http://SaeedSalehi.ir/ 30 May 2016

Hello!

Gödel's Incompleteness Theorem: Constructivity of Its Various Proofs

Saeed Salehi

University of Tabriz & IPM

http://SaeedSalehi.ir/

SWAMPLANDIA 2016, Ghent University Tutorial I: Constructive Proofs 30 May 2016

http://SaeedSalehi.ir/ 30 May 2016

Tutorial I: Constructive Proofs 30 May 2016 Tutorial II: Gödel's Incompleteness Theorem 30 May 2016 Tutorial III: Constructivity of Proofs for Gödel's Theorem 31 May 2016

http://SaeedSalehi.ir/ 30 May 2016

Tutorial I: Constructive Proofs	30 May 2016
Tutorial II: Gödel's Incompleteness Theorem	30 May 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem 	31 May 2016

GÖDEL'S INCOMPLETENESS THEOREM: CONStructivity of Its Various Proofs SAEED SALEHI SWAMPLANDIA 2016

University of Tabriz & \mathbb{IPM} Tutorial I: Constructive Proofs http://SaeedSalehi.ir/ 30 May 2016

•	Tutorial I:	
	Constructive Proofs	30 May 2016
•	Tutorial II:	
	Gödel's Incompleteness Theorem	30 May 2016
•	Tutorial III:	
	Constructivity of Proofs for Gödel's Theorem	31 May 2016

http://SaeedSalehi.ir/ 30 May 2016

Why Constructivism?

G.J. CHAITIN, Thinking about Gödel & Turing (W.S. 2007) p. 97

So in the end it wasn't Gödel, it wasn't Turing, [...] that are making mathematics go in an experimental mathematics direction, in a quasi-empirical direction. The reason that mathematicians are changing their working habits is the computer. I think it's an excellent joke! (It's also funny that of the three old schools of mathematical philosophy, logicist, formalist, and intuitionist, the most neglected was BROUWER, who had a constructivist attitude years before the computer gave a tremendous impulse to constructivism.)

http://SaeedSalehi.ir/ 30 May 2016

What is Constructivism?

D. BRIDGES, Constructive Mathematics, *Stanford Encyclopedia of*

Philosophy (1997, 2013) http://plato.stanford.edu/entries/mathematics-constructive/

Constructive mathematics is distinguished from its traditional counterpart, classical mathematics, by the strict interpretation of the phrase "there exists" as "we can construct".

:::

[It is] developing mathematics in such a way that when a theorem asserts the existence of an object x with a property P, then the proof of the theorem embodies algorithms for constructing x and for demonstrating, by whatever calculations are necessary, that x has the property P.

http://SaeedSalehi.ir/ 30 May 2016

A Simple Example

A Theorem with Constructive and Nonconstructive Proofs

A constructive (nonconstructive) proof shows the existence of an object by presenting (respectively, without presenting) the object. From a logical point of view, a constructive (nonconstructive) proof does not use (respectively, uses) the law of the excluded middle.

The discussion of constructive versus nonconstructive proofs is very common in mathematical logic and philosophy. To illustrate this discussion, it is convenient to have some very sim*ple* examples of theorems with both constructive and nonconstructive proofs. Unfortunately, there seems to be a shortage of such examples. We present here a new example.

Theorem. Let c be an arbitrary real constant. The equation $c^2x^2 - (c^2 + c)x + c = 0$ in x has a real solution

Nonconstructive proof. By the law of the excluded middle, we have c = 0 or $c \neq 0$.

- Case c = 0: x = 0 (or any x) is a solution.
- Case $c \neq 0$: x = 1/c is a solution.

(This proof is nonconstructive because it does not present a solution, that is, it does not decide between the two cases as the equality c = 0 is undecidable.)

The American Mathematical Monthly, vol. 120 no. 6 (2013) page 536.

Theorem. Let c be an arbitrary real constant. The equation $c^2x^2 - (c^2 + c)x + c = 0$ in x has a real solution.

Nonconstructive proof. By the law of the excluded middle, we have c = 0 or $c \neq 0$.

- Case c = 0: x = 0 (or any x) is a solution.
- Case $c \neq 0$: x = 1/c is a solution.

(This proof is nonconstructive because it does not present a solution, that is, it does not decide between the two cases as the equality c = 0 is undecidable.)

Constructive proof. We have that x = 1 is a solution. (This proof is constructive because it presents a solution.)

—Submitted by Jaime Gaspar, INRIA Paris-Rocquencourt, πr^2 , Univ Paris Diderot, Sorbonne Paris Cité, F-78153 Le Chesnay, France

The author was financially supported by the French Fondation Sciences Mathématiques de Paris.

http://dx.doi.org/10.4169/amer.math.monthly.120.06.536 MSC: Primary 03P03

http://SaeedSalehi.ir/ 30 May 2016

Constructive Proofs ~> Algorithms

Theorem (The Intermediate Value Theorem)

For any polynomial (in general, continuous) $f : \mathbb{R} \to \mathbb{R}$ if f(a)f(b) < 0 then for some $c \in [a, b]$ we have f(c) = 0.

