A Quick Introduction to MATHEMATICAL LOGIC

SAEED SALEHI

Frontiers Summer School in Mathematics

Foundations of Mathematics, 28 August 2021

AMS Math Subject Classification (1970)

From (almost) 1970's AMS divided Mathematics into

- History and Foundations
 - 01. History and Biography
 - 02. Logic and Foundations

:

- Algebra
- Analysis
- Geometry

:

AMS Math Subject Classification of *Logic* (1970)

```
02 LOGIC AND FOUNDATIONS
```

- 02A PHILOSOPHICAL AND CRITICAL
- 02B CLASSICAL LOGICAL SYSTEMS
- 02C NONCLASSICAL FORMAL SYSTEMS
- 02D PROOF THEORY
- 02E CONSTRUCTIVE MATHEMATICS
- 02F RECURSION THEORY
- 02G METHODOLOGY OF DEDUCTIVE SYSTEMS
- 02H MODEL THEORY
 - 02I —
- 02J ALGEBRAIC LOGIC
- 02K SET THEORY

AMS Math Subject Classification of *Logic* (1980)

From 1980 AMS divided Mathematics into

- 00. General
- 01. History and Biography
- 02. —
- 03. Mathematical Logic and Foundations
- 04. Set Theory

÷

AMS Math Subject Classification of *Logic* (2000)

```
From 2000 AMS divided Mathematics into
```

- 00. General
- 01. History and Biography
- 02. —
- 03. Mathematical Logic and Foundations
- 04. —
- 05. Combinatorics

-

AMS Math Subject Classification of *Logic* (2020)

- **03** Mathematical Logic and Foundations
 - 03A PHILOSOPHICAL ASPECTS OF LOGIC AND FOUNDATIONS
 - 03B GENERAL LOGIC
 - 03C MODEL THEORY
 - 03D COMPUTABILITY AND RECURSION THEORY
 - 02E SET THEORY
 - 03F Proof Theory and Constructive Mathematics
 - 02G ALGEBRAIC LOGIC
 - 02H NONSTANDARD MODELS

Foundations — Why?

```
Because everything is (can be) a set! Even numbers!
       0 ∅ (= {})
       1 {∅}
      2 \{\emptyset, \{\emptyset\}\}
      \mathbf{3} \ \Big\{\emptyset, \{\emptyset\}, \big\{\emptyset, \{\emptyset\}\big\} \Big\} \Big\}
n+1 \{0,1,\cdots,n\} = n \cup \{n\}
```

Foundations — How?

Graphs, Groups, Algebras, . . . everything is (can be defined as) a set; even ordered pairs:

Definition (Kuratowski 1921)
$$\langle x, y \rangle = \{ \{x\}, \{x, y\} \}$$

Exercise: Show that $\langle x, y \rangle = \langle a, b \rangle \iff x = a \land y = b$.

A relation is a set of ordered pairs, a function is a relation . . .

Now we are used to the terminology of Set Theory after the wave of *New Mathematics* . . .

Sets for Counting

Numbers Having the same number of things ...

Equinumerosity Having a bijection between them ...

Surprises:

- $\mathbb{N} \cong \mathbb{N} \{0\}: f(x) = x + 1.$
- $ightharpoonup \mathbb{Z} \cong 2\mathbb{Z}(\text{Even Integers}): f(x) = 2x.$
- $\mathbb{N}^2 \cong \mathbb{N}: f(x,y) = 2^x(2y+1)-1.$

1

▶ but $\mathfrak{P}(\mathbb{N}) \ncong \mathbb{N}$ since for every $f \colon \mathbb{N} \to \mathfrak{P}(\mathbb{N})$, the set $D_f = \{n \mid n \not\in f(n)\}$ is not in the range of f (if $D_f = f(m)$, then $m \in D_f \leftrightarrow m \not\in f(m) \leftrightarrow m \not\in \underline{D_f}!$) remember the Liar's Paradox?

Crisis in the Foundations of Math.

Russell's Paradox

The set of all sets that are not members of themselves.

$$\mathfrak{R} = \{ x \mid x \notin x \}, \quad \mathfrak{R} \in \mathfrak{R} \iff \mathfrak{R} \notin \mathfrak{R}!$$

So, the axiom of unrestricted comprehension is not valid! $\{x \mid \varphi(x)\}$

If
$$1 = \{\{a\} \mid a = a\}$$
, or $\{x \mid \exists y \forall z (z \in x \leftrightarrow z = y)\}$ $(x = \{y\})$, then let $1' = \{x \in 1 \mid \exists y (x = \{y\} \land x \notin y)\}$ $(\{a\} \mid \{a\} \notin a\})$.
Now, $\{1'\} \in 1' \leftrightarrow \exists y [\{1'\} = \{y\} \land \{1'\} \notin y] \leftrightarrow \{1'\} \notin 1'!$

Some Exercises (1)

- 1. Write the syllogisms $\mathcal{S}a\mathcal{P}$, $\mathcal{S}i\mathcal{P}$, $\mathcal{S}i\mathcal{P}$, and $\mathcal{S}o\mathcal{P}$ in Predicate Logic by using the unary predicate symbols $\mathfrak{S}(x)$ and $\mathfrak{P}(x)$.
- 2. Prove the following in Group Theory:

$$\frac{x * x = \mathbf{e}}{i'(a*b) = i'(b) * i'(a)} \qquad \frac{x * x = \mathbf{e}}{a*b = b*a}$$

3. Prove that the following sentence, for any formula $\varphi(x)$, is true in every structure:

$$\exists x \big[\varphi(x) \to \forall y \, \varphi(y) \big]$$

Some Exercises (2)

1. Prove Barber's Paradox in Predicate Logic:

$$\neg \exists y \forall x \big[\theta(y, x) \leftrightarrow \neg \theta(x, x) \big]$$

2. Show that for every a, b, x, y we have

$$\left\{ \{x\}, \{x,y\} \right\} = \left\{ \{a\}, \{a,b\} \right\} \Longrightarrow x = a \land y = b$$

3. Prove that the mapping

$$\mathbb{N}^2 \to \mathbb{N}, \quad (x,y) \mapsto 2^x (2y+1) - 1$$
 is a bijection (1-1 and onto).