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Abstract We formalize the notion of Herbrand Consistency in an appropriate way
for bounded arithmetics, and show the existence of a finite fragment of I�0 whose
Herbrand Consistency is not provable in I�0. We also show the existence of an
I�0-derivable Π1-sentence such that I�0 cannot prove its Herbrand Consistency.
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1 Introduction

A consequence of Gödel’s Second Incompleteness Theorem is Π1-separation of
some mathematical theories; for example ZFC is not Π1-conservative over PA since
ZFC � Con(PA) but (by Gödel’s theorem) PA �� Con(PA), where Con is the con-
sistency predicate. Inside PA, the hierarchy {I�n}n�0 is not Π1-conservative, since
I�n+1 � Con(I�n) (but again I�n �� Con(I�n)). As for the bounded arithmetics, we
only know that the elementary arithmetic I�0 + Exp is not Π1-conservative over
I�0 +∧

j�j (see Corollary 5.34 of [6]). One candidate forΠ1-separating I�0 + Exp
from I�0 was the Cut-Free Consistency of I�0 (see [8]): it was already known
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318 S. Salehi

that I�0 + Exp � CFCon(I�0) and it was presumed that I�0 �� CFCon(I�0), where
CFCon stands for Cut-Free Consistency. Though this presumption took rather a long
to be established (see [14]), it opened a new line of research.

The problem of provability (or unprovability) of the cut-free consistency of weak
arithmetics is an interesting (double) generalization of Gödel’s Second Incomplete-
ness Theorem: the theory (being restricted to bounded or weak arithmetics) and also
the consistency predicate are both weakened. Here, we do not intend to outline the
history of this research line, and refer the reader to [11,12]. Nevertheless, we list some
prominent results obtained so far, to put our new result in perspective.

Herbrand Consistency is denoted by HCon and (Semantic) Tableau Consistency
by TabCon. Adamowicz (with Zbierski in 2001 [2] and) in 2002 [3] showed that
I�0 +�m �� HCon(I�0 +�m) for m � 2. She had already shown the unprovabil-
ity I�0 +�1 �� TabCon(I�0 +�1) in 1996 (but appeared in 2001 as [1]). Salehi
improved the result of [3] in [10] by showing that I�0 +�1 �� HCon(I�0 +�1) (see
also [12]) and the result of [2] in [9,10] by showing S �� HCon(S) where S is an
I�0-derivableΠ2-sentence. This result also implied that I�0 �� HCon(I�0) holds for
a re-axiomatization I�0 of I�0. Willard [13] showed in 2002 that I�0 �� TabCon(I�0)

and also I�0 �� HCon(I�0 +�0), where�0 is the axiom of the totality of the squaring
function �0 : ∀x∃y[y = x · x]. This was improved by the author in [12] by showing
I�0 �� HCon(I�0), without using the �0 axiom. It was also proved in [13] that V ��
HCon(V ) for an I�0-derivableΠ1-sentence V . Kołodziejczyk [7] showed in 2006 that
the unprovability I�0 +∧

j�j �� HCon(I�0 +�1) holds; his result was stronger in
a sense that it showed I�0 +∧

j�j �� HCon(S+�1) for a finite fragment S ⊆ I�0.
In this paper we use an idea of an anonymous referee of [12] for defining evaluations

in a more effective way (Definition 5) suitable for bounded arithmetics; this is a great
step forward, noting our mentioning in [12] that “[o]ur definition of Herbrand Con-
sistency is not best suited for I�0”. We then partially answer the question proposed
by the anonymous referee of [11] (see Conjecture 4.1 in [11]). The author is grateful
to both the referees, for suggestions and inspirations.

We show the existence of a finite fragment T of I�0 such that I�0 �� HCon(T );
this generalizes the result of [12]. We also show the existence of an I�0-derivable
Π1-sentence U such that I�0 �� HCon(U ); this generalizes the main result of [9,10]
and [13]. For keeping the paper short, and to avoid repeating some technical details,
we apologetically invite the reader to consult [11,12]. We also assume familiarity with
the Bible of this field [6].

2 Herbrand consistency of arithmetical theories

For getting a unique Skolemized formula, it is more convenient to negation normalize
and rectify the formula.

Definition 1 (Rectified Negation Normal Form) A formula is in negation normal form
when no implication symbol → appears in it, and the negation symbol ¬ appears
behind the atomic formulas only.

A formula is rectified when different quantifiers refer to different variables and no
variable appears both free and bound in the formula. �
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Herbrand consistency of some finite fragments of bounded arithmetical theories 319

Any formula can be uniquely negation normalized by removing the implication con-
nectives (replacing formulas of the form A→ B with ¬A ∨ B) and then pushing the
negations inside the sub-formulas by de Morgan’s Law, until they get to the atomic
formulas. Renaming the variables can rectify any formula. Thus one can negation
normalize and rectify a formula uniquely, up to a variable renaming.

Definition 2 (Skolemization) For any existential formula ∃x A(x) with m(� 0) free
variables, let f∃x A(x) be a new m-ary function symbol (which does not occur in A;
cf. [5]). For any rectified negation normal formula ϕ we define ϕS inductively:

– ϕS = ϕ for atomic or negated-atomic formula ϕ
– (ϕ ∧ ψ)S = ϕS ∧ ψ S

– (ϕ ∨ ψ)S = ϕS ∨ ψ S

– (∀xϕ)S = ∀xϕS

– (∃xϕ)S = ϕS[f∃xϕ(x)(y)/x] where y are the free variables of ∃xϕ(x).
Finally, the Skolemized form ϕSk of the formula ϕ is obtained by removing all the
(universal) quantifiers of ϕS . The resulted formula is open (quantifier-less), with prob-
ably some free variables. If those (free) variables are substituted with some ground
(variable-free) terms, we obtain an Skolem instance of that formula. �
Summing up, to get an Skolem instance of a given formula ϕ we first negation nor-
malize and then rectify it to get a formula ϕRNNF; then we remove the quantifiers
of (ϕRNNF)S to get (ϕRNNF)Sk, and substituting its free variables with some ground
terms, gives us an Skolem instance of the formula ϕ. Let us note that the Skolem
instances of a formula are determined uniquely.

Theorem 1 (Herbrand-Skolem-Gödel) Any theory T is equi-consistent with its Skole-
mized theory. In other words, T is consistent if and only if every finite set of Skolem
instances of T is (propositionally) satisfiable.

