Chaitin’s Heuristic Principle AND
 Halting Probability.

SaEed SALEHI

January 2024

Gregory John Chaitin

Born: 1947 $_{77}$ (Jewish) Argentine-American
Algorithmic Information Theory
A. Kolmogorov \& R. Solomonoff
I. Incompleteness (1971) 24
2. Heuristic Principle (1974) ${ }_{27}$
3. Halting Probability (1975) 28 28 Chaitin's Constant: Ω
\leftarrow March 2001_{54}
IBM's Thomas John Watson
Research Center in New York A Genius
Many honors (\& writings) Many critics (and fans)

HP: Heuristic Principle / Halting Probability

- On Chaitin's Heuristic Principle and Halting Probability. arXiv:2310.14807v3 [math.LO].
https://arxiv.org/abs/2310.14807

1. Heuristic Principle
2. Halting Probability

1. Chaitin's Heuristic Principle

- Greater Complexity Implies Unprovability

If a sentence is more complex (heavier) than the theory, then that sentence is unprovable from that theory.

(Un-)Provability:

Example (Arithmetic \& Geometry)
Auithmetic $\vdash \neg \exists x, y, z\left(x y z \neq 0 \wedge x^{4}+y^{4}=z^{2}\right)$. Pierre de Fermat Axpithmetic $\vdash \exists x, y, z>1\left(x^{4}+y^{4}=z^{2}+1\right) . \quad x=5, y=7, z=55$
Areithmetic $\vdash \exists x, y, z\left(x y z \neq 0 \wedge x^{4}+y^{4}+1=z^{2}\right)$?
Geometry $\vdash \forall \triangle A B C(\overline{A B}=\overline{A C} \longleftrightarrow \angle B=\angle C)$
Auithmetic $\nvdash 1=2 \quad$ areomettry $\nvdash \forall \triangle A B C(\overline{A B}=\overline{A C})$

Alithmetic $\nvdash 1=2$

(ُباء تساوى ז =
;

$a^{2}=a b$
$a^{2}-b^{2}=a b-b^{2}$
$(a+b)(a-b)=b(a-b)$
$(a+b)=b$ با
$a+a=a$
$2 a=a$
$2=1 \quad$ ولى جطور ا

Geometty $\nvdash \forall \triangle A B C(\overline{A B}=\overline{A C})$

- $\angle B A O=\angle C A O \Longrightarrow$ $\triangle O B^{\prime} A \cong \triangle O C^{\prime} A \Longrightarrow$
$\overline{A B^{\prime}}=\overline{A C^{\prime}} \quad \& \overline{O B^{\prime}}=\overline{O C^{\prime}}$
- $\overline{B M}=\overline{M C} \Longrightarrow$
$\triangle O M B \cong \triangle O M C \Longrightarrow$
$\overline{O B}=\overline{O C} \Longrightarrow$
$\triangle O B B^{\prime} \cong \triangle O C C^{\prime} \Longrightarrow$ $\overline{B^{\prime} B}=\overline{C^{\prime} C} \Longrightarrow$
$\overline{A B^{\prime}}+\overline{B^{\prime} B}=\overline{A C^{\prime}}+\overline{C^{\prime} C}$ $\Longrightarrow \overline{A B}=\overline{A C}$

Incompleteness (vs. Completeness)

TARSKI ${ }_{1930}{ }^{\prime}$ s

GöDEL1931

Solomonoff-Kolmogorov-Chaitin Complexity

Definition (Program Size Complexity)
$\mathcal{C}(x)=$ the length of the shortest input-free program that outputs only x (and halts).

Example

Descriptive Complexity \& Randomness

- $111111111111111111111111111111111111 \cdots 1^{*}$
- $100100100100100100100100100100100 \cdots(100)^{*}$
- $0101101110111101111101111110111 \cdots\left\{01^{n}\right\}_{n>0}$
- $0101111010111110111111111011 \cdots\left\{01^{(\pi-3)_{n}}\right\}_{n=1}^{\infty}$
- $11000110000111111000010010100001101010 \cdots$

Definition (Random)
A random number or a string is one whose program-size complexity is almost its length.

Complexity of Sentences and Theories

Avithmetic:

- $\exists x, y, z\left(x y z \neq 0 \wedge x^{2}+y^{2}=z^{2}\right)_{x=3, y=4, z=5}$
- $\neg \exists x, y, z\left(x y z \neq 0 \wedge x^{3}+y^{3}=z^{3}\right)$
- $\neg \exists x, y, z\left(x y z \neq 0 \wedge x^{4}+y^{4}=z^{4}\right)$
- $\forall n>2 \neg \exists x, y, z\left(x y z \neq 0 \wedge x^{n}+y^{n}=z^{n}\right)$

Grometry:

- $\forall \triangle A B C\left(M_{a}, \mathcal{M}_{b}, \mathcal{M}_{c}\right.$ midpoints $\left.\rightarrow \exists \mathbb{G}\left[A M_{a} \cap B M_{b} \cap C M_{c}=\{\mathbb{G}\}\right]\right)$
- $\forall \triangle A B C\left(A A^{\prime}, B B^{\prime}, C C^{\prime}\right.$ altitudes $\left.\rightarrow \exists \mathbb{H}\left[A A^{\prime} \cap B B^{\prime} \cap C C^{\prime}=\{\mathbb{H}\}\right]\right)$
- $\forall \triangle A B C \exists!\mathbb{O}(\overline{\mathbb{O} A}=\overline{\mathbb{O} B}=\overline{\mathbb{O} C})$
- $\forall \triangle A B C(\mathbb{G}, \mathbb{H}, \mathbb{O}$ are identical or on a line)

Heuristic Principle, HP

Definition (HP-satisfying weighing)
A mapping \mathbb{W} from theories and sentences to \mathbb{R} satisfies HP when, for every theory \mathcal{T} and every sentence ψ we have

$$
\mathscr{W}(\psi)>\mathscr{W}(\mathcal{T}) \Longrightarrow \mathcal{T} \nvdash \psi
$$

Equivalently, $\quad \mathcal{T} \vdash \psi \Longrightarrow \mathscr{W}(\mathcal{T}) \geqslant \mathscr{W}(\psi)$

- Chaitin's Idea: program-size complexity
- Lots of Criticisms ...
- Some built their own partial weighting
- Fans come to rescue ...

HP, a lost paradise

- Criticisms:

For complex sentences $\mathscr{G}, \mathscr{S}^{\prime}$, or complex numbers $\mathcal{N}, \mathcal{N}^{\prime}$, the following complicated sentences are all provable:

- $1+\mathcal{N}=\mathcal{N}+1, \quad \mathcal{N} \times \mathcal{N}^{\prime}=\mathcal{N}^{\prime} \times \mathcal{N}, \quad n\left(\mathcal{N}+\mathcal{N}^{\prime}\right)=n \mathcal{N}+n \mathcal{N}^{\prime}$.
- A Salvage?
$\Delta \delta$-complexity: $\mathcal{C}(x)-|x|$.
XXX $\mathcal{T} \vdash \psi \Longrightarrow \delta(\mathcal{T}) \geqslant \delta(\psi)$ XXX
- No Hope:

$$
\begin{aligned}
& \triangleright \perp \rightarrow \mathscr{S}, \quad \mathscr{S} \rightarrow \top, \quad p \rightarrow(\mathscr{S} \rightarrow p), \quad \neg p \rightarrow(p \rightarrow \mathscr{S}) \\
& \triangleright \mathcal{N}>0, \quad \mathcal{N} \times 0=0, \quad 1+\mathcal{N} \neq 1, \quad 2 \leqslant 2 \times \mathcal{N} .
\end{aligned}
$$

HP^{-1}, THE CONVERSE OF HP

$$
\mathrm{HP}: \quad \mathcal{T} \vdash \psi \Longrightarrow \mathscr{W}(\mathcal{T}) \geqslant \mathscr{W}(\psi)
$$

can be satisfied by any constant weighing.

$$
\mathrm{HP}^{-1}: \quad \mathscr{W}(\mathcal{T}) \geqslant \mathscr{W}(\psi) \Longrightarrow \mathcal{T} \vdash \psi
$$

cannot hold for real-valued weights since every two real numbers are comparable ($a \geqslant b \vee b \geqslant a$), while some theories and sentences are incomparable, such as ψ and $\neg \psi$ for a non-provable and non-refutable ψ (like any atom in PL or $\forall x \forall y(x=y)$ in FOL).

Both HP and HP^{-1} hold for some non-real-valued weightings.

EP, The Equivalence Principle

$$
\mathrm{EP}: \quad \mathscr{W}(\mathcal{T})=\mathscr{W}(\mathcal{U}) \Longrightarrow \mathcal{T} \equiv \mathcal{U}
$$

is a (weak) consequence of HP^{-1}.
This is compatible with HP, even for real-valued weighings.

Theorem (Existence)
There exist some real-valued weightings that satisfy both HP and EP.
Theorem (Computability)
No computable HP+EP-satisfying weighing exists for undecidable logics.
For decidable logics, there are computable $H P+E P$-satisfying weightings.