Constructive Proofs ~> Algorithms

Theorem (The Intermediate Value Theorem)

For any polynomial (in general, continuous) $f : \mathbb{R} \to \mathbb{R}$ if f(a)f(b) < 0 then for some $c \in [a, b]$ we have f(c) = 0.

Non-Constructive Proof.

Let $c = \sup \{x \in [a, b] : f(a)f(x) > 0\}$ (the largest root of f in [a, b]) or $c = \inf \{x \in [a, b] : f(b)f(x) > 0\}$ (the smallest).

Constructive Proofs ~> Algorithms

Theorem (The Intermediate Value Theorem)

For any polynomial (in general, continuous) $f : \mathbb{R} \to \mathbb{R}$ if f(a)f(b) < 0 then for some $c \in [a, b]$ we have f(c) = 0.

Non-Constructive Proof.

Let $c = \sup \{x \in [a, b] : f(a)f(x) > 0\}$ (the largest root of f in [a, b]) or $c = \inf \{x \in [a, b] : f(b)f(x) > 0\}$ (the smallest).

Constructive Proof.

Define $[a_n, b_n]$'s by induction: $[a_0, b_0] = [a, b]$, and $[a_{n+1}, b_{n+1}] = \begin{cases} [a_n, \frac{a_n + b_n}{2}] & \text{if } f(a_n) f(\frac{a_n + b_n}{2}) < 0, \\ [\frac{a_n + b_n}{2}, b_n] & \text{if } f(a_n) f(\frac{a_n + b_n}{2}) > 0, \\ \{\frac{a_n + b_n}{2}\} & \text{if } f(a_n) f(\frac{a_n + b_n}{2}) = 0; \end{cases}$ and let $c = \lim_n a_n$ (or $\lim_n b_n$).

http://SaeedSalehi.ir/ 30 May 2016

Another Example

Web-Page of David Duncan at Michigan State University http://users.math.msu.edu/users/duncan42/Recitation7.pdf

Theorem (The Archemidean Property of the Rationals) $\forall r \in \mathbb{Q} \ \exists n \in \mathbb{N} : r < n.$

Non-Constructive Proof.

If for $r = \frac{p}{q} \in \mathbb{Q}$, we have $\forall n \in \mathbb{N} : n \leq r$, then we can assume that $p, q \in \mathbb{N} - \{0\}$, and so $\frac{p}{q} > p$ whence 0 < q < 1, contradiction!

Constructive Proof.

Write $r = \frac{p}{q}$ with $p \in \mathbb{Z}, q \in \mathbb{N}$. Now, from $1 \leq q$ we have $0 < \frac{1}{q} \leq 1$ and so $r = \frac{p}{q} \leq |p| < |p| + 1(=n)$.

http://SaeedSalehi.ir/ 30 May 2016

Another Example

Web-Page of David Duncan at Michigan State University http://users.math.msu.edu/users/duncan42/Recitation7.pdf

Theorem (The Archemidean Property of the Rationals) $\forall r \in \mathbb{Q} \ \exists n \in \mathbb{N} : r < n.$

Non-Constructive Proof.

If for $r = \frac{p}{q} \in \mathbb{Q}$, we have $\forall n \in \mathbb{N} : n \leq r$, then we can assume that $p, q \in \mathbb{N} - \{0\}$, and so $\frac{p}{q} > p$ whence 0 < q < 1, contradiction!

Constructive Proof.

Write $r = \frac{p}{q}$ with $p \in \mathbb{Z}, q \in \mathbb{N}$. Now, from $1 \leq q$ we have $0 < \frac{1}{q} \leq 1$ and so $r = \frac{p}{q} \leq |p| < |p| + 1 (= n)$.

http://SaeedSalehi.ir/ 30 May 2016

Another Example

Web-Page of David Duncan at Michigan State University http://users.math.msu.edu/users/duncan42/Recitation7.pdf

Theorem (The Archemidean Property of the Rationals) $\forall r \in \mathbb{Q} \ \exists n \in \mathbb{N} : r < n.$

Non-Constructive Proof.

If for $r = \frac{p}{q} \in \mathbb{Q}$, we have $\forall n \in \mathbb{N} : n \leq r$, then we can assume that $p, q \in \mathbb{N} - \{0\}$, and so $\frac{p}{q} > p$ whence 0 < q < 1, contradiction!

Constructive Proof.