Example 1 In the language of arithmetic LA = {0,S,+, ·,�}, let Ind� be

ψ(0) ∧ ∀x[ψ(x)→ ψ(S(x))] → ∀xψ(x)
where ψ(x) = ∃y[y � x · x ∧ y = x · x].

This is an axiom of I�0. Rectified Negation Normal Form (Ind�)RNNF of Ind� is

∀u[u �� 0 · 0 ∨ u �= 0 · 0]
∨

∃w
[
∃z[z � w · w ∧ z = w · w] ∧ ∀v[v �� S(w) · S(w) ∨ v �= S(w) · S(w)]

] ∨

∀x∃y[y � x · x ∧ y = x · x].

Then ((Ind�)RNNF)S can be computed as:

∀u[u �� 0 · 0 ∨ u �= 0 · 0]
∨

[[q(c) � c · c ∧ q(c) = c · c] ∧ ∀v[v �� S(c) · S(c) ∨ v �= S(c) · S(c)]]
∨

∀x[q(x) � x · x ∧ q(x) = x · x],

123



320 S. Salehi

where q(x) is the Skolem function symbol for the formula ∃z[z � x ·x∧z = x ·x], and
the constant c is the Skolem function symbol for the sentence of the second disjunct:

∃w[∃z[z � w · w ∧ z = w · w] ∧ ∀v[v �� S(w) · S(w) ∨ v �= S(w) · S(w)]].

Finally, the Skolemized form (Ind�)Sk of ϕ is obtained as:

[u �� 0 · 0 ∨ u �= 0 · 0]
∨

[[q(c) � c · c ∧ q(c) = c · c] ∧ [v �� S(c) · S(c) ∨ v �= S(c) · S(c)]]
∨

[q(x) � x · x ∧ q(x) = x · x].
Substituting u/0, v/S(c) ·S(c), x/t will result in the following Skolem instance of ϕ:

[0 �� 0 · 0 ∨ 0 �= 0 · 0]
∨

[[q(c) � c · c ∧ q(c) = c · c] ∧ [S(c) · S(c) �� S(c) · S(c) ∨ S(c) · S(c) �= S(c) · S(c)]]
∨

[q(t) � t · t ∧ q(t) = t · t].

�
Propositional satisfiability is usually arithmetized from the usual provability, only in
propositional logic (see e.g. [6]); but in a series of more recent papers, this notion has
been arithmetized differently, according to ones needs ([1–4,7,9–13]). We formalize
the notion of propositional satisfiability by means of evaluations (as in the op. cit.
papers) on sets of (Skolem) ground terms, but in a more effective way. To get a small
evaluation on a given set of terms, we first sort its members, and then require the
equality relation to be a congruence.

We will call the ground terms constructed from Skolem function (and constant)
symbols, simply terms. The LA-terms, where LA = {0,S,+, ·,�} is the language of
arithmetic, will be written by typewriter font (like r,t,s, . . .) and the other (Skolem)
terms will be written in italic font (like r, s, t, . . .). For a set A, its cardinality will
be denoted by |A|, and for a sequence p, its length will be also denoted by |p|. For
the elements of p, the (i + 1)th member of p is denoted by (p)i for any i < |p|; so
p = 〈(p)0, (p)1, . . . (p)|p|−1〉. Let ≈ and ≺ be two new symbols not in LA.

Definition 3 (Pre-Evaluation) For a set of terms Λ (with |Λ| � 2), a pre-evaluation
on Λ is a sequence p that satisfies the following conditions:

(1) length of p is |p| = 2|Λ| − 1;
(2) for any 0 � i � |Λ| − 1 we have (p)2i ∈ Λ;
(3) for any 1 � i � |Λ| − 1 we have (p)2i−1 ∈ {≺,≈};
(4) for any term t ∈ Λ there exists a unique 0 � j � |Λ| − 1 such that (p)2 j = t . �
In other words, a pre-evaluation on Λ sorts (organizes) the terms in Λ, starting from
the smallest and ending in the largest.

Example 2 A pre-evaluation on {α0, α1, α2, α3, α4, α5, α6} is a sequence like
p = 〈α4,≺, α7,≈, α1,≈, α5,≺, α3,≺ α6,≈, α2〉. �
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Herbrand consistency of some finite fragments of bounded arithmetical theories 321

Here we note that a sub-string of a sequence α1α2 . . . αn is a sub-sequence of it in the
form α1+iα2+i . . . αm+i where 0 � i and m + i � n; in other words, a sub-string of a
sequence is a prefix of a suffix of that sequence.

Definition 4 (Equality and Order in Pre-Evaluations) In a pre-evaluation p on Λ
define the relations ≈p and ≺p on Λ2 by the following conditions for s, t ∈ Λ:

(1) s ≈p t if there exists a sub-string q of p of length 2l − 1 (l � 1) such that
(a) either ((q)0 = s & (q)2l−2 = t) or ((q)0 = t & (q)2l−2 = s);
(b) for any 1 � i � l − 1, (q)2i−1 = ≈.

(2) s ≺p t if there exists a sub-string q of p of length 2l − 1 (l � 1) such that
(a) (q)0 = s and (q)2l−2 = t ;
(b) there exists some 1 � i � l − 1 for which (q)2i−1 = ≺. �

Example 2 (Continued) We have α1 ≈p α5 ≈p α7 and α2 ≈p α6. Also, α4 ≺p

α1, α4 ≺p α5, α4 ≺p α7, α1 ≺p α2, α1 ≺p α3, and α1 ≺p α6 hold. �
Lemma 1 (Equivalence and Order by Pre-Evaluation) LetΛ be a set of terms, and p
be a pre-evaluation on Λ.

(1) The relation ≈p is an equivalence on Λ.
(2) The relation ≺p is a total order on Λ/ ≈p.
(3) The relations ≈p and ≺p are compatible with each other: if t ≈p s, and t ≺p u

(respectively, u ≺p t), then s ≺p u (respectively, u ≺p s).

Proof The parts (1) and (2) are immediate. For (3), suppose t ≈p s and t ≺p u. Then
there is a sub-string q of p which starts from t and ends with u and contains at least
one special symbol ≺. There must also be some other sub-string q ′ which starts from
either t or s and ends with the other one, and all its special symbols are equality ≈. If
q ′ starts from s (and so ends with t), then the concatenation of q ′ and q results in a
sub-string which starts from s and ends with u and contains some special symbol ≺.
Whence s ≺p u. And if q ′ starts from t , then q cannot be a sub-string of q ′ because all
the special symbols in q ′ are ≈ and q contains at least one special symbol ≺. Thus q ′
has to be a sub-string of q. Then there must exist a sub-string of p which starts from
s and ends with u and contains a special symbol ≺; whence s ≺p u. The other case
(u ≺p t) can be proved very similarly. ��
Definition 5 (Evaluation) A pre-evaluation p on a set of termsΛ is called an evalua-
tion when for any term t, s ∈ Λ and any term u(x) with the free variable x , if t ≈p s
and u(t/x), u(s/x) ∈ Λ then u(t/x) ≈p u(s/x). �
In other words, an evaluation on Λ is a pre-evaluation p on Λ whose equivalence
relation ≈p is a congruence relation on Λ.

