactic tree algebra
congruence relation of L, denoted by ≈L= (≈L

A,≈L
T,≈L

C), as follows:

1. For any a, b ∈ A, a ≈L
A b ≡ ∀p ∈ CA{p(ca) ∈ L ↔ p(cb) ∈ L} &

∀p ∈ CA∀t1, t2 ∈ TA{p(fa(t1, t2)) ∈ L ↔ p(fb(t1, t2)) ∈ L}.
2. For any t, s ∈ TA, t ≈L

T s ≡ ∀p ∈ CA{p(t) ∈ L ↔ p(s) ∈ L}.
3. For any p, q ∈ CA, p ≈L

C q ≡ ∀r ∈ CA∀t ∈ TA{r(p(t)) ∈ L ↔ r(q(t)) ∈ L}.

Remark 1. Our definition of syntactic tree algebra congruence relation of a tree
language is that of [13], but we have corrected a mistake in Wilke’s definition of
≈L

A; it is easy to see that the original definition (page 72 of [13]) does not yield
a congruence relation. Another difference is that ξ is not a context in [13].
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Definition 2. ([13], page 88) For an alphabet A, Wilke’s functions over A are
defined by:

ιA : A → TA ιA(a) = ca

κA : A × T
2

A → TA κA(a, t1, t2) = fa(t1, t2)
λA : A × TA → CA λA(a, t) = fa(ξ, t)
ρA : A × TA → CA ρA(a, t) = fa(t, ξ)
σA : C

2

A → CA σA(p1, p2) = p1(p2)
ηA : CA × TA → TA ηA(p, t) = p(t)

Recall that projection functions πn
j : B1 × · · · × Bn → Bj (for sets B1, · · · , Bn)

are defined by πn
j (b1, · · · , bn) = bj . For a b ∈ Bj , the constant function from

B1 × · · · × Bn to Bj , determined by b, is defined by (b1, · · · , bn) 	→ b.

Definition 3. For an alphabet A, a function F : A
n × T

m

A × C
k

A → X where
X ∈ {A, TA, CA} is called tree-algebraic over A, if it is a composition of Wilke’s
functions over A, constant functions and projection function.

Example 1. Let A = {a, b}. The function F : A × TA × CA → CA defined by

F (x, t, p) = fa

(
fx

(
fb(ca, ca), ξ

)
, p

(
fb(t, cx)

))
,

for x ∈ A, t ∈ TA and p ∈ CA, is tree-algebraic over A. Indeed

F (x, t, p) = σA
(
λA

(
a, ηA

(
p, κA(b, t, ιA(x))

))
, ρA

(
x, fb(ca, ca)

))
.

Definition 4. A function F : A
n × T

m

A × C
k

A → X where X ∈ {A, TA, CA} is
called congruence preserving over A, if for every tree language L ⊆ TA and for
all a1, b1, · · · , an, bn ∈ A, t1, s1, · · · , tm, sm ∈ TA, p1, q1, · · · , pk, qk ∈ CA,

if a1 ≈L
A b1, · · · , an ≈L

A bn, t1 ≈L
T s1, · · · , tm ≈L

T sm,
and p1 ≈L

C q1, · · · , pk ≈L
C qk,

then F (a1, · · · , an, t1, · · · , tm, p1, · · · , pk)
≈L

x F (b1, · · · , bn, s1, · · · , sm, q1, · · · , qk),

where x is A, T, or C, if X = A, X = TA, or X = CA, respectively.

