└─ SAEED SALEHI, 2024. On the Halting Probability and Chaitin's Heuristic Principle. 1/18

On the Halting Probability and Chaitin's Heuristic Principle

Saeed Salehi

January 2024

GREGORY JOHN CHAITIN

Born: 1947₇₇ (Jewish) Argentine-American Algorithmic Information Theory A. Kolmogorov & R. Solomonoff J. Incompleteness (1971)₂₄ 2. Heuristic Principle (1974)₂₇ 3. Halting Probability (1975)₂₈ CHAITIN's Constant: Ω \leftarrow March 2001₅₄ IBM's Thomas John Watson Research Center in New York A Genius Many Honors (& writings) Lots of Criticism (& fans)

HP: Heuristic Principle / Halting Probability

 On Chaitin's Heuristic Principle and Halting Probability. arXiv:2310.14807v3 [math.LO]. https://arxiv.org/abs/2310.14807

- 1. Heuristic Principle
- 2. Halting Probability

1. CHAITIN'S HEURISTIC PRINCIPLE

Greater Complexity Implies Unprovability

If a sentence is more complex (heavier) than the theory, then that sentence is *unprovable* from that theory.

(Un-)Provability:

Example (Arithmetic & Geometry) **Arithmetic** $\vdash \neg \exists x, y, z \ (xyz \neq 0 \land x^4 + y^4 = z^2)$. **Arithmetic** $\vdash \exists x, y, z > 1 \ (x^4 + y^4 = z^2 + 1)$. **Arithmetic** $\vdash \exists x, y, z \ (xyz \neq 0 \land x^4 + y^4 + 1 = z^2)$? **Brithmetic** $\vdash \forall \triangle ABC \ (\overline{AB} = \overline{AC} \longleftrightarrow \angle B = \angle C)$ **Arithmetic** $\nvDash 1 = 2$ **Brithmetic** $\vdash 1 = 2$ **Brithmetic** $\vdash 1 = 2$ Arithmetic $\nvdash 1 = 2$

اٿيات تساوي ۲=۱ a = b فرض اوليه $a^2 = ab$ $a^2-b^2 = ab-b^2$ (a + b)(a - b) = b(a - b)با توجہ بہ فرض b = (a + b) a + a = a $2\alpha = \alpha$ ولى چطور امكان داره؟!!! | = 2 =

 $\bullet \angle BAO = \angle CAO \implies$ $\triangle OB'A \cong \triangle OC'A \implies$ $\overline{AB'} = \overline{AC'} \& \overline{OB'} = \overline{OC'}$

• $\overline{BM} = \overline{MC} \implies$ $\triangle OMB \cong \triangle OMC \implies$

 $\overline{OB} = \overline{OC} \Longrightarrow$ $\triangle OBB' \cong \triangle OCC' \implies$ $\overline{B'B} = \overline{C'C} \implies$

 $\overline{AB'} + \overline{B'B} = \overline{AC'} + \overline{C'C}$ $\implies \overline{AB} = \overline{AC}$

INCOMPLETENESS (VS. COMPLETENESS)

Tarski_{1930's}

Gödel₁₉₃₁

SOLOMONOFF-KOLMOGOROV-CHAITIN COMPLEXITY

Definition (Program Size Complexity) C(x) = the length of the shortest input-free program that outputs only *x* (and halts).

Example $(10)^n = 1010 \cdots 10 \parallel \{10^n\}_{n=1}^{\infty} = 10100100010000 \cdots 10^n 10^{n+1} \cdots$ BEGIN BEGIN input *n* let n = 1for i = 1 to nwhile n > 0 do print 1 begin print 0 print 1 for i = 1 to nEND print 0 let n = n+1end END

Descriptive Complexity & Randomness

- 100100100100100100100100100100100^{*}
- ▶ 010110111011110111110111110111 ··· $\{01^n\}_{n>0}$
- 010111101011111011111111011... $\{01^{(\pi-3)_n}\}_{n=1}^{\infty}$
- ► 11000110000111111000010010100001101010...

Definition (Random)

A random number or a string is one whose program-size complexity is almost its length.