Definition 6 (Satisfaction in an Evaluation) Let Λ be a set of terms and p an eval-
uation on it. For terms t, s ∈ Λ we write p |� t = s when t ≈p s holds. We also
write p |� t � s when either t ≈p s or t ≺p s holds. So, for atomic formulas ϕ in
the language of arithmetic LA we have defined the notion of satisfaction p |� ϕ. The
satisfaction relations can be extended to all open (quantifier-less) formulas as usual:
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322 S. Salehi

– p |� ϕ ∧ ψ ⇐⇒ p |� ϕ and p |� ψ
– p |� ϕ ∨ ψ ⇐⇒ p |� ϕ or p |� ψ
– p |� ϕ→ ψ ⇐⇒ if p |� ϕ then p |� ψ
– p |� ¬ϕ ⇐⇒ p �|� ϕ �
Lemma 2 (Leibniz’s Law) Any evaluation p on any set of terms Λ satisfies all the
available Skolem instances of the axioms of equational logic, in particular Leibniz’s
Law: for any t, s ∈ Λ and any open formula ϕ(x), we have p |� t = s∧ϕ(t)→ ϕ(s).

Proof Suppose p |� t = s. By induction on (the complexity) of (the open formula)
ϕ one can show that p |� ϕ(t) if and only if p |� ϕ(s). For atomic ϕ it follows from
Lemma 1 (on the compatibility of ≺p and ≈p), and for the more complex formulas it
follows from the inductive definition of satisfaction in evaluations. ��
Definition 7 (T -evaluation on Λ) For a set of terms Λ, an Skolem instance of a
formula is called to be available in Λ if all the terms appearing in it belong to Λ.
For a theory T and a set of terms Λ and an evaluation p on Λ, we say that p is an
T -evaluation on Λ if p satisfies every Skolem instance of every sentence in T which
is available in Λ. �
So, T -evaluations, for a theory T , are kind of partial models of T .

Example 3 Let T be axiomatized by the following sentences in LA:

• ∀x[x · 0 = 0];
• ∃y � 0 · 0[y = 0 · 0] ∧ ∀x[∃y � x · x[y = x · x] →
∃y � S(x) · S(x)[y = S(x) · S(x)]]→ ∀x∃y � x · x[y = x · x].

LetΛ = {0,0 ·0, c, c ·c, q(c),S(c) ·S(c), t, t · t, q(t)}where c and q are as in Example 1.
As we saw in that example, the following is an instance of the second axiom (Ind�),
which is also available in Λ:

[0 �� 0 · 0 ∨ 0 �= 0 · 0]
∨

[[q(c) � c · c ∧ q(c) = c · c] ∧ [S(c) · S(c) �� S(c) · S(c) ∨ S(c) · S(c) �= S(c) · S(c)]]
∨

[q(t) � t · t ∧ q(t) = t · t].

Suppose p is an T -evaluation on Λ. By the first axiom p must satisfy the instance
0 · 0 = 0, so we should have p |� 0 · 0 = 0. Thus, p cannot satisfy the first disjunct
of the above instance. Indeed, p cannot satisfy the second disjunct either, because for
any term u we have p |� u � u ∧ u = u. Thus, p cannot satisfy the second conjunct
of the second disjunct. Whence, p must satisfy the third disjunct of the above instance,
and in particular we should have p |� q(t) = t · t . �
For a theory T , ifΛ is the set of all (ground) terms (constructed from the language of
T and the Skolem function symbols of the axioms of T ), then any T -evaluaton on Γ
(if exists) is a Herbrand Model of T . Now, Herbrand’s Theorem can be read as

A theory T is consistent if and only if
for every finite set of (Skolem) terms, there exists an T -evaluation on it.

123



Herbrand consistency of some finite fragments of bounded arithmetical theories 323

Thus, the notion of Herbrand Consistency of a theory T is (equivalent to) the existence
of an T -evaluation on any (finite) set of terms.

Definition 8 (Skolem Hull) Let L Sk
A be the language expanding LA by the Skolem

function (and constant) symbols of all the existential formulas in the language LA.
That is L Sk

A = {f∃xϕ(x) | ϕ is an LA − formula}. For a given set of terms Λ, let Λ〈 j〉
be defined by induction on j :

Λ〈0〉 = Λ;
Λ〈 j+1〉 = Λ〈 j〉 ∪

{
f (t1, . . . , tm) | f ∈ L ∧ t1, . . . , tm ∈ Λ〈 j〉

}

∪
{
f∃xϕ(x)(t1, . . . , tm) | �ϕ� � j ∧ t1, . . . , tm ∈ Λ〈 j〉

}
,

where �ϕ� is the Gödel code of ϕ. �
Bounding the Gödel code of ϕ in the above definition will enable us to have some
efficient (upper bound) for the Gödel code of Λ〈 j〉 (see [11,12]).

Herbrand’s theorem implies that for any ∃1-formula ∃xψ(x) (where ψ is an open
formula) and any theory T , if T � ∃xψ(x) then there are some (Skolem) terms
t1, . . . , tn such that T Sk � ψ(t1) ∨ · · · ∨ ψ(tn). Usually this observation is called
Herbrand’s Theorem. We will need a somehow dual of this fact.

