Theorems of Tarski and Gödel's Second Incompleteness—Computationally

Saeed Salehi

University of Tabriz

http://SaeedSalehi.ir/

5th World Congress and School on Universal Logic University of Istanbul, Turkey 20–30 June 2015

aeed Salehi	http://SaeedSalehi.ir/	$\mathcal{S}lpha\epsilon\epsilon\partial\mathcal{S}lpha\ell\epsilon\hbar\imath$.ir
heorems of Tarski and Gödel's Second Incomplet	eness-Computationally	5^{th} World Congress and School on Universal Logic

 $\begin{cases} 0, 3, 6, 9, \cdots, 3k, \cdots \} \subseteq \mathbb{N} \\ \{0, 1, 4, 9, \cdots, k^2, \cdots \} \subseteq \mathbb{N} \\ \vdots \end{cases}$

Computably Decidable set A: an algorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YES) or $x \notin A$ (outputs NO).

$$\xrightarrow{\text{input:} x \in \mathbb{N}} \xrightarrow{\text{Algorithm}} \xrightarrow{\text{output:}} \begin{cases} \text{YES} & \text{if } x \in A \\ \text{NO} & \text{if } x \notin A \end{cases}$$

Algorithm: single-input (natural number), Boolean-output (1, 0)

Saeed Salehi	http://SaeedSalehi.ir/	${\cal S}lpha\epsilon\epsilon\partial{\cal S}lpha\ell\epsilon\hbar\imath$.ir
Theorems of Tarski and Gödel's Second Incomple	eteness-Computationally	5 th World Congress and School on Universal Logic

$$\begin{cases} 0, 3, 6, 9, \cdots, 3k, \cdots \} \subseteq \mathbb{N} \\ \{0, 1, 4, 9, \cdots, k^2, \cdots \} \subseteq \mathbb{N} \\ \vdots \end{cases}$$

Computably Enumerable set A: an (input-free) algorithm \mathcal{P} lists all members of A; i.e., $A = \text{output}(\mathcal{P})$.

$$\boxed{\text{Algorithm}} \xrightarrow{\text{output:}} \{a_0, a_1, a_2, \cdots\} = A$$

Algorithm: input-free, output (a set of natural numbers)

Saeed Salehi	http://SaeedSalehi.ir/	$Slpha\epsilon\epsilon\partial Slpha\ell\epsilon\hbar\imath$ ir
Theorems of Tarski and Gödel's Second In	completeness-Computationally	5 th World Congress and School on Universal Logic

$$\{0, 3, 6, 9, \cdots, 3k, \cdots\} \subseteq \mathbb{N}$$
$$\{0, 1, 4, 9, \cdots, k^2, \cdots\} \subseteq \mathbb{N}$$
$$\vdots$$

Semi–Decidable set *A*: an algorithm \mathcal{P} halts on any input *x* if and only if $x \in A$ (and does not halt if and only if $x \notin A$).

$$\xrightarrow{\text{input:} x \in \mathbb{N}} \xrightarrow{\text{Algorithm}} \xrightarrow{\text{output:}} \begin{cases} \downarrow \text{ halt } \text{ if } x \in A \\ \uparrow \text{ loop } \text{ if } x \notin A \end{cases}$$

Algorithm: single-input (natural number), output-free

Saeed Salehi	http://SaeedSalehi.ir/	${\cal S}lpha\epsilon\epsilon\partial{\cal S}lpha\ell\epsilon\hbar\imath$.ir
Theorems of Tarski and Gödel's Second Incomplete	ness—Computationally	5 th World Congress and School on Universal Logic

Two Deep Facts from Computability Theory

Semi–Decidable \equiv Computably Enumerable (CE)

Decidable \equiv CE & CO-CE

Theorem of Post-Kleene

Saeed Salehi

http://SaeedSalehi.ir/

 $S \alpha \epsilon \epsilon \partial S \alpha \ell \epsilon \hbar \iota$.ir

Theorems of Tarski and Gödel's Second Incompleteness-Computationally

$$\{0, 3, 6, 9, \cdots, 3k, \cdots\} \subseteq \mathbb{N}$$
$$\{0, 1, 4, 9, \cdots, k^2, \cdots\} \subseteq \mathbb{N}$$
$$\vdots$$

Definable set A: a formula $\varphi(x)$ which holds of x if and only if $x \in A$ (and is not true of x if and only if $x \notin A$).

