Theorems of Tarski and Gödel's Second Incompleteness-Computationally

Saeed Salehi

University of Tabriz

http://SaeedSalehi.ir/
$5^{\text {th }}$ World Congress and School on Universal Logic
University of Istanbul, Turkey
20-30 June 2015

A Finitely Given Infinite Set

$\{0,3,6,9, \cdots, 3 k, \cdots\} \subseteq \mathbb{N}$
$\left\{0,1,4,9, \cdots, k^{2}, \cdots\right\} \subseteq \mathbb{N}$

Computably Decidable set A : an algorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YES) or $x \notin A$ (outputs NO).

Algorithm: single-input (natural number), Boolean-output (1,0)

A Finitely Given Infinite Set

$\{0,3,6,9, \cdots, 3 k, \cdots\} \subseteq \mathbb{N}$
$\left\{0,1,4,9, \cdots, k^{2}, \cdots\right\} \subseteq \mathbb{N}$

Computably Enumerable set A : an (input-free) algorithm \mathcal{P} lists all members of A; i.e., $A=\operatorname{output}(\mathcal{P})$.

$$
\text { Algorithm } \xrightarrow{\text { output: }}\left\{a_{0}, a_{1}, a_{2}, \cdots\right\}=A
$$

Algorithm: input-free, output (a set of natural numbers)

A Finitely Given Infinite Set

$\{0,3,6,9, \cdots, 3 k, \cdots\} \subseteq \mathbb{N}$ $\left\{0,1,4,9, \cdots, k^{2}, \cdots\right\} \subseteq \mathbb{N}$

Semi-Decidable set A : an algorithm \mathcal{P} halts on any input x if and only if $x \in A$ (and does not halt if and only if $x \notin A$).

Algorithm: single-input (natural number), output-free

Two Deep Facts from Computability Theory

Semi-Decidable \equiv Computably Enumerable (CE)

Decidable \equiv CE \& CO-CE

Theorem of Post-Kleene

A Finitely Given Infinite Set

$\{0,3,6,9, \cdots, 3 k, \cdots\} \subseteq \mathbb{N}$
$\left\{0,1,4,9, \cdots, k^{2}, \cdots\right\} \subseteq \mathbb{N}$

Definable set A : a formula $\varphi(x)$ which holds of x if and only if $x \in A$ (and is not true of x if and only if $x \notin A$).

$$
A=\{n \in \mathbb{N} \mid\langle\mathbb{N} ;+, \times\rangle \models \varphi(n)\}
$$

Formula: of the language of arithmetic $\{+, \times\}$

$$
\langle 0,1, \mathrm{~s},+, \times, \leqslant, \cdots\rangle
$$

Arithmetical Hierarchy of Formulas

$\neg, \wedge, \vee, \rightarrow$

$$
-^{\complement}, \quad-\cap-, \quad-\cup-, \quad \quad^{\complement} \cup-
$$

$\exists \quad$ infinite search

A Clever Idea

$\exists x \leqslant t \quad$ finite search $\left(\mathbb{W}_{x \leqslant t}\right) \quad \forall x \leqslant t \quad$ finite verify $\left(\mathbb{M}_{x \leqslant t}\right)$

Arithmetical Hierarchy of Formulas

$$
\begin{aligned}
& \Delta_{0}=\text { the class of formulas all whose quantifiers are bounded } \\
& \quad\left(\text { e.g. } x \in\left\{0,1,4,9, \cdots, k^{2}, \cdots\right\} \Longleftrightarrow \exists y \leqslant x\left[x=y^{2}\right]\right) \\
& \Sigma_{1}=\exists v_{1} \cdots \exists v_{m} \Delta_{0}\left(v_{1}, \ldots, v_{m}\right) \\
& \Pi_{1}=\forall v_{1} \cdots \forall v_{m} \Delta_{0}\left(v_{1}, \ldots, v_{m}\right) \\
& \Delta_{1}=\Sigma_{1} \cap \Pi_{1} \\
& \quad \vdots \\
& \Sigma_{n+1}=\exists v_{1} \cdots \exists v_{m} \Pi_{n}\left(v_{1}, \ldots, v_{m}\right) \\
& \Sigma_{n+1}=\forall v_{1} \cdots \forall v_{m} \Sigma_{n}\left(v_{1}, \ldots, v_{m}\right) \\
& \Delta_{n}=\Sigma_{n} \cap \Pi_{n}
\end{aligned}
$$