2. Chaitin's Halting Probability

- Halting Probability (of a randomly given input-free program)

$$
\Omega=\sum_{p \text { halts }} 2^{-|p|}
$$

Halting or Looping forever:

A random $\{0,1\}$-string may not be (the ASCII code of) a program.
Even if it is, then it may not be input-free.
If a binary string is (the code of) an input-free program, then it may halt after running or may loop forever.

$$
\boldsymbol{\Omega}=\sum_{p \in\{0,1\}^{*} \text { halts }}^{p: \text { input-free }} 2^{-|p|} .
$$

A Partial Agreement

The probability of getting a fixed binary string of length n by tossing a fair coin (whose one side is ' 0 ' and the other ' 1 ') is 2^{-n}, and the halting probability of programs with size n is $\frac{\text { the number of halting programs with size } n}{\text { the number of all binary strings with size } n}=\frac{\#\{p \in \mathbb{P}: p \downarrow \&|p|=n\}}{2^{n}}$ since there are 2^{n} binary strings of size n. Thus, the halting probability of programs with size n can be written as $\sum_{p \downarrow}^{|p|=n} 2^{-|p|}$.

Denote this number by Ω_{n}; so, the number of halting programs with size n is $2^{n} \Omega_{n}$.

And a Disagreement

According to Chaitin (and almost everybody else), the halting probability of programs with size $\leqslant N$ is $\sum_{n=1}^{N} \Omega_{n}=\sum_{p \downarrow}^{|p| \leqslant N} 2^{-|p|}$; and so, the halting probability is $\sum_{n=1}^{\infty} \Omega_{n}=\sum_{p \downarrow} 2^{-|p|}(=\Omega)$!

Let us see why we believe this to be an error. The halting probability of programs with size $\leqslant N$ is in fact

$$
\frac{\text { the number of halting programs with size } \leqslant N}{\text { the number of all binary strings with size } \leqslant N}=\frac{\sum_{n=1}^{N} 2^{n} \Omega_{n}}{\sum_{n=1}^{N} 2^{n}} .
$$

Now, it is a calculus exercise to notice that, for sufficiently large $N s$,

$$
\frac{\sum_{n=1}^{N} 2^{n} \Omega_{n}}{\sum_{n=1}^{N} 2^{n}} \neq \sum_{n=1}^{N} \Omega_{n}, \text { and } \lim _{N \rightarrow \infty} \frac{\sum_{n=1}^{N} 2^{n} \Omega_{n}}{\sum_{n=1}^{N} 2^{n}} \neq \lim _{N \rightarrow \infty} \sum_{n=1}^{N} \Omega_{n} .
$$

Possible Errors / Mistakes

The number Ω was meant to be "the probability that a computer program whose bits are generated one by one by independent tosses of a fair coin will eventually halt".

As pointed out by Chaitin, the series $\sum_{p \downarrow} 2^{-|p|}$ could be >1, or may even diverge, if the set of programs is not taken to be prefix-free (that "no extension of a valid program is a valid program"-what "took ten years until [he] got it right").

So, the fact that, for delimiting programs, the real number $\sum_{p \downarrow} 2^{-|p|}$ lies between 0 and 1 (by Kraft's inequality, that $\sum_{s \in S} 2^{-|s|} \leqslant 1$ for every prefix-free set S) does not make it the probability of anything!

Any Solutions?

1. Conditional Probability

Let $\Omega_{S}=\sum_{s \in S} 2^{-|s|}$ and $\mho_{S}=\Omega_{S} / \Omega_{\mathbb{P}}$ for a set $S \subseteq \mathbb{P}$ of programs. This is a probability measure: $\mho_{\emptyset}=0, \mho_{\mathbb{P}}=1$, and for any family $\left\{S_{i} \subseteq \mathbb{P}\right\}_{i}$ of pairwise disjoint sets of programs, $\mho_{\bigcup_{i} S_{i}}=\sum_{i} \mho_{S_{i}}$. If \mathcal{H} is the set of all the binary codes of the halting programs, then the (conditional) halting probability is $\mho_{\mathcal{H}}$, or $\Omega / \Omega_{\mathbb{P}}$.
We then have $\mho_{\mathcal{H}}>\Omega$ since it can be shown that $\Omega_{\mathbb{P}}<1$.

2. Asymptotic Probability

Count \hbar_{n} the number of halting programs (the strings that code some input-free programs that eventually halt after running) that have integer codes ${ }^{\ddagger}$ less than or equal to n. Then define the halting probability to be $\lim _{n \rightarrow \infty} \hbar_{n} / n$, of course, if it exists. Or take $\lim _{N \rightarrow \infty}\left(\sum_{n=1}^{N} 2^{n} \Omega_{n}\right) /\left(\sum_{n=1}^{N} 2^{n}\right)$ if the limit exists.
Note that this number can be shown to be $\leqslant \frac{\Omega}{2}$.
\ddagger integer code: $0_{\mathbf{1}}, 1_{\mathbf{2}}, 00_{\mathbf{3}}, 01_{\mathbf{4}}, 10_{\mathbf{5}}, 11_{\mathbf{6}}, 000_{\mathbf{7}}, 001_{\mathbf{8}}, 00_{\mathbf{9}}, \cdots$

Thank You!

Thanks to

The Participants For Listening ... and

The Organizers, For Taking Care of Everything ...