 $A=\{n\in\mathbb{N}\mid \langle\mathbb{N};+,\times\rangle\models\varphi(n)\}$

Formula: of the language of arithmetic $\{+, \times\}$ $\langle 0, 1, \mathbf{s}, +, \times, \leqslant, \cdots \rangle$

Saeed Salehi	http://SaeedSalehi.ir/	$\mathcal{S}lpha\epsilon\epsilon\partial\mathcal{S}lpha\ell\epsilon\hbar\imath$.ir
Theorems of Tarski and Gödel'	s Second Incompleteness—Computationally	5 th World Congress and School on Universal Logic

Arithmetical Hierarchy of Formulas

$$\begin{array}{ccc} \neg, \wedge, \lor, \rightarrow & & \text{Decidable} \\ & -^{\complement}, & - \cap -, & - \cup -, & -^{\complement} \cup - \\ \exists & \text{infinite search} & \forall & \text{infinite verify} \\ & & & & \\ \hline & & & \\ \exists x \leqslant t & \text{finite search} (\bigvee_{x \leqslant t}) & \forall x \leqslant t & \text{finite verify} (\bigwedge_{x \leqslant t}) \end{array}$$

Sa	eed	Sal	lehi

http://SaeedSalehi.ir,

 $S_{\alpha\epsilon\epsilon\partial}S_{\alpha\ell\epsilon\hbar\iota,ir}$

Theorems of Tarski and Gödel's Second Incompleteness-Computationally

Arithmetical Hierarchy of Formulas

 Δ_0 = the class of formulas all whose quantifiers are bounded (e.g. $x \in \{0, 1, 4, 9, \dots, k^2, \dots\} \iff \exists y \leq x [x = y^2]$) $\Sigma_1 = \exists v_1 \cdots \exists v_m \ \Delta_0(v_1, \ldots, v_m)$ $\Pi_1 = \forall v_1 \cdots \forall v_m \Delta_0(v_1, \ldots, v_m)$ $\Delta_1 = \Sigma_1 \cap \Pi_1$ $\Sigma_{n+1} = \exists v_1 \cdots \exists v_m \ \Pi_n(v_1, \ldots, v_m)$ $\sum_{n+1} = \forall v_1 \cdots \forall v_m \sum_n (v_1, \ldots, v_m)$ $\Delta_n = \Sigma_n \cap \Pi_n$

Saeed Salehi

http://SaeedSalehi.ir/

 $S \alpha \epsilon \epsilon \partial S \alpha \ell \epsilon \hbar \iota$.ir

Theorems of Tarski and Gödel's Second Incompleteness-Computationally

Two Deep Facts from Mathematical Logic

- $\Sigma_n = \text{closed under } \land, \lor, \forall x \leq t, \exists$
- $\Pi_n = \text{closed under } \land, \lor, \exists x \leqslant t, \forall$
- $\Delta_n = \text{closed under } \land, \lor, \exists x \leqslant t, \forall x \leqslant t, \neg$

 Σ_1 -definable (subsets of \mathbb{N}) \equiv CE (Computably Enumerable) Δ_1 -definable (subsets of \mathbb{N}) \equiv Computably Decidable Π_1 -definable (subsets of \mathbb{N}) \equiv co–CE

Saeed Salehi

http://SaeedSalehi.ir/

 $S \alpha \epsilon \epsilon \partial S \alpha \ell \epsilon \hbar \iota$.ir

Theorems of Tarski and Gödel's Second Incompleteness-Computationally

A Motto of Computability Theory (and Mathematical Logic)

Computability is Definability

A Motto of Mathematical Logic (and Computability Theory)

Definability is (Relativized) Computability (by Oracles)

$A = \{ u \in \mathbb{N} \mid \langle \mathbb{N}; +, \times \rangle \models \varphi(u/x) \}$

$$\xrightarrow{\text{input: } x \in \mathbb{N}} \left\{ \begin{array}{c} \text{either } \varphi(x) \\ \text{or } \neg \varphi(x) \end{array} \right\} \xrightarrow{\text{output:}} \left\{ \begin{array}{c} \text{YES } \text{if } x \in A \\ \text{NO } \text{if } x \notin A \end{array} \right\}$$

Saeed Salehi	http://SaeedSalehi.ir/	${\cal S}lpha\epsilon\epsilon\partial{\cal S}lpha\ell\epsilon\hbar\imath$.ir
Theorems of Tarski and Gödel's S	econd Incompleteness—Computationally	5 th World Congress and School on Universal Logic