Two Deep Facts from Mathematical Logic

$\Sigma_{n}=$ closed under $\wedge, \vee, \forall x \leqslant t, \exists$
$\Pi_{n}=$ closed under $\wedge, \vee, \exists x \leqslant t, \forall$
$\Delta_{n}=$ closed under $\wedge, \vee, \exists x \leqslant t, \forall x \leqslant t, \neg$

Σ_{1}-definable (subsets of \mathbb{N}) \equiv CE (Computably Enumerable)
Δ_{1}-definable (subsets of \mathbb{N}) \equiv Computably Decidable
Π_{1}-definable (subsets of \mathbb{N}) \equiv co-CE

A Motto of Computability Theory (and Mathematical Logic) Computability is Definability

A Motto of Mathematical Logic (and Computability Theory)
Definability is (Relativized) Computability (by Oracles)

$$
A=\{u \in \mathbb{N} \mid\langle\mathbb{N} ;+, \times\rangle \models \varphi(u / x)\}
$$

$\xrightarrow{\text { input: } \quad x \in \mathbb{N}}\left\{\begin{array}{cc}\text { either } & \varphi(x) \\ \text { or } & \neg \varphi(x)\end{array}\right\} \xrightarrow{\text { output: }} \begin{cases}\text { YES } & \text { if } x \in A \\ \text { NO } & \text { if } x \notin A\end{cases}$

Some (Advanced) Higher Recursion Theory

For $A=\{u \in \mathbb{N} \mid\langle\mathbb{N} ;+, \times\rangle \models \varphi(u / x)\}$ if $\varphi \in \Sigma_{n}$ then for the Oracle $\emptyset^{(n)}=\left\{u \in \mathbb{N}|\mathbb{N}|=\Sigma_{n}\right.$-True $\left.(u)\right\}$ we have
$A \leqslant 1 \emptyset^{(n)}$ by (the injection) $f: \mathbb{N} \rightarrow \mathbb{N}, f(u)=\ulcorner\varphi(u / x)\urcorner$:
$u \in A \Longleftrightarrow \mathbb{N} \models \varphi(u / x) \Longleftrightarrow \Sigma_{n}-\operatorname{True}(\ulcorner\varphi(u / x)\urcorner) \Longleftrightarrow f(u) \in \emptyset^{(n)}$
and so $A \leqslant m \emptyset^{(n)}$ and $A \leqslant \mathrm{~T} \emptyset^{(n)} \cdots$ etc.

A Finitely Given (Infinite) Set

Is A Definable Set.

The Complexity of its Definition describes the Complexity of its Computation (taking an element and determining if it belongs to this set)

Gödel's First Incompleteness Theorem

in semantic form:

$$
\operatorname{Th}(\mathbb{N})=\{\theta \in \operatorname{Sent} \mid \mathbb{N} \models \theta\} \text { is Not Decidable. }
$$

It is neither CE nor co-CE.
Proof.
If $\operatorname{Th}(\mathbb{N})$ were $C E$ then so would be $\{\neg \theta \mid \theta \in \operatorname{Th}(\mathbb{N})\}=\operatorname{Th}(\mathbb{N})^{\complement}$; and so $\mathrm{Th}(\mathbb{N})$ would be decidable! For the same reason $\operatorname{Th}(\mathbb{N})$ cannot be co-CE.

Recall that $\operatorname{Th}(\mathbb{N})$ is a complete theory!

习习art I: Tarski's Undefinability Theorem

A Reading of the Incompleteness Theorem:
Any CE and sound theory is incomplete

$$
T \in \Sigma_{1}, T \subseteq \operatorname{Th}(\mathbb{N}) \Longrightarrow T \neq \operatorname{Th}(\mathbb{N})
$$

a consequence of $\operatorname{Th}(\mathbb{N}) \notin \Sigma_{1}$-Definable

Tarski's Undefinability Theorem: $\operatorname{Th}(\mathbb{N}) \notin$ Definable

Corollary of Tarski:
Precise Gödel's 1st:

$$
\begin{gathered}
T \in \Sigma_{n}, T \subseteq \operatorname{Th}(\mathbb{N}) \Longrightarrow \operatorname{Th}(\mathbb{N}) \nsubseteq T \\
T \in \Sigma_{1}, T \subseteq \operatorname{Th}(\mathbb{N}) \Longrightarrow \Pi_{1}-\operatorname{Th}(\mathbb{N}) \nsubseteq T \\
T \in \Sigma_{n}, T \subseteq \operatorname{Th}(\mathbb{N}) \Longrightarrow \Pi_{n}-\operatorname{Th}(\mathbb{N}) \nsubseteq T \\
{[n=1] \swarrow \searrow\left[\Pi_{n}-\operatorname{Th}(\mathbb{N}) \subseteq \operatorname{Th}(\mathbb{N})\right]} \\
\text { Gödel's } 1^{\text {st }} \quad \text { Tarski }
\end{gathered}
$$