Write $r = \frac{p}{q}$ with $p \in \mathbb{Z}, q \in \mathbb{N}$. Now, from $1 \leq q$ we have $0 < \frac{1}{q} \leq 1$ and so $r = \frac{p}{q} \leq |p| < |p| + 1(=n)$.

http://SaeedSalehi.ir/ 30 May 2016

The Most Well-Known Example (I)

Theorem (Some Irrational Power of an Irrational Could Be Rational) There are irrational numbers a, b such that a^b is rational.

Non-Constructive Proof.

If $\sqrt{2}^{\sqrt{2}}$ is rational then we are done with $a = b = \sqrt{2}$ (below) otherwise $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = 2$ proves the theorem with $a = \sqrt{2}^{\sqrt{2}}, b = \sqrt{2}$.

Proof (of the irrationality of $\sqrt{2}$).

If $\sqrt{2} = \frac{p}{q}$ then $p^2 = 2q^2$, but the exponent of 2 in the unique prime factorization of p^2 is even while it is odd in $2q^2$, contradiction!

http://SaeedSalehi.ir/ 30 May 2016

The Most Well-Known Example (I)

Theorem (Some Irrational Power of an Irrational Could Be Rational) There are irrational numbers a, b such that a^b is rational.

Non-Constructive Proof.

If $\sqrt{2}^{\sqrt{2}}$ is rational then we are done with $a = b = \sqrt{2}$ (below) otherwise $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = 2$ proves the theorem with $a = \sqrt{2}^{\sqrt{2}}, b = \sqrt{2}$.

Proof (of the irrationality of $\sqrt{2}$).

If $\sqrt{2} = \frac{p}{q}$ then $p^2 = 2q^2$, but the exponent of 2 in the unique prime factorization of p^2 is even while it is odd in $2q^2$, contradiction!

http://SaeedSalehi.ir/ 30 May 2016

The Most Well-Known Example (I)

Theorem (Some Irrational Power of an Irrational Could Be Rational) There are irrational numbers a, b such that a^b is rational.

Non-Constructive Proof.

If $\sqrt{2}^{\sqrt{2}}$ is rational then we are done with $a = b = \sqrt{2}$ (below) otherwise $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = 2$ proves the theorem with $a = \sqrt{2}^{\sqrt{2}}, b = \sqrt{2}$.

Proof (of the irrationality of $\sqrt{2}$).

If $\sqrt{2} = \frac{p}{q}$ then $p^2 = 2q^2$, but the exponent of 2 in the unique prime factorization of p^2 is even while it is odd in $2q^2$, contradiction!

http://SaeedSalehi.ir/ 30 May 2016

The Most Well-Known Example(II)

Theorem (Some Irrational Power of an Irrational Could Be Rational)

There are irrational numbers a, b such that a^b is rational.

By Gelfond-Schneider theorem $\sqrt{2}^{\sqrt{2}}$ is irrational. Does this theorem have a *Constructive Proo*

Constructive Proof.

For
$$a = \sqrt{2}, b = 2 \log_2 3$$
 we have $a^b = (\sqrt{2})^{2 \log_2 3} = 2^{\log_2 3} = 3$

Proof (of the irrationality of $\log_2 3$).

http://SaeedSalehi.ir/ 30 May 2016

The Most Well-Known Example(II)

Theorem (Some Irrational Power of an Irrational Could Be Rational)

There are irrational numbers a, b such that a^b is rational.

By Gelfond-Schneider theorem $\sqrt{2}^{\sqrt{2}}$ is irrational. Does this theorem have a *Constructive Proof*?

Constructive Proof.

For
$$a = \sqrt{2}, b = 2 \log_2 3$$
 we have $a^b = (\sqrt{2})^{2 \log_2 3} = 2^{\log_2 3} = 3$

Proof (of the irrationality of $\log_2 3$ **)**.

http://SaeedSalehi.ir/ 30 May 2016

The Most Well-Known Example(II)

Theorem (Some Irrational Power of an Irrational Could Be Rational)

There are irrational numbers a, b such that a^b is rational.

By Gelfond-Schneider theorem $\sqrt{2}^{\sqrt{2}}$ is irrational. Does this theorem have a *Constructive Proof*?

Constructive Proof.

For
$$a = \sqrt{2}, b = 2 \log_2 3$$
 we have $a^b = (\sqrt{2})^{2 \log_2 3} = 2^{\log_2 3} = 3$

Proof (of the irrationality of $\log_2 3$ **)**.

http://SaeedSalehi.ir/ 30 May 2016

The Most Well-Known Example(II)

Theorem (Some Irrational Power of an Irrational Could Be Rational)

There are irrational numbers a, b such that a^b is rational.

By Gelfond-Schneider theorem $\sqrt{2}^{\sqrt{2}}$ is irrational. Does this theorem have a *Constructive Proof*?