Remark 2. In universal algebra, the functions which preserve congruence rela-
tions of an algebra, are called congruence preserving functions. On the other
hand it is known that every congruence relation over an algebra is the intersec-
tion of some syntactic congruence relations (see Remark 2.12 of [1] or Lemma
6.2 of [11].) So, a function preserve all congruence relations of an algebra iff it
preserves the syntactic congruence relations of all subsets of the algebra. This
justifies the notion of congruence preserving function in our Definition 4, even
though we require that the function preserves only all the syntactic tree algebra
congruence relations of tree languages.
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Example 2. For A = {a, b}, the root function root: TA → A, which maps a tree
to its root label, is not congruence preserving: Let L = {fa(cb, cb)}, then

fa(ca, ca) ≈L
T fb(ca, ca),

but since fa(cb, cb) ∈ L, and fb(cb, cb) 
∈ L, then

root
(
fa(ca, ca)

)
= a 
≈L

A b = root
(
fb(ca, ca)

)
.

Lemma 1. All tree-algebraic functions are congruence preserving.

The easy proof is omitted. We claim the converse for alphabets containing at
least seven labels:

Theorem 1. For an alphabet A which contains at least seven labels, every
congruence preserving function over A is tree-algebraic over A.

Remark 3. The condition |A| ≥ 7 in Theorem 1 may seem odd at the first glance,
but the theorem does not hold for |A| = 2: let A = {a, b} and define F : A → TA
by F (a) = fa(cb, cb), F (b) = fb(ca, ca). It can be easily seen that F is congruence
preserving but is not tree-algebraic over A. It is not clear at the moment whether
Theorem 1 holds for 3 ≤ |A| ≤ 6.

The long detailed proof of Theorem 1 will not be given in this paper because
of space shortage. Instead, in the next section, a corresponding theorem for
term algebras, which immediately yields Theorem 1 for congruence preserving
functions of the form F : T

m

A → TA, is proved.

3 Congruence Preserving Functions in Term Algebras

Our notation follows mainly [2], [3], [5], [6], and [11]. A ranked alphabet is a
finite nonempty set of symbols each of which has a unique non-negative arity
(or rank). The set of m-ary symbols in a ranked alphabet Σ is denoted by
Σm (for each m ≥ 0). TΣ(X) is the set of Σ-terms with variables in X. For
empty X it is simply denoted by TΣ . Note that (TΣ(X), Σ) is a Σ-algebra, and
(TΣ , Σ) is called the term algebra over Σ. For L ⊆ TΣ , let ≈L be the syntactic
congruence relation of L ([11]), i.e., the greatest congruence on the term algebra
TΣ saturating L.

Let Σ denote a signature with the property that Σ 
= Σ0. Throughout X is
always a set of variables.

Definition 5. A function F : (TΣ)n → TΣ is congruence preserving if for
every congruence relation Θ over TΣ and all t1, · · · , tn, s1, · · · , sn ∈ TΣ , if
t1Θs1, · · · , tnΘsn, then F (t1, · · · , tn)ΘF (s1, · · · , sn).

Remark 4. A congruence preserving function F : (TΣ)n → TΣ induces a well-
defined function FΘ : (TΣ/Θ)n → TΣ/Θ on any quotient algebra, for any con-
gruence Θ on TΣ , defined by FΘ([t1]Θ, · · · , [tn]Θ) = [F (t1, · · · , tn)]Θ.
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For terms u1, · · · , un ∈ TΣ(X) and t ∈ TΣ(X ∪ {x1, · · · , xn}) with x1, · · · , xn 
∈
X, the term t[x1/u1, · · · , xn/un] 1∈ TΣ(X) is resulted from t by replacing all the
occurrences of xi by ui for all i ≤ n. The function (TΣ)n → TΣ(X) defined by
(u1, · · · , un) 	→ t[x1/u1, · · · , xn/un] for all u1, · · · , un ∈ TΣ , is called the term
function 2 defined by t.

The rest of the paper is devoted to the proof of the following Theorem:

Theorem 2. If |Σ0| ≥ 7, then every congruence preserving F : (TΣ)n → TΣ ,
for every n ∈ IN, is a term function (i.e., there is a term t ∈ TΣ({x1, · · · , xn}),
where x1, · · · , xn are variables, such that F (u1, · · · , un) = t[x1/u1, · · · , xn/un]
for all u1, · · · , un ∈ TΣ .)