Lemma 3 (Herbrand Proof of Universal Formulas) For a ∀1-formula ∀xψ(x) (where
ψ is open) and a theory T , suppose T � ∀xψ(x). There exists a finite (standard)
k � 0 such that for any set of terms Λ, any T -evaluation p on Λ〈k〉 and any t ∈ Λ,
we have p |� ψ(t).
Proof By T � ∀xψ(x) the theory T Sk ∪ {¬ψ(c)}, where c is the Skolem constant
symbol for ∃x¬ψ(x), is inconsistent. Suppose ϕ is the rectified negation normal form
of¬ψ . Then, by Herbrand’s theorem, there exists some finite set of terms Γ such that
there can be no (T Sk ∪ {ϕ(c)})-evaluation on it. Since c appears in Γ we write it as
Γ (c), and by Γ (u), where u is an arbitrary term, we denote the set of terms which
result from the terms of Γ (c) by replacing c with u everywhere. It can be clearly seen
that there exists some k ∈ N such that for any set of terms Λ and any t ∈ Λ we have
Γ (t) ⊆ Λ〈k〉. Whence, there cannot be any (T Sk ∪ {ϕ(t)})-evaluation on Λ〈k〉. Thus,
any T -evaluation p on Λ〈k〉 must satisfy p �|� ϕ(t), or equivalently p |� ψ(t). ��
Example 4 Let the theory T , in the language of arithmetic LA, be axiomatized by

(1)∀x[S(x) �= 0] (2)∀x, y[x + S(y) = S(x + y)]
(3)∀x∃z[x �= 0→ x = S(z)] (4)∀x, y∃z[x � y → z + x = y]

For the open formula ψ(x) = (x � 0→ x = 0) we have T � ∀xψ(x).
Let p(x) be the Skolem function for the formula ∃z[x = 0∨ x = S(z)], and h(x, y)

be the Skolem function for the formula ∃z[x �� y ∨ z+ x = y]. Then the Skolemized
form T Sk of the theory T will be as:

(1′)S(x) �= 0 (2′) x + S(y) = S(x + y)
(3′) x = 0 ∨ x = S(p(x)) (4′) x �� y ∨ h(x, y)+ x = y
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For a fixed term t let Γt be the following set of terms:

{0, t, h(t,0), h(t,0)+t, p(t),S(p(t)), h(t,0)+p(t), h(t,0)+S(p(t)),S
(
h(t,0)+p(t))}.

Now we show that any T -evaluation p on Γt must satisfy p |� ψ(t) or, equivalently,
if p |� t �0 then p |� t=0. Assume p |� t �0. Then by the fourth axiom we should
have p |� h(t,0)+t=0. If p |� t=0 does not hold, then p |� t �=0, so by the third
axiom we have p |� t =S(p(t)). Whence, p |� h(t,0)+S(p(t))= 0. On the other
hand, by the second axiom, p |� h(t,0)+S(p(t))= S

(
h(t,0)+p(t)). Now we can

infer that p |� S
(
h(t,0)+p(t))= 0, which is in contradiction with the first axiom.

Thus, p |� t=0 must hold, which shows that p |� ψ(t). �
As was mentioned before, for a consistent theory T there must exist some Herbrand
Model of T .

Definition 9 (Definable Herbrand Models) Let Λ be a set of terms, and define its
Skolem Hull to beΛ〈∞〉 =⋃

n∈NΛ〈n〉 (see Definition 8). Suppose p is an evaluation
onΛ〈∞〉. Define M(Λ, p) = {t/p | t ∈ Λ〈∞〉}, where t/p is the equivalence class of
the relation ≈p containing t (cf. Lemma 1). Put the structure on it by

(1) f M(Λ,p)(t1/p, . . . , tm/p) = f (t1, . . . , tm)/p, and
(2) RM(Λ,p) = {(t1/p, . . . , tm/p) | p |� R(t1, . . . , tm)},
for any m-ary function symbol f and any m-ary relation symbol R. �
Lemma 4 (Herbrand Models by Evaluations) The structure on M(Λ, p) is
well-defined, and for a theory T , if p is an T -evaluation on Λ then M(Λ, p) |� T .

3 Bounded arithmetic and Herbrand consistency

By an efficient Gödel coding (see e.g. Chapter V of [6]) we can code sets, sequences
(and so the syntactic concepts like Skolem function symbols, Skolem instances, eval-
uations, etc.) such that the following [6] hold for any sequences α, β:

– �α ∗ β� � 64 · (�α� · �β�), where ∗ denotes concatenation;
– |α| � log(�α�).

It follows that for any sets A, B we have �A ∪ B� � 64 · (�A� · �B�) and |A| �
log(�A�). We write X ∈ O(Y ) to indicate that X � Y · n + n for some n ∈ N;
that is X is linearly bounded by Y . The above (efficient) coding has the property that
for any sequence U = 〈u1, . . . , ul〉 we have log(�U�) ∈ O(

∑
i log(�ui�)). For any

evaluation p on a set of terms Λ it can be seen that log(�p�) ∈ O(log(�Λ�)).
Let us note that all of the concepts introduced so far can be formalized in the lan-

guage of arithmetic LA. Here we make the observation that, having an arithmetically
definable set of terms Λ, the sets Λ〈 j〉 are all definable in arithmetic (in terms of Λ
and j), but the set Λ〈∞〉 is not definable by an arithmetical formula. We will come
to this point later. The arithmetical theory we are interested here is denoted by I�0
which is usually axiomatized by Robinson’s arithmetic, in the language LA, plus the
induction axiom for bounded formulas (see e.g. [6]).
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Herbrand consistency of some finite fragments of bounded arithmetical theories 325

In this section we prove our main result: the existence of a finite fragment T ⊆ I�0
whose Herbrand Consistency is not provable in I�0. As the exponential function
x �→ 2x is not available (provably total) in I�0, we denote by log the set of elements
x for which exp(x) = 2x exists. Let us note that for a model M , the set log(M ) is the
logarithm of the elements of M . The set log is closed under S and +, but not under
×, in I�0. We will use the term cut for any definable and downward closed set (not
necessarily closed under S) in the arithmetical models. The formula “y = exp(x)” is
expressible in LA by a bounded formula, and I�0 can prove some of the basic prop-
erties of exp (cf. [6]), though cannot prove its totality: I�0 �� ∀x∃y[y = exp(x)]. By
log2 we denote the set of elements x for which exp2(x) = 22x

exists; the superscripts
on top of the functions denote the iteration. Similarly, logn = {x | ∃y[y = expn(x)]},
where expn denotes the n time iteration of the exponential function exp.

We use a deep theorem in bounded arithmetic, which happens to be the very last
theorem of [6]. It reads, in our terminology, as:

For any k � 0 there exists a bounded formula ϕ(x) such that
I�0 +�1 � ∀x ∈ logk+1ϕ(x), but I�0 +�1 �� ∀x ∈ logkϕ(x).

It can be clearly seen that the theorem also holds for I�0 instead of I�0 +�1, and
for any cut I (and its logarithm log I = {x | ∃y ∈ I [y = exp(x)]}) instead of logk

(and its logarithm logk+1); see also [3] and (Theorem 3.6 of) [11].