Constructive Proof.

For
$$a = \sqrt{2}, b = 2 \log_2 3$$
 we have $a^b = (\sqrt{2})^{2 \log_2 3} = 2^{\log_2 3} = 3$

Proof (of the irrationality of $\log_2 3$).

http://SaeedSalehi.ir/ 30 May 2016

The Most Well-Known Example (history)

- ▶ J. ROGER HINDLEY: The Root-2 Proof as an Example of Non-Constructivity (March 2015, 3 pages)
 - www.users.waitrose.com/~hindley/Root2Proof2015.pdf

http://SaeedSalehi.ir/ 30 May 2016

The Most Well-Known Example (history)

▶ J. ROGER HINDLEY: The Root-2 Proof as an Example of Non-Constructivity (March 2015, 3 pages)

- DOV JARDEN, CURIOSA NO. 339, Scripta Mathematica 19 (1953) 229.

http://SaeedSalehi.ir/ 30 May 2016

The Most Well-Known Example (history)

▶ J. ROGER HINDLEY: The Root-2 Proof as an Example of Non-Constructivity (March 2015, 3 pages)

- DOV JARDEN, CURIOSA NO. 339, Scripta Mathematica 19 (1953) 229.
- CHARLES ZEIGENFUS, Quickie Q380, Mathematics Magazine 39 $\sqrt{3}^{\sqrt{2}}$ (1966) 134 (the guestion) 111 (the answer).

http://SaeedSalehi.ir/ 30 May 2016

The Most Well-Known Example (history)

▶ J. ROGER HINDLEY: The Root-2 Proof as an Example of Non-Constructivity (March 2015, 3 pages)

- DOV JARDEN, CURIOSA NO. 339, Scripta Mathematica 19 (1953) 229.
- CHARLES ZEIGENFUS, Quickie Q380, Mathematics Magazine 39 $\sqrt{3}^{\sqrt{2}}$ (1966) 134 (the guestion) 111 (the answer).
- DIRK VAN DALEN, "Lectures on Intuitionism", in: Cambridge Summer School in Mathematical Logic, (UK, Aug. 1971); Springer, LNM 337 (1973) pp. 1–94.

http://SaeedSalehi.ir/ 30 May 2016

The Most Well-Known Example (history)

▶ J. ROGER HINDLEY: The Root-2 Proof as an Example of Non-Constructivity (March 2015, 3 pages)

- DOV JARDEN, CURIOSA NO. 339, Scripta Mathematica 19 (1953) 229.
- CHARLES ZEIGENFUS, Quickie Q380, Mathematics Magazine 39 $\sqrt{3}^{\sqrt{2}}$ (1966) 134 (the guestion) 111 (the answer).
- DIRK VAN DALEN, "Lectures on Intuitionism", in: Cambridge Summer School in Mathematical Logic, (UK, Aug. 1971); Springer, LNM 337 (1973) pp. 1–94.
- J.P. JONES & S. TOPOROWSKI, Irrational numbers, American Mathematical Monthly 80 (1973) 423–424.

http://SaeedSalehi.ir/ 30 May 2016

The Most Well-Known Example (history)

▶ J. ROGER HINDLEY: The Root-2 Proof as an Example of Non-Constructivity (March 2015, 3 pages)

- DOV JARDEN, CURIOSA NO. 339, Scripta Mathematica 19 (1953) 229.
- CHARLES ZEIGENFUS, Quickie Q380, Mathematics Magazine 39 $\sqrt{3}^{\sqrt{2}}$ (1966) 134 (the guestion) 111 (the answer).
- DIRK VAN DALEN, "Lectures on Intuitionism", in: Cambridge Summer School in Mathematical Logic, (UK, Aug. 1971); Springer, LNM 337 (1973) pp. 1–94.
- J.P. JONES & S. TOPOROWSKI, Irrational numbers, American Mathematical Monthly 80 (1973) 423–424.
- · GEORGE PÓLYA & GABOR SZEGŐ, Problems and Theorems in $\sqrt{2}^{\log_2 9}$ Analysis II, Springer (1976) reprinted in 1998.

http://SaeedSalehi.ir/ 30 May 2016

The Most Well-Known Example (history)

▶ J. ROGER HINDLEY: The Root-2 Proof as an Example of Non-Constructivity (March 2015, 3 pages)