Remark 5. Theorem 2 dose not hold for |Σ0| = 1: Let Σ = Σ0 ∪ Σ1 be a sig-
nature with Σ1 = {α} and Σ0 = {ζ0}. The term algebra (TΣ , Σ) is isomorphic
to (IN,0,S), where 0 is the constant zero and S is the successor function. Let
F : IN → IN be defined by F (n) = 2n. It is easy to see that F is congruence
preserving: for every congruence relation Θ, if nΘm then SnΘSm and by repeat-
ing the same argument for n times we get SnnΘSnm or 2nΘn + m. Similarly
SmnΘSmm, so m + nΘ2m, hence 2mΘ2n that is F (n)ΘF (m). But F is not
a term function, since all term functions are of the form n 	→ Skn = k + n
for a fixed k ∈ IN. It is not clear at the moment whether Theorem 2 holds for
2 ≤ |Σ0| ≤ 6.

Remark 6. Finite algebras having the property that all congruence preserving
functions are term functions are called hemi-primal in universal algebra (see e.g.
[3]). Our assumption Σ 
= Σ0 in Theorem 2 implies that TΣ is infinite.

Remark 7. Theorem 2 yields Theorem 1 for congruence preserving functions of
the form F : T

n

A → TA, since (TA, ΣA) is the term algebra over the signature
ΣA, and its every term function can be represented by ιA and κA (recall that
ca = ιA(a), and fa(t1, t2) = κA(a, t1, t2), for every a ∈ A, and t1, t2 ∈ TA).

Proof of Theorem 2

Definition 6. – An interpretation of X in TΣ is a function ε : X → TΣ . Its
unique extension to the Σ-homomorphism TΣ(X) → TΣ is denoted by ε∗.

– Any congruence relation Θ on TΣ is extended to a congruence relation Θ∗

on TΣ(X) defined by the following relation for any p, q ∈ TΣ(X):

p Θ∗q, if for every interpretation ε : X → TΣ , ε∗(p) Θ ε∗(q) holds.

– A function G : TΣ → TΣ(X) is congruence preserving if for every congruence
relation Θ on TΣ and t, s ∈ TΣ , if tΘs, then G(t)Θ∗G(s).

The classical proof of the following lemma is not presented here.
1 Denoted by t[u1, · · · , un] in [4].
2 It is also called tree substitution operation, see e.g. [4].
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Lemma 2. The term function TΣ → TΣ(X), u 	→ t[x/u] defined by any term
t ∈ TΣ(X ∪ {x}) (x 
∈ X), is congruence preserving.

Definition 7. Let t be a term in TΣ(X), and C ⊆ TΣ(X), then t is called
independent from C, if it is not a subterm of any member of C and no member
of C is a subterm of t.

For a term rewriting system R, and a term u, let ∆∗
R(u) be the set of R-

descendants of {u} (cf. [6]) and for a set of terms C, let ∆∗
R(C) =

⋃
u∈C ∆∗

R(u).
A useful property of the notion of independence is the following:

Lemma 3. Let u ∈ TΣ(X) be independent from C ⊆ TΣ(X) and R be the
single-ruled (ground-)term rewriting system {w → u} where w is any term in
TΣ(X). Then L = ∆∗

R(C) is closed under the rewriting rule u → w, and also
u ≈L w. Moreover, every member of L results from a member of C by replacing
some w subterms of it by u.

Proof. Straightforward, once we note that any application of the rule w → u
to a member of C, does not result in a new subterm of the form w, and all
u’s appearing in the members of L (as subterms) are obtained by applying the
(ground-term) rewriting rule w → u. �

Proposition 1. For any C ⊂ TΣ(X) such that |C| < |Σ0|, there is a term in
TΣ which is independent from C.

