AXIOMATIZING MATHEMATICAL THEORIES: Multiplication

Saeed Salehi

University of Tabriz

http://SaeedSalehi.ir/

25–27 December 2012 Sharif University of Technology, Tehran

Saeed Salehi http://SaeedSalehi.ir/ $rac{\sum lpha \epsilon \partial}{\sum lpha \ell \epsilon h}$.

Algebraic Geometry

 \mathbb{R} and \mathbb{C} with + and \cdot

Tarski & Chevalley:

The projection of a constructible set is constructible.

Constructible: Boolean (complementation, intersection, \cdots) Combinations of $\{\overline{x} \mid p(\overline{x}) = 0\}$'s.

Tarski & Seidenberg:

The projection of a semi-algebraic set is semialgebraic.

Semi-Algebraic:

Finite Union of $\{\overline{x} \mid p(\overline{x}) = 0\}$'s and $\{\overline{x} \mid p(\overline{x}) > 0\}$'s.

Saeed Salehi http://SaeedSalehi.ir/ $\oint_{\Sigma lpha \ell \epsilon h}^{\Sigma lpha \epsilon \epsilon \partial}$

Mathematical Logic

$$\langle \mathbb{C}, +, \cdot \rangle$$

Tarski: The (First-Order Logical) Theory of the Structure $\langle \mathbb{C}, +, \cdot, 0, 1, -, ^{-1} \rangle$ is Decidable and CAN BE AXIOMATIZED As an **Algebraically Closed Field**.

$$\bullet x + (y+z) = (x+y) + z$$

$$\bullet x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$\bullet \ x + y = y + x$$

$$\bullet \ x \cdot y = y \cdot x$$

$$\bullet \ x + 0 = x$$

$$\bullet x \cdot 1 = x$$

$$\bullet \ x + (-x) = 0$$

$$\bullet \ x \neq 0 \rightarrow x \cdot x^{-1} = 1$$

•
$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$
 • $0 \neq 1$

•
$$\exists x (x^n + \mathbf{a_1} x^{n-1} + \mathbf{a_2} x^{n-2} + \dots + \mathbf{a_{n-1}} x + \mathbf{a_n} = 0)$$

Mathematical Logic

$$\langle \mathbb{R}, +, \cdot \rangle$$

Tarski: The (First-Order Logical) Theory of the Structure $\langle \mathbb{R}, +, \cdot, 0, 1, -, ^{-1}, \langle \rangle$ is Decidable and CAN BE AXIOMATIZED Real Closed (Ordered) Field. As a

$$\bullet x + (y + z) = (x + y) + z$$

$$\bullet \ x + 0 = x$$

$$\bullet \ x + (-x) = 0$$

 $\bullet x + y = y + x$

$$\bullet x \cdot (y+z) = (x \cdot y) + (x \cdot z) \quad \bullet 0 \neq 1$$

$$\bullet x < y < z \rightarrow x < z$$

$$\bullet x < y \rightarrow x + z < y + z$$

$$\bullet$$
 $m < u \land 0 < x \land m x < u \land$

$$\bullet \ x < y \land 0 < z \rightarrow x \cdot z < y \cdot z$$

•
$$\exists x (x^{2n+1} + \mathbf{a_1}x^{2n} + \dots + \mathbf{a_{2n}}x + \mathbf{a_{2n+1}} = 0)$$

$$\bullet \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$\bullet x \cdot y = y \cdot x$$

$$\bullet x \cdot 1 = x$$

$$\bullet \ x \neq 0 \to x \cdot x^{-1} = 1$$

$$\bullet 0 \neq 1$$

$$\bullet x < y \lor x = y \lor y < x$$

$$\bullet x \not< x$$

•
$$x < y \land 0 < z \rightarrow x \cdot z < y \cdot z$$
 • $0 < z \rightarrow \exists y (z = y \cdot y)$

Frontiers Math. Sci., Sharif, Tehran, Dec. 2012

Some References

- G. KREISEL, J. L. KRIVINE, *Elements of mathematical logic: model theory*, North Holland 1967.
- Z. ADAMOWICZ, P. ZBIERSKI, *Logic of Mathematics: a modern course of classical logic*, Wiley 1997.
- J. BOCHNAK, M. COSTE, M.-F. ROY, *Real Algebraic Geometry*, Springer 1998.
- S. BASU, R. POLLACK, M.-F. COSTE-ROY, *Algorithms in Real Algebraic Geometry*, 2nd ed. Springer 2006.