Theorem 2 (Π1-Separation of Logarithmic Cuts) For any cut I there exists a bounded
formula ϕ(x) such that the theory I�0 ∪ {∃x ∈ I ϕ(x)} is consistent, but the theory
I�0 ∪ {∃x ∈ log I ϕ(x)} is not consistent.

We will find the desired finite fragment of I�0 (whose Herbrand Consistency is
not provable in I�0) in three steps (the following subsections) before proving the
main result (in the last subsection). For doing so, we will show that for sufficiently
strong finite fragments of I�0, like T , if I�0 � HCon(T ) then the consistency of the
theory I�0 ∪ {∃x ∈ I θ(x)}, for some suitable cut I and a suitable bounded formula θ ,
implies the consistency of the theory T ∪ {∃x ∈ log I θ(x)}. And this, as we will see,
contradicts Theorem 2.

3.1 The first finite fragment

Assuming the consistency of I�0 ∪ {∃x ∈ I ϕ(x), HCon(T )}, and inconsistency of
the theory T ∪ {∃x ∈ log I ϕ(x)}, we can construct a model M, from a given model
M |� I�0 ∪ {∃x ∈ I ϕ(x), HCon(T )}, such that M |� T ∪ {∃x ∈ log I ϕ(x)}; which
is in contradiction with the assumptions. For that, let us take a (hypothetical) model
M |� I�0 ∪ {a ∈ I ∧ ϕ(a)} ∪ {HCon(T )} for some a ∈ M . Then we form the set
Γ = {0, 1, 2, . . . ω1(a)} where i is a term in LA representing the number i , defined
inductively as 0 = 0 and i + 1 = S(i). Let us note that for sufficiently small elements
i ∈ M (a code for) the term i may exist; in fact for the i’s in the cut I (Defini-
tion 10 below) always i exists in M . From the assumption M |� HCon(T ) we find
an T -evaluation p onΛ〈 j〉, for a suitable j and a suitableΛ which contains the above
set Γ . Then we can form the model M(Λ, p) and, by some technical details, show
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that M(Λ, p) |� T + ∃x ∈ log Iϕ(x). The bound ω1(a) assures us that the set Γ
contains the range of (the bounded) quantifiers in the (bounded) formula ϕ(a). For the
Gödel code of i we have log(�i�) ∈ O(log(2i )) and so log(�Γ �) ∈ O(log(2(ω1(a))2))

whence log(�Γ �) ∈ O
(

log
(

exp2(2(log a)2)
))

. We need the closure of Γ under the
Skolem function symbols of (a finite fragment of) I�0, that is Γ 〈∞〉 (see Defini-
tions 9 and 8). Since, unfortunately, that set is not definable, we consider the set Γ 〈 j〉
for a non-standard j , which makes sense if �Γ � (and so a) is non-standard. In case a
is standard, then the proof becomes trivial (see below). For some non-standard j with
j � log4(�Γ �) we can form the set Γ 〈 j〉, in case ω2(�Γ �) exists (see [11,12]). And
finally we have log

(
ω2(�Γ �)

) ∈ O
(

log
(

exp2(4(log a)4)
))

.

Definition 10 (The Cut I ) The cut I is defined to be {x | ∃y[y = exp2(4(log a)4)]},
and its logarithm is log I = {x | ∃y[y = exp2(4a4)]}. �
Applying Theorem 2 to the cut I defined above, we find a (fixed) bounded formula
θ and a finite fragment T0 ⊆ I�0 such that the theory the theory I�0 ∪ {∃x ∈I θ(x)}
is consistent, but the theory T0 ∪ {∃x ∈ log I θ(x)} is not consistent.

Definition 11 (The First Fragment T0) Let T0 be a finite fragment of I�0 for which
there exists a (fixed) bounded formula θ such that the theory I�0 ∪ {∃x ∈I θ(x)} is
consistent, but the theory T0 ∪ {∃x ∈ log I θ(x)} is not consistent. Let M be a (fixed)
model such that M |� I�0 ∪ {∃x ∈I θ(x)}. �
In the rest of the paper we will show that for a finite fragment T of I�0 extending T0
we have M �|� HCon(T ), where HCon is the predicate of Herbrand Consistency.

3.2 The second finite fragment

The proof of the main result goes roughly as follows: if M |� HCon(T ), for a finite
fragment T ⊆ I�0 to be specified later, then there exists (in M ) some T -evaluation p
on someΛ〈 j〉, whereΛ ⊇ Γ is to be specified later and Γ and j are as in the previous
subsection. Whence we can form the model M(Λ, p), for which we already have
M(Λ, p) |� T by Lemma 4. Our second finite fragment T1 will have the property
that if T ⊇ T1 then M(Λ, p) |� θ0(a/p). The third finite fragment T2 will have the
property that if T ⊇ T2 then we have M(Λ, p) |� a/p ∈ log I . So, finally we will
get the model M(Λ, p) which satisfies M(Λ, p) |� T + [a/p ∈ log I ∧ θ0(a/p)],
or, in the other words, M(Λ, p) |� T ∪ {∃x ∈ log I θ0(x)} which is in contradiction
with (the choice of the first finite fragment) T0 ⊆ T .

Definition 12 (The Second Fragment T1) Let T1 be a finite fragment of I�0 which
can prove the following (I�0-provable ∀∗-)sentences:
• x + 0 = x • x + S(y) = S(x + y)
• x · 0 = 0 • x · S(y) = x · y + x
• x � 0↔ x = 0 • x � S(y)↔ x = S(y) ∨ x � y
• x � y ∨ y � x • x � y � z→ x � z
• x � z + x • x � x + z
• x + z � y + z→ x � y • z �= 0 ∧ x · z � y · z→ x � y
• x �= y ↔ S(x) � y ∨ S(y) � x • x �� y ↔ S(y) � x
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and also can prove the following (I�0-provable ∀∗∃∗-)sentences:

• x � y → ∃z[z + x = y]
• y �= 0→ ∃q, r [x = r + q · y ∧ r � y] �
Remark 1 It can be seen that T1 can prove the following arithmetical sentences:

• S(x) �= 0 • S(x) = S(y)→ x = y
• S(x) �� x • x �= 0→ ∃y[x = S(y)]
For a proof, first note that by x � y ∨ y � x we have ∀u[u � u], and also from
x � z+ x and x+0 = x we get ∀u[0 � u]. Now, if S(u) = 0, then S(u) � 0, and so
by the axiom x �� y ↔ S(y) � x we get 0 �� u, contradiction! Also from the same
axiom it follows that u �� u ↔ S(u) � u, and thus S(u) �� u. If S(u) = S(v) and
u �= v then by x �= y ↔ S(x) � y∨S(y) � x we have either S(u) � v or S(v) � u.
If S(u) � v then S(v) � v, contradiction! The other case is similar. Finally, assume
u �= 0. Then by x � 0↔ x = 0 we have u �� 0 and so the axiom x �� y ↔ S(y) � x
implies that S(0) � u. Thus, by x � y → ∃z[z + x = y] we have v + S(0) = u for
some v. Then from x +S(y) = S(x + y) and x + 0 = x we conclude that S(v) = u.