Some (Advanced) Higher Recursion Theory

For
$$A = \{u \in \mathbb{N} \mid \langle \mathbb{N}; +, \times \rangle \models \varphi(u/x)\}$$
 if $\varphi \in \Sigma_n$ then for
the Oracle $\emptyset^{(n)} = \{u \in \mathbb{N} \mid \mathbb{N} \models \Sigma_n$ -True $(u)\}$ we have
 $A \leq_1 \emptyset^{(n)}$ by (the injection) $f : \mathbb{N} \to \mathbb{N}, f(u) = \ulcorner \varphi(u/x) \urcorner$:

 $u \in A \Longleftrightarrow \mathbb{N} \models \varphi(u/x) \Longleftrightarrow \Sigma_n \operatorname{-True}(\lceil \varphi(u/x) \rceil) \Longleftrightarrow f(u) \in \emptyset^{(n)}$

and so $A \leq_m \emptyset^{(n)}$ and $A \leq_T \emptyset^{(n)} \cdots$ etc.

Saeed Salehi

http://SaeedSalehi.ir/

 $S \alpha \epsilon \epsilon \partial S \alpha \ell \epsilon \hbar \iota$.ir

Theorems of Tarski and Gödel's Second Incompleteness-Computationally

Is A Definable Set.

The Complexity of its Definition describes the Complexity of its Computation (taking an element and determining if it belongs to this set)

Sa	eed	l Sa	lehi
	000	. 04	

http://SaeedSalehi.ir/

 $S \alpha \epsilon \epsilon \partial S \alpha \ell \epsilon \hbar \iota$.ir

Theorems of Tarski and Gödel's Second Incompleteness-Computationally

Gödel's First Incompleteness Theorem

in semantic form:

 $Th(\mathbb{N}) = \{\theta \in Sent \mid \mathbb{N} \models \theta\} \text{ is Not Decidable.}$ It is neither CE nor co–CE.

Proof.

If $\operatorname{Th}(\mathbb{N})$ were CE then so would be $\{\neg \theta \mid \theta \in \operatorname{Th}(\mathbb{N})\} = \operatorname{Th}(\mathbb{N})^{\complement}$; and so $\operatorname{Th}(\mathbb{N})$ would be decidable! For the same reason $\operatorname{Th}(\mathbb{N})$ cannot be co–CE.

Recall that $Th(\mathbb{N})$ is a complete theory!

Saeed Salehi	http://SaeedSalehi.ir/	${\cal S}lpha\epsilon\epsilon\partial{\cal S}lpha\ell\epsilon\hbar\imath$ ir
Theorems of Tarski and Gödel's Second Inc.	ompleteness-Computationally	5 th World Congress and School on Universal Logic

Part J: Tarski's Undefinability Theorem

A Reading of the Incompleteness Theorem:

Any CE and sound theory is incomplete $T \in \Sigma_1, T \subseteq \operatorname{Th}(\mathbb{N}) \Longrightarrow T \neq \operatorname{Th}(\mathbb{N})$ a consequence of $\operatorname{Th}(\mathbb{N}) \notin \Sigma_1$ -Definable

Tarski's Undefinability Theorem: $Th(\mathbb{N}) \notin Definable$

Corollary of Tarski: Precise Gödel's 1st:

Salehi&Seraji (2015):

 $T \in \Sigma_n, T \subseteq \operatorname{Th}(\mathbb{N}) \Longrightarrow \operatorname{Th}(\mathbb{N}) \not\subseteq T$ $T \in \Sigma_1, T \subseteq \operatorname{Th}(\mathbb{N}) \Longrightarrow \Pi_1 \operatorname{-Th}(\mathbb{N}) \not\subseteq T$ $T \in \Sigma_n, T \subseteq \operatorname{Th}(\mathbb{N}) \Longrightarrow \Pi_n \operatorname{-Th}(\mathbb{N}) \not\subseteq T$ $[n = 1] \swarrow \searrow [\Pi_n \operatorname{-Th}(\mathbb{N}) \subseteq \operatorname{Th}(\mathbb{N})]$ Gödel's 1st Tarski

Saeed Salehi

http://SaeedSalehi.ir/

$S \alpha \epsilon \epsilon \partial S \alpha \ell \epsilon \hbar \iota$.ir

Theorems of Tarski and Gödel's Second Incompleteness-Computationally

Part J: Tarski's Undefinability Theorem

A Unification (and A Generalization for both) of the Theorems of Gödel's 1st Incompleteness and Tarski's Undefinability:

Theorem (Salehi&Seraji (2015))

 $T \in \Sigma_n, T \subseteq \operatorname{Th}(\mathbb{N}) \Longrightarrow \Pi_n \operatorname{-Th}(\mathbb{N}) \not\subseteq T \text{ (for every } n > 0).$

Proof.

