Diagonalizing Out by Fixed-Points

SAEED SALEHI

University of Tabriz

http://SaeedSalehi.ir/

Frontiers in Mathematical Sciences—2nd Conference Shairf University of Technology 25-27 December 2013

SAEED SALEHI

http://SaeedSalehi.ir/

Diagonalizing Out by Fixed-Points

Frontiers in Mathematical Sciences-2nd Conference

Cantor's Diagonal Argument: The Formulation

Theorem

No function $F : A \to \mathscr{P}(A)$ can be onto.

PROOF: Put
$$D_F = \{a \in A \mid a \notin F(a)\}$$
. Then
 $x \in D_F \longleftrightarrow x \notin F(x)$
and so $D_F \neq F(\alpha)$ for any $\alpha \in A$: if $D_F = F(\alpha)$ then
 $\alpha \in D_F \longleftrightarrow \alpha \notin F(\alpha) \longleftrightarrow \alpha \notin D_F$!

Cantor's $3^{\rm rd}$ Proof for the Uncountability of $\mathbb R$

JOHN FRANKS, Cantor's Other Proofs that ℝ is Uncountable, *Mathematics Magazine* 83:4 (2010) 283–289. doi:10.4169/002557010X521822

SAEED SALEHI

http://SaeedSalehi.ir/

Diagonalizing Out by Fixed-Points

Cantor's Diagonal Argument: Why Diagonal?

For
$$A = \{x, y, a, b, c, \dots\}$$
 Put $F : A \to \mathscr{P}(A)$ as:

	x	y	a	b	c		
F(x)	0	0	1	1	0	•••	$F(x) = \{x, y, a, b, c, \cdots\}$
F(y)	0	0	1	0	1	•••	$F(y) = \{x, y, a, b, c, \cdots\}$
F(a)	1	1	1	0	0	•••	$F(a) = \{x, y, a, \frac{b}{c}, \cdots\}$
F(b)	0	0	1	0	0	•••	$F(b) = \{x, y, a, b, c, \cdots\}$
F(c)	0	0	0	1	0		$F(c) = \{x, y, a, b, c, \cdots\}$
1	÷	÷	÷	÷	÷	·	:

SAEED SALEHI

http://SaeedSalehi.ir/

Diagonalizing Out by Fixed-Points

Cantor's Diagonal Argument: Why Diagonal?

Then Diagonalize Out:

	x	y	a	b	c	•••					
F(x)	$\overline{ 0 }$	0	1	1	0		$F(x) = \{x, y, a, b, c, \cdots\}$				
F(y)	0	0	1	0	1		$F(y) = \{x, y, a, b, c, \dots\}$				
F(a)	1	1	$\overline{ 1 }$	0	0		$F(a) = \{x, y, a, \frac{b}{c}, \cdots\}$				
F(b)	0	0	1	0	0		$F(b) = \{x, y, a, b, c, \cdots\}$				
F(c)	0	0	0	1	0		$F(c) = \{x, y, a, b, c, \dots\}$				
:	÷	÷	÷	÷	÷	·	:				
\searrow	1	1	0	1	1		$D_F = \{x, y, \mathbf{a}, b, c, \cdots\}$				
	$D_F \neq F(x), F(y), F(a), F(b), F(c), \cdots$										

SAEED SALEHI

http://SaeedSalehi.ir/

Diagonalizing Out by Fixed-Points

Cantor's Diagonal Argument: Other Formulations

Every $F : A \to \mathscr{P}(A)$ Corresponds to a relation $\mathscr{R}_F \subseteq A \times A$ as $x \mathscr{R}_F y \iff y \in F(x)$

 $\begin{array}{l} \text{Every binary relation } R \subseteq A \times A \text{ Corresponds to a function} \\ \mathscr{F}_R : A \to \mathscr{P}(A) \text{ as } \\ \end{array} \\ \begin{array}{l} \mathscr{F}_R(x) = \{y \in A \mid x \, R \, y\} \end{array}$

 $\mathscr{F}_{\mathscr{R}_F} = F$ and $\mathscr{R}_{\mathscr{F}_R} = R$

Cantor's Theorem: In Any Directed Graph There Exists a Set of Nodes Such That Is Not Equal to the Set of Outgoing Nodes of Any Fixed Node.