Saeed Salehi $\underline{ theta}$ $\underline{ theta}$

Axiomatizing Mathematical Structures

Addition +

The Theories of $(\mathbb{Q},+)$, $(\mathbb{R},+)$ and $(\mathbb{C},+)$ have, surprisingly, the same theory: Non-Trivial Torsion-Free Divisible Abelian Groups:

- $\forall x, y, z (x + (y + z) = (x + y) + z)$
- $\forall x (x + 0 = x = 0 + x)$
- $\forall x (x + (-x) = 0 = (-x) + x)$
- $\forall x, y (x + y = y + x)$

n-times

• $\forall x \exists y (y + \dots + y = x), \ n = 2, 3, \dots$

•
$$\forall x \left(\underbrace{x + \dots + x}_{n-\text{times}} = 0 \to x = 0\right), \ n = 2, 3, \dots$$

 $\bullet \exists x (x \neq 0)$

The Theories of $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$ and $(\mathbb{C}, +)$ Are Decidable.

Saeed Salehi http://SaeedSalehi.ir/

Axiomatizing Mathematical Structures

Addition +

The Theory of $\langle \mathbb{Z}, + \rangle$ is also Decidable, and Axiomatizable as Non-Trivial Torsion-Free Abelian Group with Division Algorithm. Axioms of $\langle \mathbb{Z}, +, 0, 1, - \rangle$:

- G. S. BOOLOS, et. al., Computability and Logic, 5th ed. Cambridge University Press 2007.
- C. SMORYŃSKI, Logical Number Theory I: an introduction, Springer 1991.

Saeed Salehi http://SaeedSalehi.ir/

(8/22)

Axiomatizing Mathematical Structures

Addition +

The Theory of $\langle \mathbb{N}, + \rangle$ is also Decidable, and Axiomatizable as Non-Trivial Ordered Abelian Monoid with Division Algorithm. Axioms of $\langle \mathbb{N}, +, 0, 1, < \rangle$:

$$\bullet \forall x, y, z (x + (y + z) = (x + y) + z)$$

$$\bullet \forall x, y, z \ (x < y \rightarrow x + z < y + z)$$

$$\bullet \forall x, y, z \ (x < y < z \rightarrow x < z)$$

$$\bullet \forall x, y \ (x < y \lor x = y \lor y < x)$$

$$\bullet \forall x, y \ (x < y \longleftrightarrow x + 1 \leqslant y)$$

•
$$\forall x \exists y \ (\bigvee_{i < n} (x = n \cdot y + i))$$

AXIOMATIZING MATHEMATICAL THEORIES: Multiplication

$$\bullet \forall x (x+0=x)$$

$$\bullet \, \forall x, y \, \big(x + y = y + x \big)$$

$$\bullet \forall x, y (x \not< x)$$

$$\bullet \, \forall x \, (0 \leqslant x)$$

$$\bullet \, \forall x \, (n \, \cdot x = 0 \to x = 0)$$

$$n \cdot \alpha = \underbrace{\alpha + \dots + \alpha}_{n-\text{times}}$$

Saeed Salehi http://SaeedSalehi.ir/

Decidability of Mathematical Structures Decision Problem for the Following Structures

	N	\mathbb{Z}	Q	\mathbb{R}	\mathbb{C}
{+}	$\langle \mathbb{N}, + \rangle$	$\langle \mathbb{Z}, + angle$	$\langle \mathbb{Q}, + \rangle$	$\langle \mathbb{R}, + angle$	$\langle \mathbb{C}, + angle$
$\{\cdot\}$	$\langle \mathbb{N}, \cdot angle$	$\langle \mathbb{Z}, \cdot angle$	$\langle \mathbb{Q}, \cdot angle$	$\langle \mathbb{R}, \cdot angle$	$\langle \mathbb{C}, \cdot angle$
$\{+,\cdot\}$	$\langle \mathbb{N}, +, \cdot angle$	$\langle \mathbb{Z}, +, \cdot \rangle$	$\langle \mathbb{Q}, +, \cdot \rangle$	$\langle \mathbb{R}, +, \cdot angle$	$\langle \mathbb{C}, +, \cdot angle$
E	$\langle \mathbb{N}, \exp \rangle$	\	\	$\langle \mathbb{R}, +, \cdot, e^x \rangle$	$\langle \mathbb{C}, +, \cdot, e^x \rangle$

Saeed Salehi http://SaeedSalehi.ir/ $\oint_{\Sigma lpha \ell \epsilon \hbar i}^{\Sigma lpha \epsilon \epsilon \partial}$ i

The Theory of Multiplication

Mainly Missing ...