习习art I: Tarski's Undefinability Theorem

A Unification (and A Generalization for both) of the Theorems of Gödel's 1st Incompleteness and Tarski's Undefinability:

Theorem (Salehi\&Seraji (2015))
$T \in \Sigma_{n}, T \subseteq \operatorname{Th}(\mathbb{N}) \Longrightarrow \Pi_{n}-\operatorname{Th}(\mathbb{N}) \not \subset T$ (for every $n>0$).

Proof.

If $T \in \Sigma_{n}$ then $\operatorname{Prov}_{T} \in \Sigma_{n}$, and so for the Gödel Sentence γ with Q $\vdash \boldsymbol{\gamma} \longleftrightarrow \neg \operatorname{Pr}_{T}(\ulcorner\boldsymbol{\gamma}\urcorner)$ we have $\boldsymbol{\gamma} \in \Pi_{n}-\operatorname{Th}(\mathbb{N})$ and $T \nvdash \gamma$.

So, $\operatorname{Th}(\mathbb{N})$ Is Not Computable By Any Definable Oracle!

习习art 2: Gödel's Second Incompleteness Theorem

Some More Technicalities of Gödel's 1st:

- It Is Usually Proved For Peano’s Arithmetic PA.

PA is (proved to be [after Gödel]) not finitely axiomatizable.
A Clever Idea
A Finitely Axiomatizable Arithmetical Theory, called Robinson's Arithmetic Q Suffices for the Gödel's Arguments to go through ...

Question
What does Q in Q stand for? And what is the theory R? Or, possibly S? Doesn't Robinson Start with R? Isn't RA = Robinson's Arithmetic?

More On Robinson's Arithmetic Q

- Q is finite:
$\mathrm{Q}=\mathrm{PA}-\{$ all induction axioms $\}+\forall x \exists y[x=0 \vee x=S(y)]$
- Q is Σ_{1}-complete: $\Sigma_{1}-\mathrm{Th}(\mathbb{N}) \subseteq \mathrm{Q}$.
- Q is essentially undecidable; i.e., CE incompletable: every CE and consistent extension of it is incomplete.

So, Q is undecidable (otherwise it could be extended to a consistent, complete and decidable [so CE] theory.)

Application: Church's Theorem on the Undecidability of First Order Logic follows from Gödel's 1st Incompleteness Theorem for Q.

$2^{\text {nd }}$ Application: Gödel's $2^{\text {nd }}$ Incompleteness Theorem

Standard (Classic, Usual) Proofs of G2:

Derivability Conditions:
(i) if $T \vdash \varphi$ then $T \vdash \operatorname{Pr}_{T}(\ulcorner\varphi\urcorner)$
(ii) $\quad T \vdash \operatorname{Pr}_{T}(\ulcorner\varphi \rightarrow \psi\urcorner) \rightarrow\left[\operatorname{Pr}_{T}(\ulcorner\varphi\urcorner) \rightarrow \operatorname{Pr}_{T}(\ulcorner\psi\urcorner)\right]$
(iii) $\quad T \vdash \operatorname{Pr}_{T}(\ulcorner\varphi\urcorner) \rightarrow \operatorname{Pr}_{T}\left(\left\ulcorner\operatorname{Pr}_{T}(\ulcorner\varphi\urcorner)\right\urcorner\right)$

Classically, (iii) is proved by showing:
(iv) $\quad T \vdash \sigma \rightarrow \operatorname{Pr}_{T}(\ulcorner\sigma\urcorner)$ for any $\sigma \in \Sigma_{1}$

Usually the following instance of Diagonal Lemma is used:
(v) $T \vdash \gamma \longleftrightarrow \neg \operatorname{Pr}_{T}(\ulcorner\gamma\urcorner)$ for some $\gamma \in \Pi_{1}$

Theorem (Gödel's 2nd)

For any consistent T satisfying (i,ii,iv,v), $T \nvdash \neg \operatorname{Pr}_{T}(\ulcorner\perp\urcorner)$.

Proof.