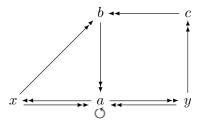
SAEED SALEHI

http://SaeedSalehi.ir/

Diagonalizing Out by Fixed-Points

Cantor's Diagonal Argument: Directed Graphs

	x	y	a	b	c	
F(x)	0	0	1	1	0	$F(x) = \{x, y, a, b, c, \cdots\}$
F(y)	0	0	1	0	1	$F(y) = \{x, y, a, b, c, \cdots\}$
F(a)	1	1	1	0	0	$F(a) = \{x, y, a, \frac{b}{c}, \cdots\}$
F(b)	0	0	1	0	0	$F(b) = \{x, y, a, b, c, \cdots\}$
F(c)	0	0	0	1	0	$F(c) = \{x, y, a, b, c, \dots\}$



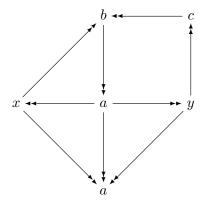
http://SaeedSalehi.ir/

SAEED SALEHI

Diagonalizing Out by Fixed-Points

Di

Cantor's Diagonal Argument: Directed Graphs

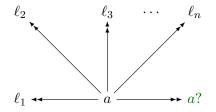


Saeed Salehi	http://SaeedSalehi.ir/	∮∑αεε∂ Σαℓεħı .ir
Diagonalizing Out by Fixed-Points	Frontiers in Mathematica	I Sciences—2 nd Conference

Cantor's Diagonal Argument: Directed Graphs

Cantor's Theorem: The Set of Loopless Nodes of a Directed Graph Cannot be the Set of Outgoing Nodes of Any Fixed Node.

<u>**PROOF</u>**: If $\{\ell_1, \ell_2, \ell_3, \dots\}$ = LoopLess = $\{x \mid aRx\}$ </u>



then $a \not Ra \longleftrightarrow a \in \texttt{LoopLess} \longleftrightarrow a \in \{x \mid aRx\} \longleftrightarrow aRa!$

SAEED SALEHI

http://SaeedSalehi.ir/

Diagonalizing Out by Fixed-Points

Cantor's Diagonal Argument: Other Formulations

Every binary relation $R \subseteq A \times A$ Corresponds to a function $C_R : A \times A \to \{0, 1\}$ as $C_R(x, y) = \begin{cases} 1 & \text{if } xRy \\ 0 & \text{if } xRy \end{cases}$

Every function $f : A \times A \to \{0, 1\}$ Corresponds to a binary relation $\Re_f \subseteq A \times A$ as $x \Re_f y \iff f(x, y) = 1$

$$\Re_{\mathbb{C}_R} = R$$
 and $\mathbb{C}_{\Re_f} = f$

Cantor's Theorem: No Function $f : A \times A \rightarrow \{0, 1\}$ Can Represent All The Functions $A \rightarrow \{0, 1\}$.

SAEED SALEHI

http://SaeedSalehi.ir/

Diagonalizing Out by Fixed-Points

Cantor's Diagonal Argument: Two-Valued Functions

The function $g : A \to \{0, 1\}$ is *represented* by $f : A \times A \to \{0, 1\}$ (at $a \in A$) when g(x) = f(x, a) holds (for every $x \in A$).

Cantor's Theorem: For Any Function $f : A \times A \rightarrow \{0, 1\}$ There Is Some Function $g : A \rightarrow \{0, 1\}$ Which Is Not Represented By f.

- Diagonal Function: $\triangle_A : A \to A \times A, \ x \mapsto \langle x, x \rangle$
- Diagonalization of $f: A \times A \rightarrow \{0,1\}$ is: $f \circ \triangle$, $x \mapsto f(x,x)$
- Negation Function: $\neg: \{0,1\} \rightarrow \{0,1\}, i \mapsto 1-i$
- Anti-Diagonal Function of f is: $\neg \circ f \circ \triangle$, $x \mapsto \neg f(x, x)$ (Diagonalizing Out of f)

SAEED SALEHI

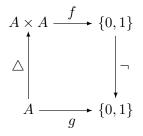
http://SaeedSalehi.ir/

Diagonalizing Out by Fixed-Points

Cantor's Diagonal Argument: Two-Valued Functions

Cantor's Theorem: For Any Function $f : A \times A \rightarrow \{0, 1\}$ The Anti–Diagonal Function of f Is Not Represented By f.