COMPLEXITY OF SENTENCES AND THEORIES

Arithmetic:

►
$$\exists x, y, z (xyz \neq 0 \land x^2 + y^2 = z^2)_{x=3, y=4, z=5}$$

$$\neg \exists x, y, z \, (xyz \neq 0 \land x^3 + y^3 = z^3)$$

$$\neg \exists x, y, z \, (xyz \neq 0 \land x^4 + y^4 = z^4)$$

$$\forall n > 2 \neg \exists x, y, z (xyz \neq 0 \land x^n + y^n = z^n)$$

Geometry:

- $\blacktriangleright \forall \triangle ABC (M_a, M_b, M_c \text{midpoints} \rightarrow \exists \mathbb{G}[AM_a \cap BM_b \cap CM_c = \{\mathbb{G}\}])$
- $\blacktriangleright \forall \triangle ABC (AA', BB', CC' altitudes \rightarrow \exists \mathbb{H}[AA' \cap BB' \cap CC' = \{\mathbb{H}\}])$
- $\blacktriangleright \forall \triangle ABC \exists ! \bigcirc (\overline{\bigcirc A} = \overline{\bigcirc B} = \overline{\bigcirc C})$
- $\blacktriangleright \forall \triangle ABC (\mathbb{G}, \mathbb{H}, \mathbb{O} \text{ are identical or on a line})$

HEURISTIC PRINCIPLE, HP

Definition (HP-satisfying weighing) A mapping \mathcal{W} from theories and sentences to \mathbb{R} satisfies HP when, for every theory \mathcal{T} and every sentence ψ we have

$$\mathbb{W}(\psi) > \mathbb{W}(\mathcal{T}) \Longrightarrow \mathcal{T} \not\vdash \psi.$$

Equivalently, $\mathcal{T} \vdash \psi \Longrightarrow \mathcal{W}(\mathcal{T}) \ge \mathcal{W}(\psi)$

- Chaitin's Idea: program-size complexity
- Lots of Criticisms ...
- Some built their own *partial* weighting
- Fans come to rescue ...

HP, A LOST PARADISE

CRITICISMS:

For complex sentences $\mathfrak{B}, \mathfrak{B}'$, or complex numbers $\mathcal{N}, \mathcal{N}'$, the following *complicated* sentences are all provable:

$$\circ \mathfrak{F} \to \mathfrak{F}, \ \mathfrak{F} \land \mathfrak{F}' \to \mathfrak{F}' \land \mathfrak{F}, \ (\neg \mathfrak{F}' \to \neg \mathfrak{F}) \Rightarrow (\mathfrak{F} \to \mathfrak{F}'). \\ \circ \ 1 + \mathcal{N} = \mathcal{N} + 1, \ \mathcal{N} \times \mathcal{N}' = \mathcal{N}' \times \mathcal{N}, \ n(\mathcal{N} + \mathcal{N}') = n\mathcal{N} + n\mathcal{N}'.$$

A SALVAGE?

 $\Delta \quad \delta\text{-complexity: } \mathcal{C}(x) - |x|.$ XXX $\mathcal{T} \vdash \psi \Longrightarrow \delta(\mathcal{T}) \ge \delta(\psi)$ XXX

No Hope:

$$\triangleright \perp \rightarrow \mathfrak{S}, \ \mathfrak{S} \rightarrow \top, \ p \rightarrow (\mathfrak{S} \rightarrow p), \ \neg p \rightarrow (p \rightarrow \mathfrak{S}).$$
$$\triangleright \mathcal{N} > 0, \ \mathcal{N} \times 0 = 0, \ 1 + \mathcal{N} \neq 1, \ 2 \leq 2 \times \mathcal{N}.$$

More on the WLD maybe

2. CHAITIN'S HALTING PROBABILITY

Halting Probability (of a randomly given input-free program)

$$\Omega = \sum_{p \text{ halts}} 2^{-|p|}$$

Halting or Looping forever:

A random $\{0, 1\}$ -string may not be (the ASCII code of) a program. Even if it is, then it may not be input-free. If a binary string is (the code of) an input-free program, then it may halt after running or may loop forever.

$$\Omega = \sum_{p \in \{0,1\}^* \text{halts}}^{p: \text{ input-free}} 2^{-|p|}$$

A PARTIAL AGREEMENT

The probability of getting a fixed binary string of length *n* by tossing a fair coin (whose one side is '0' and the other '1') is 2^{-n} , and the halting probability of programs with size *n* is

the number of *halting programs* with size nthe number of *all binary strings* with size $n = \frac{\#\{p \in \mathbb{P} : p \downarrow \& |p| = n\}}{2^n}$

since there are 2^n binary strings of size *n*. Thus, the halting probability of programs with size *n* can be written as $\sum_{p,l}^{|p|=n} 2^{-|p|}$.