- DOV JARDEN, CURIOSA NO. 339, Scripta Mathematica 19 (1953) 229.
- CHARLES ZEIGENFUS, Quickie Q380, Mathematics Magazine 39 $\sqrt{3}^{\sqrt{2}}$ (1966) 134 (the guestion) 111 (the answer).
- DIRK VAN DALEN, "Lectures on Intuitionism", in: Cambridge Summer School in Mathematical Logic, (UK, Aug. 1971); Springer, LNM 337 (1973) pp. 1–94.
- J.P. JONES & S. TOPOROWSKI, Irrational numbers, American Mathematical Monthly 80 (1973) 423–424.
- · GEORGE PÓLYA & GABOR SZEGŐ, Problems and Theorems in $\sqrt{2}^{\log_2 9}$ Analysis II, Springer (1976) reprinted in 1998.
- JOACHIM LAMBEK & PHILIP J. SCOTT, Introduction to Higher-order $\sqrt{2}^{\sqrt{2}} \sqrt{2}^{\log_2 9}$ Categorical Logic, Cambridge University Press (1986).

http://SaeedSalehi.ir/ 30 May 2016

The Most Well-Known Example (history)

► J. ROGER HINDLEY: The Root-2 Proof as an Example of Non-Constructivity (March 2015, 3 pages)

- DOV JARDEN, Curiosa No. 339, Scripta Mathematica 19 (1953) 229.
- CHARLES ZEIGENFUS, Quickie Q380, Mathematics Magazine 39 (1966) 134 (the question) 111 (the answer). $\sqrt{3}^{\sqrt{2}}$
- DIRK VAN DALEN, "Lectures on Intuitionism", in: *Cambridge Summer School in Mathematical Logic*, (UK, Aug. 1971); Springer, LNM 337 (1973) pp. 1–94.
- J.P. JONES & S. TOPOROWSKI, Irrational numbers, *American Mathematical Monthly* 80 (1973) 423–424.
- GEORGE PÓLYA & GABOR SZEGŐ, Problems and Theorems in Analysis II, Springer (1976) reprinted in 1998. $\sqrt{2}^{\log_2 9}$
- JOACHIM LAMBEK & PHILIP J. SCOTT, Introduction to Higher-order Categorical Logic, Cambridge University Press (1986). $\sqrt{2}^{\sqrt{2}}, \sqrt{2}^{\log_2 9}$
- DIRK VAN DALEN & ANNE SJERP TROELSTRA, *Constructivism in Mathematics*, Elsevier Science (1988).

http://SaeedSalehi.ir/ 30 May 2016

Even More Constructive Proofs

A Constructive Proof for the irrationality of $\sqrt{2}$.

By JOSEPH LIOUVILLE's theorem for any $p, q \in \mathbb{N}^+$ we have

$$|\sqrt{2} - \frac{p}{q}| > \frac{C}{q^2} > 0$$

for some computable (from p, q) constant C.

http://SaeedSalehi.ir/ 30 May 2016

Even More Constructive Proofs

A Constructive Proof for the irrationality of $\sqrt{2}$.

By JOSEPH LIOUVILLE's theorem for any $p, q \in \mathbb{N}^+$ we have

$$|\sqrt{2} - \frac{p}{q}| > \frac{C}{q^2} > 0$$

for some computable (from p, q) constant C.

Joseph Liouville 1809–1882 a famous French mathematician

http://SaeedSalehi.ir/ 30 May 2016

Even More Constructive Proofs

A Constructive Proof for the irrationality of $\sqrt{2}$.

By JOSEPH LIOUVILLE's theorem for any $p, q \in \mathbb{N}^+$ we have

$$|\sqrt{2} - \frac{p}{q}| > \frac{C}{q^2} > 0$$

for some computable (from p, q) constant C.

Joseph Liouville 1809-1882 a famous French mathematician

A Constructive Proof for the irrationality of $\log_2 3$.

By Alan Baker's theorem for any $p,q\!\in\!\mathbb{N}^+$ we have

$$|\log_2 3 - \frac{p}{q}| > \frac{C}{q} > 0$$

for some computable (from p, q) constant C.

Alan Baker 1939-¿ English mathematician (Fields Medalist in 1970)

http://SaeedSalehi.ir/ 30 May 2016

Even More Constructive Proofs

A Constructive Proof for the irrationality of $\sqrt{2}$.

By JOSEPH LIOUVILLE's theorem for any $p, q \in \mathbb{N}^+$ we have

$$|\sqrt{2} - \frac{p}{q}| > \frac{C}{q^2} > 0$$

for some computable (from p, q) constant C.

Joseph Liouville 1809-1882 a famous French mathematician

A Constructive Proof for the irrationality of $\log_2 3$.

By Alan Baker's theorem for any $p,q\!\in\!\mathbb{N}^+$ we have

$$|\log_2 3 - \frac{p}{q}| > \frac{C}{q} > 0$$

for some computable (from p, q) constant C.