<u>PROOF</u>: For $g = \neg \circ f \circ \triangle$, $g(x) = \neg f(x, x)$



if $g(x) = f(x,\alpha)$ then $f(\alpha,\alpha) = g(\alpha) = \neg f(\alpha,\alpha)!$

SAEED SALEHI

http://SaeedSalehi.ir/

- 1

Diagonalizing Out by Fixed-Points

Diagonal Arguments by Two–Valued Functions

► F. WILLIAM LAWVERE, Diagonal Arguments and Cartesian Closed Categories, Category Theory, Homology Theory and Their Applications II, LNM 92, Springer (1969) 134–145. Repubed in *Reprints in Theory and Applications of* Categories 15 (2006) 1–13. http://www.tac.mta.ca/tac/reprints/articles/15/tr15abs.html

► F. WILLIAM LAWVERE & ROBERT ROSEBRUGH, *Sets for Mathematics*, Cambridge University Press (2003).

► NOSON S. YANOFSKY, A Universal Approach to Self-Referential Paradoxes, Incompleteness and Fixed Points, *Bull. Symbolic Logic* 9:3 (2003) 362–386. PARADOXES: the Liar, the strong liar, Russell, Grelling, Richard, Time Travel, and Löb; THEOREMS: Turing, Baker–Gill–Solovay, Karnap, Gödel, Rosser, Tarski, Parikh, Kleene, Rice, and von Neumann.

SAEED SALEHI

http://SaeedSalehi.ir/

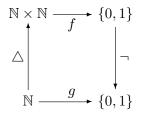
Diagonalizing Out by Fixed-Points

Diagonal Arguments by Two–Valued Functions

Euclid's Theorem: There Are Infinitely Many Prime Numbers.

PROOF: Let f(n,m) =

- $\begin{cases} 1 & \text{if all the prime factors of } (n!+1) \text{ are less than } m \\ 0 & \text{if some prime factor of } (n!+1) \text{ is greater than or equal to } m \end{cases}$ If $\mathfrak{p} \in \mathbb{N}$ is the biggest prime then g is representable by f at \mathfrak{p} :



by f(x, x) = 0 we have $g(x) = \neg f(x, x) = 1 = f(x, \mathfrak{p})!$

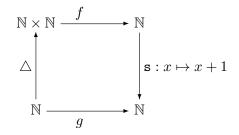
http://SaeedSalehi.ir/

Frontiers in Mathematical Sciences-2nd Conference

Diagonal Arguments for Dominating Functions

Theorem: For a sequence of functions $f_0, f_1, f_2, f_3, \dots : \mathbb{N} \to \mathbb{N}$, there exists a function $g : \mathbb{N} \to \mathbb{N}$ that dominates them all.

PROOF: Let $f(n,m) = \max_{(i \le n)} f_i(m)$ and g(x) = f(x,x) + 1:



 $x \geq m \Longrightarrow g(x) > \max_{(i \leq x)} f_i(x) \geq f_m(x).$

SAEED SALEHI

http://SaeedSalehi.ir/

Diagonalizing Out by Fixed-Points

Diagonal Arguments for Dominating Functions

	0	1	2	3	4					
f_0	$f_0(0)$	$f_0(1)$	$f_0(2)$	$f_0(3)$	$f_0(4)$	•••				
f_1	$f_1(0)$	$f_{1}(1)$	$f_1(2)$	$f_1(3)$	$f_1(4)$	•••				
f_2	$f_2(0)$	$f_2(1)$	$f_2(2)$	$f_{2}(3)$	$f_2(4)$	•••				
f_3	$f_3(0)$	$f_{3}(1)$	$f_{3}(2)$	$f_3(3)$	$f_{3}(4)$	•••				
f_4	$f_4(0)$	$f_4(1)$	$f_4(2)$	$f_4(3)$	$f_4(4)$	•••				
:	:	÷	÷	÷	÷	·				
\searrow	max	max	max	max	max		+1 = g			
$g(x) = \max\{f_i(x) \mid i \leqslant x\}{+}1$										