Denote this number by Ω_n ; so, the number of halting programs with size *n* is $2^n\Omega_n$.

AND A DISAGREEMENT

According to Chaitin (and almost everybody else), the halting probability of programs with size $\leq N$ is $\sum_{n=1}^{N} \Omega_n = \sum_{p\downarrow}^{|p| \leq N} 2^{-|p|}$; and so, the halting probability is $\sum_{n=1}^{\infty} \Omega_n = \sum_{p\downarrow} 2^{-|p|} (= \mathbf{\Omega})!$

Let us see why we believe this to be an error. The halting probability of programs with size $\leq N$ is in fact

the number of halting programs with size $\leq N$ the number of all binary strings with size $\leq N$ = $\frac{\sum_{n=1}^{N} 2^n \Omega_n}{\sum_{n=1}^{N} 2^n}$.

Now, it is a calculus exercise to notice that, for sufficiently large Ns,

$$\frac{\sum_{n=1}^{N} 2^n \Omega_n}{\sum_{n=1}^{N} 2^n} \neq \sum_{n=1}^{N} \Omega_n, \text{ and } \lim_{N \to \infty} \frac{\sum_{n=1}^{N} 2^n \Omega_n}{\sum_{n=1}^{N} 2^n} \neq \lim_{N \to \infty} \sum_{n=1}^{N} \Omega_n.$$

Possible Errors / Mistakes

The number Ω was meant to be "the probability that a computer program whose bits are generated one by one by independent tosses of a fair coin will eventually halt".

As pointed out by Chaitin, the series $\sum_{p\downarrow} 2^{-|p|}$ could be > 1, or may even diverge, if the set of programs is not taken to be *prefix-free* (that "no extension of a valid program is a valid program"—what "took ten years until [he] got it right").

So, the fact that, for *delimiting* programs, the real number $\sum_{p\downarrow} 2^{-|p|}$ lies between 0 and 1 (by Kraft's inequality, that $\sum_{s\in S} 2^{-|s|} \leq 1$ for every prefix-free set *S*) does not make it the probability of anything!

ANY SOLUTIONS?

1. Conditional Probability

Let $\Omega_S = \sum_{s \in S} 2^{-|s|}$ and $\mho_S = \Omega_S / \Omega_{\mathbb{P}}$ for a set $S \subseteq \mathbb{P}$ of programs. This is a probability measure: $\mho_{\emptyset} = 0$, $\mho_{\mathbb{P}} = 1$, and for any family $\{S_i \subseteq \mathbb{P}\}_i$ of pairwise disjoint sets of programs, $\mho_{\bigcup_i S_i} = \sum_i \mho_{S_i}$. If \mathcal{H} is the set of all the binary codes of the halting programs, then the (conditional) halting probability is $\mho_{\mathcal{H}}$, or $\Omega / \Omega_{\mathbb{P}}$. We then have $\mho_{\mathcal{H}} > \Omega$ since it can be shown that $\Omega_{\mathbb{P}} < 1$.

2. Asymptotic Probability

Count \hbar_n the number of halting programs (the strings that code some input-free programs that eventually halt after running) that have integer codes[‡] less than or equal to *n*. Then define the halting probability to be $\lim_{n\to\infty} \hbar_n/n$, of course, if it exists. Or take $\lim_{N\to\infty} (\sum_{n=1}^N 2^n \Omega_n)/(\sum_{n=1}^N 2^n)$ if the limit exists. Note that this number can be shown to be $\leq \frac{\Omega}{2}$. ‡ integer code: 0₁, 1₂, 00₃, 01₄, 10₅, 11₆, 000₇, 001₈, 010₉, ... └─ SAEED SALEHI, 2024. On the Halting Probability and Chaitin's Heuristic Principle. 18/18