Skolem Arithmetic $\langle \mathbb{N}, \cdot \rangle$:

PATRICK CEGIELSKI, *Théorie Élémentaire de la Multiplication des Entiers Naturels*, in C. Berline, K. McAloon, J.-P. Ressayre (eds.) *Model Theory and Arithmetics*, LNM 890, Springer 1981, pp. 44–89.

 $\langle \mathbb{Z}, \cdot \rangle$, $\langle \mathbb{Q}, \cdot \rangle$, $\langle \mathbb{R}, \cdot \rangle$ and $\langle \mathbb{C}, \cdot \rangle$?

Missing in the literature. Maybe because:

- almost the same proofs can show the decidability of $\langle \mathbb{Z}, \cdot \rangle$
- the decidability of $\langle \mathbb{R}, \cdot \rangle$ and $\langle \mathbb{C}, \cdot \rangle$ follows from the decidability of $\langle \mathbb{R}, +, \cdot \rangle$ and $\langle \mathbb{C}, +, \cdot \rangle$ (Tarski's Theorems)
- and $\langle \mathbb{Q}, \cdot \rangle$? Not Interesting ?

Addition and Multiplication

$$\langle \mathbb{N}, +, \cdot \rangle$$
 and $\langle \mathbb{Z}, +, \cdot \rangle$ and $\langle \mathbb{Q}, +, \cdot \rangle$

Gödel's First Incompleteness Theorem:

 $Th(\mathbb{N}, +, \cdot)$ is Not Decidable.

So, $\operatorname{Th}(\mathbb{Z},+,\cdot)$ is Not Decidable, because \mathbb{N} is definable in it: for $m\in\mathbb{Z}$ we have

$$m \in \mathbb{N} \iff \exists a, b, c, d \in \mathbb{Z} \ (m = a^2 + b^2 + c^2 + d^2).$$

Also, $\langle \mathbb{Q}, +, \cdot \rangle$ can define \mathbb{Z} :

- J. ROBINSON, Definability and Decision Problems in Arithmetic, JSL 14 (1949) 98–114.
- B. POONEN, Characterizing integers among rational numbers with a universal-existential formula, American Journal of Mathematics 131 (2009) 675–682.
- J. KOENIGSMANN, *Defining* \mathbb{Z} *in* \mathbb{Q} , arXiv:1011.3424 [math.NT] (Nov. 2010)

So, $Th(\mathbb{Q}, +, \cdot)$ is Not Decidable.

State of the Art

(Un-)Decidability

	N	\mathbb{Z}	Q	\mathbb{R}	\mathbb{C}
{+}	Δ_1	Δ_1	Δ_1	Δ_1	Δ_1
$\{\cdot\}$	Δ_1	خ Δ_1	ં ?	Δ_1 ?	Δ_1 ?
$\{+,\cdot\}$	<u></u> <u>₩</u> 1	<u>₩</u> 1	<u></u> XX ₁	Δ_1	Δ_1

The Complex Numbers C

Let $\omega_k = \cos(2\pi/k) + i\sin(2\pi/k)$ be a k-th root of the unit; so $1, \omega_k, (\omega_k)^2, \cdots, (\omega_k)^{k-1}$ are all the k-th roots of the unit.

The Structure $\langle \mathbb{C}, \cdot, 0, ^{-1}, \omega_1, \omega_2, \omega_3, \omega_4, \ldots \rangle$ Is Axiomatized By:

- $\bullet \forall x, y, z \ (x \cdot (y \cdot z) = (x \cdot y) \cdot z) \qquad \bullet \forall x \ (x \cdot 1 = x)$

- $\bullet \forall x (x \neq 0 \rightarrow x \cdot x^{-1} = 1)$
- $\bullet \forall x, y (x \cdot y = y \cdot x)$
- $\forall x (x^n = 1 \longleftrightarrow \bigvee_{i \le n} x = (\omega_n)^i)$ $\forall x (x \cdot 0 = 0 \ne 1)$

• $\bigwedge_{i \neq i \leq n} (\omega_n)^i \neq (\omega_n)^j$

The Real Numbers R

Indeed, $\langle \mathbb{R}^{>0}, 1, \cdot, ^{-1} \rangle$ is a non-trivial torsion-free divisible abelian group:

•
$$\forall x, y, z \left(x \cdot (y \cdot z) = (x \cdot y) \cdot z \right)$$
 • $\forall x \left(x \cdot 1 = x \right)$

$$\bullet \forall x (x \cdot 1 = x)$$

$$\bullet \, \forall x \, (x \cdot x^{-1} = 1)$$

$$\bullet \, \forall x, y \, (x \cdot y = y \cdot x)$$

$$\bullet \forall x (x^n = 1 \rightarrow x = 1)$$

$$\bullet \, \forall x \exists y \, (x = y^n)$$

$$\bullet \exists x (x \neq 1)$$

The Real Numbers \mathbb{R}

The Structure
$$\langle \mathbb{R},\cdot,0,1,-1,^{-1},\mathscr{P}\rangle$$

$$\left[\mathscr{P}(x)\equiv \text{``}x>0\text{'' \& }0^{-1}=0\right]$$

Can Be Axiomatized By:

$$\bullet \forall x, y, z (x \cdot (y \cdot z) = (x \cdot y) \cdot z)$$

$$\bullet \forall x (x \neq 0 \rightarrow x \cdot x^{-1} = 1)$$

$$\bullet \forall x \left(\mathscr{P}(x) \longleftrightarrow \exists y \left[y \neq 0 \land x = y^{2n} \right] \right)$$

$$\bullet \, \forall x \, (x^{2n} = 1 \longleftrightarrow x = 1 \lor x = -1)$$

$$\bullet \, \forall x \, (x^{2n+1} = 1 \to x = 1)$$

$$\bullet \forall x \ (x \neq 0 \rightarrow [\neg \mathscr{P}(x) \leftrightarrow \mathscr{P}(\sim x)])$$

$$\bullet \, \forall x, y \, \big(\mathscr{P}(x \cdot y) \longleftrightarrow [\mathscr{P}(x) \land \mathscr{P}(y)] \lor [\mathscr{P}(\backsim x) \land \mathscr{P}(\backsim y)] \big)$$

$$\bullet \forall x (x \cdot 1 = x)$$

$$\bullet \, \forall x, y \, \big(x \cdot y = y \cdot x \big)$$

$$\bullet \forall x \exists y \ (x = y^{2n+1})$$

$$\bullet \, \forall x \, \big(x \cdot 0 = 0 \neq 1 \big)$$

$$\bullet \neg \mathscr{P}(0) \land \mathscr{P}(1) \land \neg \mathscr{P}(-1)$$

$$\sim x = (-1) \cdot x$$

The Rational Numbers ©

In \mathbb{Q} let $R_n(x) \equiv \exists y(x=y^n)$ and $\mathscr{P}(x) \equiv x > 0$.

Theorem (NEW)

The theory of the structure $(\mathbb{Q}^+, \cdot, 1, R_2, R_3, R_4, \dots, ^{-1})$ admits quantifier elimination, and so is decidable.

The theory of the structure $\langle \mathbb{Q}, \cdot, 0, 1, -1, R_2, R_3, R_4, \dots, -1, \mathscr{P} \rangle$ admits quantifier elimination, and so is decidable.

Exponentiation

in \mathbb{N}, \mathbb{R} and \mathbb{C}

$$\exp(x,y) = x^y$$
 Gödel: exp is definable in $(\mathbb{N}, +, \cdot)$.

Also, \cdot and + are definable by exp:

$$x \cdot y = z \iff \forall u \left(u^z = (u^x)^y \right)$$

 $x + y = z \iff \forall u \left(u^z = u^x \cdot u^y \right)$

So, $\operatorname{Th}(\mathbb{N}, \exp) \notin \Delta_1$.

For \mathbb{R} and \mathbb{C} we consider natural exponentiation: $x \mapsto e^x$.

Open Problem: Is $Th(\mathbb{R}, +, \cdot, e^x)$ Decidable?

Exponentiation

in \mathbb{N}, \mathbb{R} and \mathbb{C}

Surprise: \mathbb{Z} is definable in $\langle \mathbb{C}, +, \cdot, e^x \rangle$:

$$z \in \mathbb{Z} \iff \forall x, y \left(x^2 + 1 = 0 \land e^{(x \cdot y)} = 1 \longrightarrow e^{(x \cdot y \cdot z)} = 1\right)$$

And so are \mathbb{N} and \mathbb{Q} (definable in $\langle \mathbb{C}, +, \cdot, e^x \rangle$.)

Whence, $\operatorname{Th}(\mathbb{C},+,\cdot,e^x) \not\in \Delta_1$.

Open Problem: Is \mathbb{R} definable in Th(\mathbb{C} , +, ·, e^x)?