SAEED SALEHI

http://SaeedSalehi.ir/

Diagonalizing Out by Fixed-Points

For
$$A = \{x, y, a, b, c, \dots\}$$
 and $F : A \to \mathscr{P}(A)$

	x	y	a	b	c	• • •	
F(x)	0	0	1	1	0	•••	$F(x) = \{x, y, a, b, c, \cdots\}$
F(y)	0	0	1	0	1	•••	$F(y) = \{x, y, a, b, c, \cdots\}$
F(a)	1	1	1	0	0	•••	$F(a) = \{x, y, a, \frac{b}{c}, \cdots\}$
F(b)	0	0	1	0	0	•••	$F(b) = \{x, y, a, b, c, \cdots\}$
F(c)	0	0	0	1	0	•••	$F(c) = \{x, y, a, b, c, \cdots\}$
:	÷	÷	÷	÷	÷	·	:

SAEED SALEHI

http://SaeedSalehi.ir/

Diagonalizing Out by Fixed-Points

Permute rows by $h: A \to A$ as

 $h(x)=a,\ h(y)=b,\ h(a)=y,\ h(b)=c,\ h(c)=x$

	x	y	a	b	c	•••	
F(h(x))	1	1	1	0	0	•••	$F(a) = \{x, y, a, b, c, \dots\}$
F(h(y))	0	0	1	0	0	•••	$F(b) = \{x, y, a, b, c, \cdots\}$
F(h(a))	0	0	1	0	1	•••	$F(y) = \{x, y, a, b, c, \cdots\}$
F(h(b))	0	0	0	1	0	•••	$F(c) = \{x, y, a, b, c, \cdots\}$
F(h(c))	0	0	1	1	0	•••	$F(x) = \{x, y, a, b, c, \dots\}$
:	:	÷	÷	÷	÷	•	÷

SAEED SALEHI

http://SaeedSalehi.ir/

Diagonalizing Out by Fixed-Points

Diagonalizing Out:

	x	y	a	b	c	• • •	
F(h(x))	$\overline{ 1 }$	1	1	0	0	•••	$F(a) = \{x, y, a, \frac{b}{c}, \cdots\}$
F(h(y))	0	0	1	0	0		$F(b) = \{x, y, a, b, c, \dots\}$
F(h(a))	0	0	$\overline{ 1 }$	0	1		$F(y) = \{x, y, a, b, c, \cdots\}$
F(h(b))	0	0	0	$\overline{ 1 }$	0		$F(c) = \{x, y, a, b, c, \cdots\}$
F(h(c))	0	0	1	1	0		$F(x) = \{x, y, a, b, c, \dots\}$
:	:	÷	÷	÷	÷	·	:
\searrow	0	1	0	0	1		$D_{F \circ h} = \{x, y, a, b, c, \cdots\}$

SAEED SALEHI

http://SaeedSalehi.ir/

Diagonalizing Out by Fixed-Points

For any $F: A \to \mathscr{P}(A)$ and any surjection $h: A \to A$, put

 $D_{F \circ h} = \{a \in A \mid a \notin F(h(a))\}$

If $D_{F \circ h} = F(\alpha)$ and $h(\beta) = \alpha$ (by surjectivity of h), then

 $\beta \in D_{F \circ h} \longleftrightarrow \beta \not\in F(h(\beta)) \longleftrightarrow \beta \not\in F(\alpha) \longleftrightarrow \beta \not\in D_{F \circ h}$

Is Any Set $(B \subseteq A)$ Not In The Range Of $F (B \neq F(\Box))$ In The Form Of $D_{F \circ h}$ For Some (SURJECTION) h?

ROBERT GRAY, George Cantor and Transcendental Numbers, *The American Mathematical Monthly* 101:9 (1994) 819–832.

Theorem: A real number in the interval (0,1) is transcendental if and only if it is the diagonal number of a sequence that consists of all the binary representations of algebraic reals in (0,1).

SAEED SALEHI

http://SaeedSalehi.ir/

Diagonalizing Out by Fixed-Points

For No Surjective *h* Can We Have $D_{F \circ h} = \{b, c\}$:

	x	y	a	b	С				
F(x)	0	0	1	1	0	$F(x) = \{x, y, a, b, c\}$			
F(y)	0	0	1	0	1	$F(y) = \{x, y, a, b, c\}$			
F(a)	1	1	1	0	0	$F(a) = \{x, y, a, \frac{b}{c}\}$			
F(b)	0	0	1	0	0	$F(b) = \{x, y, a, b, c\}$			
F(c)	0	0	0	1	0	$F(c) = \{x, y, a, b, c\}$			
$D_{F \circ h} = \{a \in A \mid a \notin F(h(a))\}$									

$$\begin{aligned} x \not\in D_{F \circ h} &\longrightarrow x \in F(h(x)) \longrightarrow h(x) = a \\ y \not\in D_{F \circ h} &\longrightarrow y \in F(h(y)) \longrightarrow h(y) = a \end{aligned}$$