��
The main property of T1 is the following:

Theorem 3 (The Main Property of T1) Suppose M is a non-standard model such that
M |� I�0 + [a∈I ∧ θ(a)] + HCon(T ) where θ is a bounded formula and a ∈M
is non-standard and T � T1. If p ∈M is an T -evaluation on Λ〈 j〉 where Λ is a set
of terms such that Λ ⊇ Γ = {i | i � ω1(a)} and j is a non-standard element of
M , then for any bounded formula ϕ(x1, . . . , xn) and any elements i1, . . . , in � a in
M ,M |� ϕ(i1, . . . , in) ⇐⇒ M(Λ, p) |� ϕ(i1/p, . . . , in/p).

We prove the theorem by induction on (the complexity) of ϕ (see also [11,12]).

Lemma 5 (Another Property of T1) Suppose K |� T1 and a ∈K , and let t be an
LA-term. For any i1, . . . , in �a in K and b∈K , if K |� b�t(i1, . . . , in) then there
exist an LA-terms and some j1, . . . , jm �a in K such that K |� b = s( j1, . . . , jm).

Proof By induction on t (for simplicity we omit (i1, . . . , in) from t(i1, . . . , in)):

– t = 0: if K |� b � 0 then by the T1-axiom x � 0 ↔ x = 0 we have
K |� b = 0.

– t = S(t1): if K |� b � S(t1) then by x �S(y) ↔ x =S(y) ∨ x � y which is
a T1-axiom, we have K |� b = S(t1) ∨ b � t1, and the result follows from the
induction hypothesis.

– t = t1+t2: if K |� b � t1+t2 then by the T1-axiom x � y ∨ y � x we have
that K |� b � t2∨t2 � b. If K |� b � t2 then the conclusion follows from the
induction hypothesis. Otherwise if K |� t2 � b then by x � y→ ∃z[z+ x = y]
(another T1-axiom) there exists some d ∈ K such that K |� d + t2 = b. Thus
K |� d + t2 � t1 + t2, whence by the T1-axiom x + z � y + z → x � y we
have K |� d � t1, and the desired result follows from the induction hypothesis
and the fact that K |� b = d + t2.
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– t = t1 ·t2: assume K |� b � t1 ·t2. If K |� t2 = 0 then K |� t1 ·t2 = 0 by
the T1-axiom x ·0 = 0. And so K |� b � 0 is reduced to the first case above. Sup-
pose K |� t2 �= 0. Then by the T1-axiom y �= 0→ ∃q, r [x = r +q · y∧ r � y]
we have K |� b = r + q · t2 ∧ r � t2 for some q, r ∈K . By the T1-axiom
x � z + x we have K |� q · t2 � r + q · t2 = b � t1 · t2, and then using the
T1-axiom x � y � z → x � z one can infer that K |� q · t2 � t1 · t2, and
finally the T1-axiom z �= 0 ∧ x · z � y · z → x � y implies that K |� q � t1
(since K |� t2 �= 0). Now, the desired conclusion follows from the induction
hypothesis and the fact that K |� b = r + q · t2 ∧ r � t2 ∧ q � t1. ��

Lemma 6 (Preservation of Atomic Formulas) With the assumptions of Theorem 3, for
any atomic formula ϕ(x1, . . . , xn) and any i1, . . . , in � a we have that

M |� ϕ(i1, . . . , in) ⇐⇒ M(Λ, p) |� ϕ(i1/p, . . . , in/p).

Proof By the T1-axioms x �= y ↔ S(x) � y ∨ S(y) � x and x �� y ↔ S(y) � x it
suffices to prove the one direction only:

M |� ϕ(i1, . . . , in) �⇒M(Λ, p) |� ϕ(i1/p, . . . , in/p).

If ϕ(i1, . . . , in) = “t(i1, . . . , in) � s(i1, . . . , in)” for some LA-terms t and s, then
M |� t(i1, . . . , in) � s(i1, . . . , in) implies the existence of some b ∈ M such
that M |� b + t(i1, . . . , in) = s(i1, . . . , in). By the T1-axiom x � x + z we
have M |� b �s, so by Lemma 5 there exist an LA-term r and some elements
j1, . . . , jm � a such that K |� b = r( j1, . . . , jm). Whence,

M |� r( j1, . . . , jm)+ t(i1, . . . , in) = s(i1, . . . , in).

So, noting that M ,M(Λ, p) |� T1, it suffices to prove the lemma for the atomic
formula ϕ(i1, . . . , in) of the form ϕ(i1, . . . , in) = “t(i1, . . . , in) = s(i1, . . . , in)”.

For that we note that if i1, . . . , in � a then t(i1, . . . , in),s(i1, . . . , in) � ω1(a).
Suppose M |� t(i1, . . . , in) = (i1, . . . , in) = i . We show by induction on (the
complexity of) t that

M |� t(i1, . . . , in) = i �⇒M(Λ, p) |� t(i1/p, . . . , in/p) = i/p.

Note that the condition M(Λ, p) |� t(i1/p, . . . , in/p) = i/p is equivalent to the
condition M |� “p |� t(i1, . . . , in) = i”. So, it suffices to show the following
equivalence by induction on t:

M |� t(i1, . . . , in) = i ←→ “p |� t(i1, . . . , in) = i”.

For t = 0 and t = S(t1) the result follows from the definition 0 = 0 and j + 1 =
S( j). And for t = t1 + t2 and t = t1 · t2 the result follows from the T1-axioms
x + 0 = x, x + S(y) = S(x + y), x · 0 = 0, and x · S(y) = x · y + x . ��
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Hence, the lemma also holds for open formulas ϕ as well. For bounded formulas we
note that the range of quantifiers of ϕ(i1, . . . , in) for i1, . . . , in � a is contained in
the set { j | j � ω1(a)}. This is formally expressed in the following lemma.