Proof. For each c ∈ Σ0 choose a tc ∈ TΣ that is higher (has longer height) than
all terms in C and contains no other constant symbol than this c. Then, no tc is
a subterm of any member of C. On the other hand, no term in C may appear as
a subterm in more than one of the terms tc (for any c ∈ Σ0). Since the number
of tc’s for c ∈ Σ0 are more than the number of elements of C, then by the Pigeon
Hole Principle, there must exist a tc that is independent from C. �

Lemma 4. Let G : TΣ → TΣ(X) be congruence preserving, ε : X → TΣ be an
interpretation, and u, v ∈ TΣ . If v is independent from {u, ε∗(G(u))}, then

ε∗(G(v)) ∈ ∆∗
{u→v}

(
ε∗(G(u))

)
.

Moreover, ε∗(G(v)) results from ε∗(G(u)) by replacing some u subterms by v.

Proof. Let L = ∆∗
{u→v}

(
ε∗(G(u))

)
. By Lemma 3, u ≈L v. The function G

is congruence preserving, so ε∗(G(u)) ≈L ε∗(G(v)), and since ε∗(G(u)) ∈ L,
then ε∗(G(v)) ∈ L. The second claim follows from the independence of v from
{u, ε∗(G(u))}. �
Recall that for a position p of the term t, t|p is the subterm of t at the position
p (cf. [2]).
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Lemma 5. Suppose |Σ0| ≥ 7, and let G : TΣ → TΣ(X) be congruence preserv-
ing. If v is independent from {u, G(u)}, for u, v ∈ TΣ , then

G(v) results from G(u) by replacing some of its u subterms by v.

Proof. By Proposition 1, there are w, w1, w2 such that w is independent from
{u, G(u), v, G(v)}, w1 is independent from {w, u, G(u), v, G(v)}, and w2 is inde-
pendent from {w, w1, u, G(u), v, G(v)}.

Define the interpretation ε : X → TΣ by setting ε(x) = w for all x ∈ X. By
the choice of w, v is independent from {u, ε∗(G(u))}. So we can apply Lemma
4 to infer that ε∗(G(v)) results from ε∗(G(u)) by replacing some u subterms by
v. Note that G(v) is obtained by substituting all w’s in ε∗(G(v)) by members of
X. The same is true about G(u) and ε∗(G(u)).

The positions of ε∗(G(v)) in which w appear are exactly the same positions
of ε∗(G(u)) in which w appear (by the choice of w). So, positions of G(v) in
which a member of X appear are exactly the same positions of G(u) in which
a member of X appear. We claim that identical members of X appear in those
identical positions of G(u) and G(v): if not, there are x1, x2 ∈ X such that
G(v)|p = x1 and G(u)|p = x2 for some position p of G(u) (and of G(v)).

Define the interpretation δ : X → TΣ by δ(x1) = w1, δ(x2) = w2, and
δ(x) = w for all x 
= x1, x2. Then δ∗(G(v))|p = w1 and δ∗(G(u))|p = w2. On
the other hand by Lemma 4, δ∗(G(v)) results from δ∗(G(u)) by replacing some
u subterms by v. By the choice of w1 and w2, such a replacement can not affect
the appearance of w1 or w2, and hence the subterms of δ∗(G(v)) and δ∗(G(u))
in the position p must be identical, a contradiction. This proves the claim which
implies that G(v) results from G(u) by replacing some u subterms by v. �

Lemma 6. Suppose |Σ0| ≥ 7, and let G : TΣ → TΣ(X) be congruence preserv-
ing. Then for any u, v ∈ TΣ ,

G(v) results from G(u) by replacing some u subterms by v.