Exponentiation

in \mathbb{N}, \mathbb{R} and \mathbb{C}

Tarski's Exponential Function Problem

http://en.wikipedia.org/wiki/Tarski's_exponential_function_problem

D. MARKER, Model Theory and Exponentiation, Notices AMS 43 (1996) 753–759.

A. MACINTYRE, A. J. WILKIE, On the Decidability of the Real Exponential Field, in P. Odifreddi (ed.) Kreiseliana: about and around Georg Kreisel, A. K. Peters (1996) pp. 441–467.

Zilber's Conjecture: Every Definable Subset of $\langle \mathbb{C}, +, \cdot, e^x \rangle$ is either Countable or Co-Countable.

- D. MARKER, A Remark on Zilber's Pseudoexponentiation, JSL 71 (2006) 791-798.
- D. MARKER, Zilber's Pseudoexponentiation, Slides of a Talk in "Algebra, Combinatorics and Model Theory", Istanbul, 22–26 August 2011. http://home.ku.edu.tr/~modeltheory/Marker.pdf
- A. J. WILKIE, Some Results and Problems on Complex Germs With Definable Mittag-Lefller Stars, MIMS EPrint 2012.86. http://eprints.ma.man.ac.uk/1877/01/covered/MIMS_ep2012_86.pdf

A More Complete Picture

Decidability and Undecidability

	N	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
{+}	Δ_1	Δ_1	Δ_1	Δ_1	Δ_1
$\{\cdot\}$	Δ_1	Δ_1	Δ_1	Δ_1	Δ_1
$[+,\cdot]$	¾ 1	¾ 1	X_1	Δ_1	Δ_1
E	¾ 1	_	_	?خ	X_1

Tarski's Exponential Function Problem Weak Schanuel's Conjecture:

is equivalent to

there is an effective procedure that, given $n\geqslant 1$ and exponential polynomials in n variables with integer coefficients f_1,\cdots,f_n,g produces an integer $\eta\geqslant 1$ that depends on n,f_1,\cdots,f_n,g and such that if $\alpha\in\mathbb{R}^n$ is a non-singular solution of the system $\bigwedge_{1\leqslant i\leqslant n}f_i(x_1,\ldots,x_n,e^{x_1},\ldots,e^{x_n})$ then either $g(\alpha)=0$ or $|g(\alpha)|>\eta^{-1}$.

Difficulty of Some Problems

With High School Definitions

L. HENKIN, The Logic of Equality, The American Mathematical Monthly 84 (1977) 597-612.

Every Equality of $\langle \mathbb{N}, +, 0 \rangle$ can be derived from the axioms:

Associativity: x + (y + z) = (x + y) + z

Commutativity: x + y = y + x

Zero Element: x + 0 = x

The same holds for $\langle \mathbb{Z}, +, 0 \rangle$, $\langle \mathbb{N}^+, \cdot, 1 \rangle$, $\langle \mathbb{N}, \cdot, 1 \rangle$, $\langle \mathbb{Z}, \cdot, 1 \rangle$, ...

Equalities of $\langle \mathbb{N}, +, \cdot, 0, 1 \rangle$ and $\langle \mathbb{Z}, +, \cdot, 0, 1 \rangle$ Are Axiomatized by

Associativity: $\begin{array}{lll} x+(y+z)=(x+y)+z & x\cdot (y\cdot z)=(x\cdot y)\cdot z \\ \text{Commutativity:} & x+y=y+x & x\cdot y=y\cdot x \\ \text{Unit Element:} & x+0=x & x\cdot 1=x \\ \text{Distributivity \& Zero:} & x\cdot (y+z)=(x\cdot y)+(x\cdot z) & x\cdot 0=0 \end{array}$

Difficulty of Some Problems

With High School Definitions

Tarski's High School Algebra Problem:

http://en.wikipedia.org/wiki/Tarski's_high_school_algebra_problem

Can Every Equality of $\langle \mathbb{N}, +, \cdot, \exp, 0, 1 \rangle$ be derived from: Associativity and Commutativity of + and \cdot , Identity of 0 and 1, Distributivity of \cdot over +, and Zero Property 0; plus

$$x^{0} = 1$$
 $x^{y+z} = x^{y} \cdot x^{z}$
 $x^{1} = x$ $(x \cdot y)^{z} = (x^{z}) \cdot (y^{z})$?
 $1^{x} = 1$ $x^{y \cdot z} = (x^{y})^{z}$

Thank You!

Thanks To
The Participants
for Listening and for Your Patience!
and thanks to The Organizers.