Alan Baker 1939-¿ English mathematician (Fields Medalist in 1970)

http://SaeedSalehi.ir/ 30 May 2016

"Constructive Proof" in the title

137 papers found inhttps://zbmath.org/with the title"··· Constructive Proof ··· "

- B. KNASTER, Un théorème sur les fonctions d'ensembles, Annales de la Société Polonaise de Mathématique 6 (1928) 133–134 (with A. TARSKI). $f: \mathscr{P}(A) \rightarrow \mathscr{P}(A), \forall X, Y \subseteq A[X \subseteq Y \rightarrow f(X) \subseteq f(Y)] \Longrightarrow \exists Z \subseteq A: f(Z) = Z$
- ALFRED TARSKI, A Lattice-Theoretical Fixpoint Theorem and its Applications, *Pacific Journal of Mathematics* 5:2 (1955) 285–309. http://projecteuclid.org/euclid.pjm/1103044538
- P. Cousot & R. Cousot, Constructive Versions of Tarski's Fixed Point Theorems, *Pacific Journal of Mathematics* 82:1 (1979) 43-57. http://projecteuclid.org/euclid.pjm/1102785059
- F. ECHENIQUE, A Short and Constructive Proof of Tarski's Fixed-Point Theorem, *International Journal of Game Theory* 33:1 (2005) 215–218. http://dx.doi.org/10.1007/s001820400192
- C.-L. CHANGA & Y.-D. LYUUA & Y.-W. TI, The Complexity of Tarski's Fixed Point Theorem, *Theoretical Computer Science* 401:1-3 (2008) 228–235. http://dx.doi.org/10.1016/j.tcs.2008.05.005

http://SaeedSalehi.ir/ 30 May 2016

"Constructive Proof" in the title

137 papers found inhttps://zbmath.org/with the title"··· Constructive Proof ··· "

- B. KNASTER, Un théorème sur les fonctions d'ensembles, Annales de la Société Polonaise de Mathématique 6 (1928) 133–134 (with A. TARSKI). $f: \mathscr{P}(A) \rightarrow \mathscr{P}(A), \forall X, Y \subseteq A[X \subseteq Y \rightarrow f(X) \subseteq f(Y)] \Longrightarrow \exists Z \subseteq A: f(Z) = Z$
- ALFRED TARSKI, A Lattice-Theoretical Fixpoint Theorem and its Applications, *Pacific Journal of Mathematics* 5:2 (1955) 285–309. http://projecteuclid.org/euclid.pjm/1103044538
- P. COUSOT & R. COUSOT, Constructive Versions of Tarski's Fixed Point Theorems, *Pacific Journal of Mathematics* 82:1 (1979) 43–57. http://projecteuclid.org/euclid.pjm/1102785059
- F. ECHENIQUE, A Short and Constructive Proof of Tarski's Fixed-Point Theorem, *International Journal of Game Theory* 33:1 (2005) 215–218. http://dx.doi.org/10.1007/s001820400192
- C.-L. CHANGA & Y.-D. LYUUA & Y.-W. TI, The Complexity of Tarski's Fixed Point Theorem, *Theoretical Computer Science* 401:1-3 (2008) 228–235. http://dx.doi.org/10.1016/j.tcs.2008.05.005

http://SaeedSalehi.ir/ 30 May 2016

"Constructive Proof" in the title

137 papers found inhttps://zbmath.org/with the title"... Constructive Proof ..."

- B. KNASTER, Un théorème sur les fonctions d'ensembles, Annales de la Société Polonaise de Mathématique 6 (1928) 133–134 (with A. TARSKI). $f: \mathscr{P}(A) \rightarrow \mathscr{P}(A), \forall X, Y \subseteq A[X \subseteq Y \rightarrow f(X) \subseteq f(Y)] \Longrightarrow \exists Z \subseteq A: f(Z) = Z$
- ALFRED TARSKI, A Lattice-Theoretical Fixpoint Theorem and its Applications, *Pacific Journal of Mathematics* 5:2 (1955) 285–309. http://projecteuclid.org/euclid.pjm/1103044538
- P. COUSOT & R. COUSOT, Constructive Versions of Tarski's Fixed Point Theorems, *Pacific Journal of Mathematics* 82:1 (1979) 43–57. http://projecteuclid.org/euclid.pjm/1102785059
- F. ECHENIQUE, A Short and Constructive Proof of Tarski's Fixed-Point Theorem, *International Journal of Game Theory* 33:1 (2005) 215–218. http://dx.doi.org/10.1007/s001820400192
- C.-L. CHANGA & Y.-D. LYUUA & Y.-W. TI, The Complexity of Tarski's Fixed Point Theorem, *Theoretical Computer Science* 401:1-3 (2008) 228–235. http://dx.doi.org/10.1016/j.tcs.2008.05.005

http://SaeedSalehi.ir/ 30 May 2016

"Constructive Proof" in the title

137 papers found inhttps://zbmath.org/with the title"··· Constructive Proof ··· "