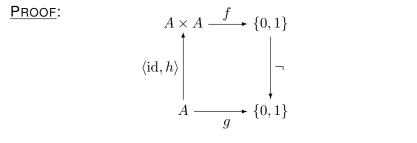
So h cannot be injective and (by A's finiteness) cannot be surjective.

SAEED SALEHI

http://SaeedSalehi.ir/

Diagonalizing Out by Fixed-Points

Theorem: For Any Function $f : A \times A \rightarrow \{0, 1\}$ And Any Surjection $h : A \rightarrow A$ The Function $g : A \rightarrow A, x \mapsto \neg f(x, h(x))$ Is Not Represented By f.



If $g(x) = f(x, \alpha)$ and $h(\beta) = \alpha$ then $f(\beta, \alpha) = g(\beta) = \neg f(\beta, h(\beta)) = \neg f(\beta, \alpha)!$

SAEED SALEHI

Diagonalizing Out by Fixed-Points

 $g: A \to \{0,1\}$ by $g(x) = \neg f(x,h(x))$ is not represented by $f: A \times A \to \{0,1\}$ (i.e., $f(x,\alpha) \neq g(x)$ for any $\alpha \in A$) when h is

- surjective: $\forall \alpha \exists \beta [h(\beta) = \alpha]$ $f(\beta, \alpha) = g(\beta) = \neg f(\beta, h(\beta)) = \neg f(\beta, \alpha)!$
- surjective w.r.t f: $\forall \alpha \exists \beta [f(x, h(\beta)) = f(x, \alpha)]$ $f(\beta, \alpha) = g(\beta) = \neg f(\beta, h(\beta)) = \neg f(\beta, \alpha)!$
- f-surjective: $\forall \alpha \exists \beta [f(\beta, h(\beta)) = f(\beta, \alpha)]$ $f(\beta, \alpha) = g(\beta) = \neg f(\beta, h(\beta)) = \neg f(\beta, \alpha)!$

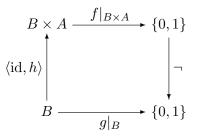
SAEED SALEHI

http://SaeedSalehi.ir/

Diagonalizing Out by Fixed-Points

Theorem: For $f: A \times A \rightarrow \{0, 1\}$ and $B \subseteq A$ if there exists an f-surjective $h: B \rightarrow A$ then any $g: A \rightarrow A$ satisfying $g|_B(x) = \neg f|_{B \times A}(x, h(x))$ is not represented by f.

PROOF:

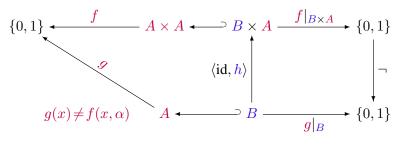


If $g(x) = f(x, \alpha)$ and $f(\beta, h(\beta)) = f(\beta, \alpha)$ (by f-surjectivity of h) then $f(\beta, \alpha) = g(\beta) = g|_B(\beta) = \neg f|_{B \times A}(\beta, h(\beta)) = \neg f(\beta, \alpha)!$

Diagonalizing Out by Fixed-Points

SAEED SALEHI

Theorem: For $f: A \times A \rightarrow \{0, 1\}$, a function $g: A \rightarrow A$ is not represented by f if and and only if there exist $B \subseteq A$ and an f-surjection $h: B \rightarrow A$ such that $g|_B(x) = \neg f|_{B \times A}(x, h(x))$.

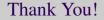


 $\forall \alpha \! \in \! A \, \exists \beta \! \in \! B \left[f(\beta, h(\beta)) \! = \! f(\beta, \alpha) \right]$

http://SaeedSalehi.ir/

Diagonalizing Out by Fixed-Points

SAEED SALEHI



Thanks to The Participants for Listening and for Their Patience! and Thanks to The Organizers For Everything!

SAEED SALEHI

http://SaeedSalehi.ir/

Diagonalizing Out by Fixed-Points