Lemma 7 (End-Extension Property) With the assumptions of Theorem 3, if for some
i � a and some term u we have (M |�)p |� u � i , then there exists some j � i such
that (M |�)p |� u = j .

Proof By induction on the term i . For i = 0, if p |� u � 0 then by Lemma 3, and the
T1-axiom x � 0↔ x = 0, we have p |� u = 0 = 0. For i = S( j), if p |� u � S( j)
then by Lemma 3, and the T1-axiom x � S(y) ↔ x = S(y) ∨ x � y, we must
have that p |� u = S( j) ∨ u � j . Now the conclusion follows from the induction
hypothesis. ��
Now we can prove Theorem 3.

Proof (of Theorem 3) By induction on (the complexity of the bounded formula) ϕ. As
the theorem has been proved for open formulas (Lemma 6), it suffices to show that
if the theorem holds for the (bounded) formula ϕ then it also holds for the (bounded)
formula ∃x �t(i1, . . . , in)ϕ(x, i1, . . . , in)where t is an LA-term; in the other words:

M |� ∃x �t(i1, . . . , in)ϕ(x, i1, . . . , in) ⇐⇒
M(Λ, p) |� ∃x �t(i1/p, . . . , in/p)ϕ(i1/p, . . . , in/p).

If M |� b � t(i1, . . . , in) ∧ ϕ(b, i1, . . . , in), for some b ∈M , then by Lemma 5
there are some LA-term s and some elements j1, . . . , jm � a in M such that M |�
b = s( j1, . . . , jm). So, we have M |� ϕ(s( j1, . . . , jm), i1, . . . , in). Whence, by the
induction hypothesis we also have

M(Λ, p) |� ϕ(s( j1/p, . . . , jm/p), i1/p, . . . , in/p),

thus, noting that we already have

M(Λ, p) |� s( j1/p, . . . , jm/p)�t(i1/p, . . . , in/p),

the desired conclusion holds:

M(Λ, p) |� ∃x � t(i1/p, . . . , in/p)ϕ(i1/p, . . . , in/p).

Conversely, if M(Λ, p) |� d � t(i1/p, . . . , in/p) ∧ ϕ(d, i1/p, . . . , in/p) holds
for some d ∈ M(Λ, p), then by Lemma 5 there exist an LA-term s and some
elements l1, . . . , lm � a/p such that M(Λ, p) |� d = s(l1, . . . , lm). For each
α � m there is some term �α ∈ Λ〈∞〉 such that lα = �α/p. For each such α we
have M(Λ, p) |� �α/p � a/p or equivalently M |� “p |� �α � a”. So, by
Lemma 7 there exists some jα � a for which we have M |� �α = jα . Whence,
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M(Λ, p) |� d = s( j1/p, . . . , jm/p) and so

M(Λ, p) |� s( j1/p, . . . , jm/p) � t(i1/p, . . . , in/p), and

M(Λ, p) |� ϕ(s( j1/p, . . . , jm/p), i1/p, . . . , in/p)

Thus, by the induction hypothesis we have

M |� s( j1, . . . , jm) � t(i1, . . . , in), and M |� ϕ(s( j1, . . . , jm), i1, . . . , in).

So, we conclude that M |� ∃x � t(i1, . . . , in)ϕ(x, i1, . . . , in). ��
Let us repeat where we are now: in looking for a finite fragment T ⊆ I�0 such that
I�0 �� HCon(T ) we found a finite fragment T0 ⊆ I�0 and a bounded formula θ(x)
such that T0 � ¬∃x ∈ log I θ(x) but the theory I�0+∃x ∈I θ(x) is consistent and has
a model M |� I�0 + [a∈I ∧ θ(a)]. Then we aim at showing that M �|� HCon(T ).
If M |� HCon(T ) then we form the set of terms Γ = {i | i � ω1(a)} for which
ω2(�Γ �) exists (by the very definition of I and the assumption that a ∈ I ), and
so we can form the model M(Γ, p) where p is an T -evaluation on Γ 〈 j〉 (where
j � log4(�Γ �) can be taken to be non-standard if a is so). The theory T1 had the
property that M(Γ, p) |� θ(a/p) (by Theorem 3), and in the next subsection we
introduce a finite fragment T2 ⊆ I�0 such that for a suitable Λ ⊇ Γ (to be defined
later) we will have M(Λ, p) |� a/p ∈ log I . Then by taking T to be any finite
fragment of I�0 which extends T0 ∪ T1∪ T2 we will conclude that M |� ¬HCon(T ).

3.3 The third finite fragment

The fragments T0 and T1 were chosen not by their axioms but by their implications;
T0 had to prove ¬∃x ∈ log I θ(x) (Definition 11), and T1 had to prove some certain
arithmetical statements (Definition 12). But for T2 we require that it contains one of
the following sentences as (one of) its (explicit) axioms (not only its consequences).

Definition 13 (Axioms for Totality of the Squaring Function)

1. The induction principle for the bounded formulaψ(x) = “∃y � x2[y = x · x]” is
denoted by Ind� : ψ(0)∧∀x

(
ψ(x)→ ψ(S(x))

)→ ∀xψ(x). Or, in other words
(cf. Examples 1,3) Ind�, which is an axiom of the theory I�0, is the sentence:

∃y � 02[y = 0 · 0] ∧ ∀x(∃y � x2[y = x · x]
→ ∃y � S(x)2[y = S(x) · S(x)]) �⇒ ∀x∃y � x2[y = x · x].

2. The Π1-sentence expressing the totality of the squaring function is denoted by
�0 : ∀x∃y � x2[y = x · x]. �

We denote by q(x) the Skolem function symbol of the formula ∃y � x2[y = x · x]
(cf. Examples 1,3). Then the Skolemized forms of the axioms of Definition 13 will be
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1. [u �� 02 ∨ u �= 0 · 0] ∨

[[q(c) � c2 ∧ q(c) = c · c] ∧ [v �� S(c)2 ∨ v �= S(c) · S(c)]]
∨

[q(x) � x2 ∧ q(x) = x · x],

where u, v, x are free variables and c is the Skolem constant as in Example 1.
2. q(x) � x2 ∧ q(x) = x · x .

Define the terms qi ’s by induction: q0 = S(S(0)) and qi+1 = q(qi ). By using a �0
definition for exp (see the fourth paragraph of Sect. 3), for sufficiently small i’s, it can
be easily seen that qi represents the number exp2(i), while for the code of qi we have
log(�qi�) ∈ O

(
log(exp(i))

)
. That is to say that while the value of the term qi is of

double exponential, the code of it is of (single) exponential. This (one) exponential
gap, will make our proof to go through.