- B. KNASTER, Un théorème sur les fonctions d'ensembles, Annales de la Société Polonaise de Mathématique 6 (1928) 133–134 (with A. TARSKI). $f: \mathscr{P}(A) \rightarrow \mathscr{P}(A), \forall X, Y \subseteq A[X \subseteq Y \rightarrow f(X) \subseteq f(Y)] \Longrightarrow \exists Z \subseteq A: f(Z) = Z$
- ALFRED TARSKI, A Lattice-Theoretical Fixpoint Theorem and its Applications, *Pacific Journal of Mathematics* 5:2 (1955) 285–309. http://projecteuclid.org/euclid.pjm/1103044538
- P. Cousot & R. Cousot, Constructive Versions of Tarski's Fixed Point Theorems, *Pacific Journal of Mathematics* 82:1 (1979) 43–57. http://projecteuclid.org/euclid.pjm/1102785059
- F. ECHENIQUE, A Short and Constructive Proof of Tarski's Fixed-Point Theorem, *International Journal of Game Theory* 33:1 (2005) 215–218. http://dx.doi.org/10.1007/s001820400192
- C.-L. CHANGA & Y.-D. LYUUA & Y.-W. TI, The Complexity of Tarski's Fixed Point Theorem, *Theoretical Computer Science* 401:1-3 (2008) 228–235. http://dx.doi.org/10.1016/j.tcs.2008.05.005

http://SaeedSalehi.ir/ 30 May 2016

"Constructive Proof" in the title

<u>137</u> papers found in <u>https://zbmath.org/</u> with the title "···· Constructive Proof ····"

- B. KNASTER, Un théorème sur les fonctions d'ensembles, Annales de la Société Polonaise de Mathématique 6 (1928) 133–134 (with A. TARSKI). $f: \mathscr{P}(A) \rightarrow \mathscr{P}(A), \forall X, Y \subseteq A[X \subseteq Y \rightarrow f(X) \subseteq f(Y)] \Longrightarrow \exists Z \subseteq A: f(Z) = Z$
- ALFRED TARSKI, A Lattice-Theoretical Fixpoint Theorem and its Applications, *Pacific Journal of Mathematics* 5:2 (1955) 285–309. http://projecteuclid.org/euclid.pjm/1103044538
- P. Cousot & R. Cousot, Constructive Versions of Tarski's Fixed Point Theorems, *Pacific Journal of Mathematics* 82:1 (1979) 43–57. http://projecteuclid.org/euclid.pjm/1102785059
- F. ECHENIQUE, A Short and Constructive Proof of Tarski's Fixed-Point Theorem, *International Journal of Game Theory* 33:1 (2005) 215–218. http://dx.doi.org/10.1007/s001820400192
- C.-L. CHANGA & Y.-D. LYUUA & Y.-W. TI, The Complexity of Tarski's Fixed Point Theorem, *Theoretical Computer Science* 401:1-3 (2008) 228–235. http://dx.doi.org/10.1016/j.tcs.2008.05.005

http://SaeedSalehi.ir/ 30 May 2016

"Constructive Proof" in the title

137 papers found inhttps://zbmath.org/with the title"··· Constructive Proof ··· "

- B. KNASTER, Un théorème sur les fonctions d'ensembles, Annales de la Société Polonaise de Mathématique 6 (1928) 133–134 (with A. TARSKI). $f: \mathscr{P}(A) \rightarrow \mathscr{P}(A), \forall X, Y \subseteq A[X \subseteq Y \rightarrow f(X) \subseteq f(Y)] \Longrightarrow \exists Z \subseteq A: f(Z) = Z$
- ALFRED TARSKI, A Lattice-Theoretical Fixpoint Theorem and its Applications, *Pacific Journal of Mathematics* 5:2 (1955) 285–309. http://projecteuclid.org/euclid.pjm/1103044538
- P. Cousot & R. Cousot, Constructive Versions of Tarski's Fixed Point Theorems, *Pacific Journal of Mathematics* 82:1 (1979) 43–57. http://projecteuclid.org/euclid.pjm/1102785059
- F. ECHENIQUE, A Short and Constructive Proof of Tarski's Fixed-Point Theorem, *International Journal of Game Theory* 33:1 (2005) 215–218. http://dx.doi.org/10.1007/s001820400192
- C.-L. CHANGA & Y.-D. LYUUA & Y.-W. TI, The Complexity of Tarski's Fixed Point Theorem, *Theoretical Computer Science* 401:1-3 (2008) 228–235. http://dx.doi.org/10.1016/j.tcs.2008.05.005

http://SaeedSalehi.ir/ 30 May 2016

One More Example

Definition (Outgoing Set)

In a directed graph $\langle V; E \rangle$ (where $E \subseteq V^2$) outgoing set of a vertex $a \in V$ is $\{x \in V \mid aEx\}$.