By (i) and (v) we have $T \nvdash \gamma$. By (iv), $T \vdash \neg \gamma \rightarrow \operatorname{Pr}_{T}(\ulcorner\neg \gamma\urcorner)$, and so $(\star) T \vdash \neg \operatorname{Pr}_{T}(\ulcorner\neg \boldsymbol{\gamma}) \rightarrow \boldsymbol{\gamma}$. By (i), (ii) and classical logic $T \vdash \operatorname{Pr}_{T}\left(\ulcorner\neg \boldsymbol{\gamma}) \rightarrow\left[\operatorname{Pr}_{T}\left(\ulcorner\boldsymbol{\gamma}) \rightarrow \operatorname{Pr}_{T}(\ulcorner\perp\urcorner)\right]\right.\right.$. Whence, $T \vdash \neg \operatorname{Pr}_{T}(\ulcorner\perp\urcorner) \rightarrow \neg \operatorname{Pr}_{T}\left(\ulcorner\boldsymbol{}(\urcorner) \vee \neg \operatorname{Pr}_{T}(\ulcorner\neg \boldsymbol{\gamma})\right.$

$$
\text { by }(v) \searrow \gamma \swarrow \text { by }(\star)
$$

And so $T \vdash \neg \operatorname{Pr}_{T}(\ulcorner\perp\urcorner) \rightarrow \boldsymbol{\gamma}$, thus $T \nvdash \neg \operatorname{Pr}_{T}(\ulcorner\perp\urcorner)$.

Gödel's $2^{\text {nd }}$ Incompleteness Theorem

It Suffices to Note that:

(i') if $U \vdash \varphi$ then $\mathrm{Q} \vdash \operatorname{Pr}_{U}(\ulcorner\varphi\urcorner)$ for every $U \in \Sigma_{1}$
(ii') $\mathbb{N} \models \operatorname{Pr}_{U}(\ulcorner\varphi \rightarrow \psi\urcorner) \rightarrow\left[\operatorname{Pr}_{U}(\ulcorner\varphi\urcorner) \rightarrow \operatorname{Pr}_{U}(\ulcorner\psi\urcorner)\right]$ for every U
(iv') $\mathbb{N} \models \sigma \rightarrow \operatorname{Pr}_{U}(\ulcorner\sigma\urcorner)$ for any $\sigma \in \Sigma_{1}$ and $U \supseteq \mathbf{Q}$
(v) $\quad \mathrm{Q} \vdash \gamma \longleftrightarrow \neg \operatorname{Pr}_{T}(\ulcorner\gamma\urcorner)$ for some $\gamma \in \Pi_{1}$
$U=$ (Any) Ideal Mathematical Theory
$\mathrm{Q}=\mathrm{A}$ Real Mathematical Theory
Q $\vdash(\mathrm{i} ’)$,(v) Real Math. Th. \vdash (ii’),(iv’) \Longrightarrow Failure of Hilbert's Programme

Plart 2: Gödel's Second Incompleteness Theorem

$$
\begin{aligned}
& \text { Let } \\
& \begin{array}{ll}
\mathbb{Q}^{\prime}=\mathrm{Q} & \cup\left\{\operatorname{Pr}_{U}(\ulcorner\varphi \rightarrow \psi\urcorner) \rightarrow\left[\operatorname{Pr}_{U}(\ulcorner\varphi\urcorner) \rightarrow \operatorname{Pr}_{U}(\ulcorner\psi\urcorner)\right] \mid U \in \Sigma_{1}\right\} \\
& \cup\left\{\sigma \rightarrow \operatorname{Pr}_{U}(\ulcorner\sigma\urcorner) \mid \sigma \in \Sigma_{1}, \mathbf{Q} \subseteq U \in \Sigma_{1}\right\} .
\end{array}
\end{aligned}
$$

Theorem (Salehi - Unpublished)
$\mathbb{A}^{\prime} \in \Sigma_{1}$ and for any consistent $T, \mathbb{C}^{\prime} \subseteq T \in \Sigma_{1} \Longrightarrow T \nvdash \neg \operatorname{Pr}_{T}(\ulcorner\perp\urcorner)$.

Gödel's (and Rosser's) 1st Incompleteness Theorem

 $\mathrm{Q} \in$ Finite and for any consistent $T, \mathrm{Q} \subseteq T \in \Sigma_{1} \Longrightarrow T \notin \Pi_{1}$-Deciding.A Real Mathematical Theory $\mathbb{1 0}^{\prime} \vdash\left(i^{\prime}\right),\left(i^{\prime}\right),\left(i v^{\prime}\right),(v)$ $T \nvdash \operatorname{Consistency}(U)$ for any real CE $T \supseteq \mathbb{C}^{\prime}$ and ideal CE $U \supseteq T$

Thank 2ou!

The Participants For Listening... and

The Organizers For Taking Care of Everything...

SAEEDSALEHI.ir