If $T \in \Sigma_n$ then $\mathsf{Prov}_T \in \Sigma_n$, and so for the Gödel Sentence γ with $\mathbb{Q} \vdash \gamma \longleftrightarrow \neg \mathsf{Pr}_T(\lceil \gamma \rceil)$ we have $\gamma \in \Pi_n \operatorname{-Th}(\mathbb{N})$ and $T \not\vDash \gamma$.

So, $Th(\mathbb{N})$ Is Not Computable By Any Definable Oracle!

Saeed Salehi	http://SaeedSalehi.ir/	$Slpha\epsilon \partial Slpha \ell\epsilon \hbar\imath$.ir
Theorems of Tarski and Gödel's Second Inco	ompleteness—Computationally	5 th World Congress and School on Universal Logic

Part 2: Gödel's Second Incompleteness Theorem

Some More Technicalities of Gödel's 1st:

• It Is Usually Proved For Peano's Arithmetic PA.

PA is (proved to be [after Gödel]) not finitely axiomatizable.

A Clever Idea

A Finitely Axiomatizable Arithmetical Theory, called Robinson's Arithmetic Q Suffices for the Gödel's Arguments to go through ...

Question

What does Q in Q stand for? And what is the theory R? Or, possibly S? Doesn't Robinson Start with R? Isn't RA = Robinson's Arithmetic?

e -	~~	d.	Sal	loh	
Ja	ee	su.	Ja		

http://SaeedSalehi.ir/

 $S \alpha \epsilon \epsilon \partial S \alpha \ell \epsilon \hbar \iota$.ir

Theorems of Tarski and Gödel's Second Incompleteness-Computationally

 $5^{\rm th}$ World Congress and School on Universal Logic

More On Robinson's Arithmetic Q

- Q is finite :
 - $\mathbf{Q} = \overline{\mathbf{P}\mathbf{A} \{ \text{all induction axioms} \} + \forall x \exists y [x = 0 \lor x = S(y)] }$
- Q is Σ_1 -complete: Σ_1 -Th(\mathbb{N}) \subseteq Q.
- Q is *essentially undecidable*; i.e., CE incompletable: every CE and consistent extension of it is incomplete.

So, Q is undecidable (otherwise it could be extended to a consistent, complete and decidable [so CE] theory.)

Application : Church's Theorem on the Undecidability of First Order Logic follows from Gödel's 1st Incompleteness Theorem for Q.

Sa	ee	d	Sa	lel	hi
Ju	00	5	ou		

http://SaeedSalehi.ir/

 $S \alpha \epsilon \epsilon \partial S \alpha \ell \epsilon \hbar \iota$.ir

2nd Application : Gödel's 2nd Incompleteness Theorem

Standard (Classic, Usual) Proofs of G2: Derivability Conditions:

- (i) if $T \vdash \varphi$ then $T \vdash \Pr_T(\ulcorner \varphi \urcorner)$
- (ii) $T \vdash \Pr_T(\ulcorner \varphi \to \psi \urcorner) \to [\Pr_T(\ulcorner \varphi \urcorner) \to \Pr_T(\ulcorner \psi \urcorner)]$
- (iii) $T \vdash \Pr_T(\ulcorner \varphi \urcorner) \to \Pr_T(\ulcorner \Pr_T(\ulcorner \varphi \urcorner) \urcorner)$

Classically, (iii) is proved by showing:

(iv) $T \vdash \sigma \to \Pr_T(\ulcorner \sigma \urcorner)$ for any $\sigma \in \Sigma_1$

Usually the following instance of Diagonal Lemma is used:

(v) $T \vdash \boldsymbol{\gamma} \longleftrightarrow \neg \mathsf{Pr}_T(\ulcorner \boldsymbol{\gamma} \urcorner)$ for some $\boldsymbol{\gamma} \in \Pi_1$

Saeed Salehi

http://SaeedSalehi.ir/

 $S \alpha \epsilon \epsilon \partial S \alpha \ell \epsilon \hbar \iota$.ir

Theorem (Gödel's 2nd)

For any consistent T satisfying (i,ii,iv,v), $T \not\vdash \neg \Pr_T(\ulcorner \bot \urcorner)$.

Proof.