Formulating the statement “x ∈ log2” can be stated as “there exists a sequence p
such that (p)0 = 2 and |p| = x + 1 and for any i < x we have (p)i+1 = (p)i · (p)i ”.
And “y ∈ log I ” can be stated as “4y4 ∈ log2”. Put ϒ = {qi | i � 4a4}. Then
any �0(Ind�)-evaluation on ϒ 〈∞〉 must satisfy qi+1 = qi · qi for any i < 4a4. If
p is any such evaluation, then M(ϒ, p) |� ∀i < 4(a/p)4[qi+1/p = qi/p · qi/p].
We require the finite fragment T2 ⊆ I�0 to have the property that for any model
K |� T2, if there are elements q0, q1, . . . , qb ∈ K such that K satisfies q0 = 2
and qi+1 = q2

i for any i < b, then K |� b ∈ log2. Let us note that the code of the
sequence 〈exp2(0), exp2(1), . . . , exp2(b)〉 is roughly bounded by

∏

i�b

exp2(i) ≈ (exp2(b))2 = exp2(b + 1).

So, in the presence of q0, q1, . . . , qb ∈ K with the above property, the (code of the)
sequence p in M with the property “(p)0 = 2, |p| = b + 1 and for any i < b,
(p)i+1 = (p)i · (p)i ” must exist.

Note also that
I�0 � ∀i[i ∈ log2 → i + 1 ∈ log2]. (�)

Definition 14 (The Third Fragment T2)

1. If the usual axiomatization of I�0 is taken into account, then let T2 be a finite
fragment of it which contains the axiom Ind� and has the property (�) above.
That is to say, for any model K |� T2, if there are elements q0, q1, . . . , qb ∈ K
such that K satisfies q0 = 2 and qi+1 = q2

i for any i < b, then K |� b ∈ log2.
2. If I�0 has been axiomatized all by Π1-formulas, where the induction axioms are

in the form ∀y
(
ϕ(0) ∧ ∀x < y[ϕ(x)→ ϕ(S(x))] → ∀x � yϕ(x)

)
for bounded

ϕ, then we take the theory T2 to be a finite fragment of I�˙
0 + �0, where I�˙

0
is the above Π1-axiomatization of I�0, together with the axiom �0, such that it
has the property (�) above (i.e., for any model K |� T2, if there are elements
q0, q1, . . . , qb ∈ K such that K satisfies q0 = 2 and qi+1 = q2

i for any i < b,
then K |� b ∈ log2). So, in this case T2 is a Π1-theory. �

Let us reiterate the main property of T2 again.
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The Main Property of T2 For a model K |� T2, if there are q0, q1, . . . , qb ∈ K
such that for any j < b we have K |� q j+1 = q2

j , then K |�“b ∈ log2”.

We note that whenever we have elements q0, . . . , qb (for b ∈ log2) in a model of
T2, we also have a code for the whole sequence 〈q0, . . . , qb〉 (in that model).

3.4 The proof of the main result

Let T be any finite fragment of I�0 or I�˙
0 + �0 such that T ⊇ T0 ∪ T1 ∪ T2. If T2

is taken as in the clause (1) of Definition 14 then T is truly a finite fragment of I�0,
and if T2 is taken as in the clause (2) of Definition 14 then T is a finite I�0-derivable
Π1-theory, whose conjunction (denoted by U ) is a I�0-derivable Π1-sentence.

Theorem 4 (The Main Theorem)

(1) There exists a finite fragment T of I�0 such that I�0 �� HCon(T ).
(2) There exists an I�0-derivable Π1-sentence U such that I�0 �� HCon(U ).

Proof By Theorem 2 there exists a (fixed) bounded formula θ(x), for the cut I defined
in Definition 10, such that I�0 �� ¬∃x ∈Iθ(x) and T0 � ¬∃x ∈ log I θ(x) (see Def-
inition 11 of the theory T0). Fix M |� I�0+[a∈I ∧θ(a)]. For the part (1) take T2 as
in clause (1) of Definition 14, and for part (2) take T2 as in clause (2) of Definition 14,
and let U be the conjunction of the axioms of T . In each case we will have the Skolem
function symbol q(x) for the squaring function x �→ x2.

We show that M �|� HCon(T ): Assume, for the sake of contradiction, that we have
M |� HCon(T ). Define the terms i’s and qi ’s by induction:

0 = 0, i + 1 = S(i),q0 = 2,qi+1 = q(qi ).

LetΛ be the set of terms {i | i � ω1(a)} ∪ {qi | i � ω1(a)} in M . As we saw earlier,
the code of i (and qi ) are bounded by some polynomial of exp(i) and the code ofΛ is
polynomially bounded by exp

(
(ω1(a)2)

)
or exp2

(
2(log a)2

)
, and finally ω2(�Λ�) is

polynomially bounded by exp2
(
4(log a)4

)
; which exists by the assumption a∈I . We

note that a is non-standard, because otherwise we would have a∈ log I and whence
M would be a model of I�0+∃x ∈ log I θ(x), and this theory is inconsistent; a con-
tradiction. The existence of ω2(�Λ�) assures the existence of a non-standard element
j (� log4(�Λ�)) for which Λ〈 j〉 exists, and so by the assumption M |� HCon(T )
there must exist some T -evaluation p on Λ〈 j〉 (hence, on Λ〈∞〉) in M . So, we can
form the model M(Λ, p). For this model we have M(Λ, p) |� T by Lemma 4. Since
M |� θ(a) (and M(Λ, p) |� T1) then M(Λ, p) |� θ(a/p) by Theorem 3. Also,
since M(Λ, p) |� T2 and q0,q1, . . . ,qb (for b = 4a4) are elements of M(Λ, p)
such that M(Λ, p) |� q0 = 2 and M(Λ, p) |� qi+1 = q2

i for any i < b, then
(by the main property of T2) M(Λ, p) |� “b ∈ log2”. Or in other words we have
M(Λ, p) |� “a/p ∈ log I ”. Whence, M(Λ, p) |� [a/p ∈ log I ∧ θ(a/p)]. So,
M(Λ, p) is a model of T + ∃x ∈ log I θ(x), and this is in contradiction with the
assumption of T ⊇ T0 and the inconsistency of the theory T0+∃x ∈ log I θ(x). Thus,
M �|� HCon(T ); and so I�0 �� HCon(T ). ��
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