Proof. By Proposition 1, there is a w ∈ TΣ independent from {u, G(u), v, G(v)}.
By Lemma 5, G(w) is obtained from G(u) by replacing some u subterms by w,
and also results from G(v) by replacing some v subterms by w. By the choice
of w, all w’s appearing in G(w) have been obtained either by replacing u by w
in G(u) or by replacing v by w in G(v). Since the only difference between G(v)
and G(w) is in the positions of G(w) where w appears, and the same is true for
the difference between G(u) and G(w), then G(v) can be obtained from G(u) by
replacing some u subterms of it, the same u subterms which have been replaced
by w to get G(w), by v. �

Lemma 7. If |Σ0| ≥ 7, then every congruence preserving function G : TΣ →
TΣ(X) is a term function (i.e., there is a term t ∈ TΣ(X ∪ {x}), where x 
∈ X,
such that G(u) = t[x/u] for all u ∈ TΣ .)
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Proof. Fix a u0 ∈ TΣ , and choose a v ∈ TΣ such that v is independent from
{u0, G(u0)}. (By Proposition 1 such a v exists.) Then by Lemma 6, G(v) results
from G(u0) by replacing some u0 subterms by v. Let y be a new variable (y 
∈ X)
and let t ∈ TΣ(X ∪ {y}) result from G(u0) by putting y exactly in the same
positions that u0’s are replaced by v’s to get G(v). So, G(u0) = t[y/u0] and
G(v) = t[y/v], moreover all v’s in G(v) are obtained from t by substituting all
y’s by v. We show that for any arbitrary u ∈ TΣ , G(u) = t[y/u] holds:

Take a u ∈ TΣ . By Proposition 1, there is a w independent from the set
{u0, G(u0), v, G(v), u, G(u)}. By Lemma 6, G(w) results from G(v) by replacing
some v subterms by w. We claim that all v’s are replaced by w’s in G(v) to get
G(w). If not, then v must be a subterm of G(w). From the fact (Lemma 6) that
G(u0) results from G(w) by replacing some w subterms by u0 (and the choice
of w) we can infer that v is a subterm of G(u0) which is in contradiction with
the choice of v. So the claim is proved and then we can write G(w) = t[y/w],
moreover all w’s in G(w) are obtained from t by substituting y by w. Again
by Lemma 6, G(u) results from G(w) by replacing some w subterms by u. We
can claim that all w’s appearing in G(w) are replaced by u to get G(u). Since
otherwise w would have been a subterm of G(u) which is in contradiction with
the choice of w. This shows that G(u) = t[y/u]. �
Theorem 2. If |Σ0| ≥ 7, then every congruence preserving F : (TΣ)n → TΣ ,
for every n ∈ IN, is a term function.

Proof. We proceed by induction on n: For n = 1 it is Lemma 7 with X = ∅.
For the induction step let F : (TΣ)n+1 → TΣ be a congruence preserv-

ing function. For any u ∈ TΣ define Fu : (TΣ)n → TΣ by Fu(u1, · · · , un) =
F (u1, · · · , un, u). By the induction hypothesis every Fu is a term function, i.e.,
there is a s ∈ TΣ({x1, · · · , xn}) such that Fu(u1, · · · , un) = s[x1/u1, · · · , xn/un]
for all u1, · · · , un ∈ TΣ . Denote the corresponding term for u by tu (it is
straightforward to see that such a term s is unique for every u). The mapping
TΣ → TΣ({x1, · · · , xn}) defined by u 	→ tu is also congruence preserving. Hence
by Lemma 7, it is a term function. So there is a t ∈ TΣ({x1, · · · , xn, xn+1})
such that tu = t[xn+1/u], hence F (u1, · · · , un, un+1) = Fun+1(u1, · · · , un) =
tun+1 [x1/u1, · · · , xn/un] = t[xn+1/un+1][x1/u1, · · · , xn/un].
So F (u1, · · · , un, un+1) = t[x1/u1, · · · , xn/un, xn+1/un+1] is a term function.

�
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Science, Birkhäuser, Boston Inc., Boston MA, 1991.



670 Saeed Salehi

3. Denecke K. & Wismath S. L., “Universal algebra and applications in theoretical
computer science”, Chapman & Hall/CRC, Boca Raton FL, 2002.
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