By (i) and (v) we have $T \not\vdash \gamma$. By (iv), $T \vdash \neg \gamma \rightarrow \Pr_T(\ulcorner \neg \gamma \urcorner)$, and so (*) $T \vdash \neg \Pr_T(\ulcorner \neg \gamma \urcorner) \rightarrow \gamma$. By (i), (ii) and classical logic $T \vdash \Pr_T(\ulcorner \neg \gamma \urcorner) \rightarrow [\Pr_T(\ulcorner \gamma \urcorner) \rightarrow \Pr_T(\ulcorner \bot \urcorner)]$. Whence, $T \vdash \neg \Pr_T(\ulcorner \bot \urcorner) \rightarrow \neg \Pr_T(\ulcorner \gamma \urcorner) \lor \neg \Pr_T(\ulcorner \neg \gamma \urcorner)$ by (v) $\searrow \gamma \checkmark by (*)$

And so $T \vdash \neg \Pr_T(\ulcorner \bot \urcorner) \rightarrow \gamma$, thus $T \not\vdash \neg \Pr_T(\ulcorner \bot \urcorner)$.

Saeed Salehi

http://SaeedSalehi.ir/

 $S \alpha \epsilon \epsilon \partial S \alpha \ell \epsilon \hbar \iota$.ir

Theorems of Tarski and Gödel's Second Incompleteness-Computationally

Gödel's 2nd Incompleteness Theorem

It Suffices to Note that:

- (i') if $U \vdash \varphi$ then $\mathbb{Q} \vdash \Pr_U(\ulcorner \varphi \urcorner)$ for every $U \in \Sigma_1$
- (ii') $\mathbb{N} \models \Pr_U(\ulcorner\varphi \to \psi\urcorner) \to [\Pr_U(\ulcorner\varphi\urcorner) \to \Pr_U(\ulcorner\psi\urcorner)]$ for every U
- (iv') $\mathbb{N} \models \sigma \to \Pr_U(\ulcorner \sigma \urcorner)$ for any $\sigma \in \Sigma_1$ and $U \supseteq \mathbb{Q}$
- (v) $Q \vdash \gamma \longleftrightarrow \neg \mathsf{Pr}_T(\ulcorner \gamma \urcorner)$ for some $\gamma \in \Pi_1$

U = (Any) Ideal Mathematical Theory Q = A Real Mathematical Theory

 $Q \vdash (i'), (v)$ Real Math. Th. $\vdash (ii'), (iv') \Longrightarrow$ Failure of Hilbert's Programme

Saeed Salehi	http://SaeedSalehi.ir/	$\mathcal{S}lpha\epsilon\epsilon\partial\mathcal{S}lpha\ell\epsilon\hbar\imath$.ir
Theorems of Tarski and Gödel's S	econd Incompleteness—Computationally	5 th World Congress and School on Universal Logic

Part 2: Gödel's Second Incompleteness Theorem

Let $\mathfrak{Q}' = \mathbb{Q} \cup \{ \Pr_U(\ulcorner \varphi \to \psi \urcorner) \to [\Pr_U(\ulcorner \varphi \urcorner) \to \Pr_U(\ulcorner \psi \urcorner)] \mid U \in \Sigma_1 \} \\ \cup \{ \sigma \to \Pr_U(\ulcorner \sigma \urcorner) \mid \sigma \in \Sigma_1, \mathbb{Q} \subseteq U \in \Sigma_1 \}.$

Theorem (Salehi — Unpublished) $\mathfrak{Q}' \in \Sigma_1$ and for any consistent $T, \mathfrak{Q}' \subseteq T \in \Sigma_1 \Longrightarrow T \not\vdash \neg \Pr_T(\ulcorner \bot \urcorner).$

Gödel's (and Rosser's) 1st Incompleteness Theorem $Q \in Finite$ and for any consistent T, $Q \subseteq T \in \Sigma_1 \implies T \notin \Pi_1$ -Deciding.

A Real Mathematical Theory @' ⊢(i'),(ii'),(iv'),(v)

 $T \not\vdash \mathsf{Consistency}(U)$ for any real CE $T \supseteq \mathfrak{Q}'$ and ideal CE $U \supseteq T$

Saeed Salehi	http://SaeedSalehi.ir,	$/$ $Slpha\epsilon\epsilon\partial Slpha\ell\epsilon\hbar\imath$, ir
Theorems of Tarski and Gödel's Sec	cond Incompleteness—Computationally	5 th World Congress and School on Universal Logic

The ParticipantsFor Listening... and

The Organizers For Taking Care of Everything...

SAEEDSALEHI.ir

Sa	eed	Sa	lehi

http://SaeedSalehi.ir/

 $S \alpha \epsilon \epsilon \partial S \alpha \ell \epsilon \hbar \iota.ir$

Theorems of Tarski and Gödel's Second Incompleteness-Computationally