(1)

Example: In the directed graph

we have $x \mapsto \{b, a\}, a \mapsto \{x, a, y\}, b \mapsto \{a\}, y \mapsto \{a, c\}, c \mapsto \{b, a\}, b \mapsto \{a, b\}, b \mapsto \{a, b\}, b \mapsto \{b, a\}, b \mapsto \{b,$

http://SaeedSalehi.ir/ 30 May 2016

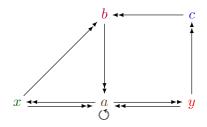
One More Example

Definition (Outgoing Set)

In a directed graph $\langle V; E \rangle$ (where $E \subseteq V^2$) outgoing set of a vertex $a \in V$ is $\{x \in V \mid aEx\}$.

(1)

Example: In the directed graph



we have $x \mapsto \{b, a\}, a \mapsto \{x, a, y\}, b \mapsto \{a\}, y \mapsto \{a, c\}, c \mapsto \{b\}$

http://SaeedSalehi.ir/ 30 May 2016

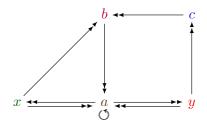
One More Example

Definition (Outgoing Set)

In a directed graph $\langle V; E \rangle$ (where $E \subseteq V^2$) outgoing set of a vertex $a \in V$ is $\{x \in V \mid aEx\}$.

(1)

Example: In the directed graph



we have $x \mapsto \{b, a\}, a \mapsto \{x, a, y\}, b \mapsto \{a\}, y \mapsto \{a, c\}, c \mapsto \{b\}.$

http://SaeedSalehi.ir/ 30 May 2016

One More Example

(2)

Theorem

In any (finite) directed graph, there exists a set of vertices which is not the outgoing set of any vertex.

Lemma

(i) Any set with n elements has 2ⁿ subsets.
(ii) For any n∈N we have 2ⁿ > n.

Proof.

By induction on n: trivial for n = 0, 1.

(i) for n + 1: if $A = B \cup \{\alpha\}$ with $\alpha \notin B$ then every subset of A is either (1) a subset of B or (2) a subset of B with α . So, the number of the subsets of A is the double number of the subsets of B. (ii) for n + 1: $2^{n+1} = 2 \cdot 2^n >_{(i.h.)} 2 \cdot n \ge n + 1$ (for $n \ge 1$).

University of Tabriz & IPM Tutorial I: Constructive Proofs http://SaeedSalehi.ir/ 30 May 2016

One More Example

(2)

Theorem

In any (finite) directed graph, there exists a set of vertices which is not the outgoing set of any vertex.

Lemma

(i) Any set with n elements has 2ⁿ subsets.
(ii) For any n∈ N we have 2ⁿ > n.

Proof.

By induction on n: trivial for n = 0, 1.

(i) for n + 1: if $A = B \cup \{\alpha\}$ with $\alpha \notin B$ then every subset of A is either (1) a subset of B or (2) a subset of B with α . So, the number of the subsets of A is the double number of the subsets of B. (ii) for n + 1: $2^{n+1} = 2 \cdot 2^n >_{(i.h.)} 2 \cdot n \ge n + 1$ (for $n \ge 1$).

University of Tabriz & IPM Tutorial I: Constructive Proofs http://SaeedSalehi.ir/ 30 May 2016

One More Example

(2)

Theorem

In any (finite) directed graph, there exists a set of vertices which is not the outgoing set of any vertex.

Lemma

(i) Any set with n elements has 2ⁿ subsets.
(ii) For any n∈ N we have 2ⁿ > n.

Proof.

By induction on n: trivial for n = 0, 1.

(i) for n + 1: if $A = B \cup \{\alpha\}$ with $\alpha \notin B$ then every subset of A is either (1) a subset of B or (2) a subset of B with α . So, the number of the subsets of A is the double number of the subsets of B. (ii) for n + 1: $2^{n+1} = 2 \cdot 2^n >_{(i.h.)} 2 \cdot n \ge n + 1$ (for $n \ge 1$).

http://SaeedSalehi.ir/ 30 May 2016

One More Example

(3)

Lemma

(i) Any set with n elements has 2ⁿ subsets.
(ii) For any n∈ N we have 2ⁿ > n.

Theorem

In any (finite) directed graph, there exists a set of vertices which is not the outgoing set of any vertex.

Non-Constructive Proof.

For any directed graph with n nodes we have 2^n (sub)sets of nodes [by Lemma(i)] and at most n outgoing sets. Thus [from Lemma(ii)] there must exist some set of nodes which is not outgoing.

http://SaeedSalehi.ir/ 30 May 2016

One More Example

(3)

Lemma

(i) Any set with n elements has 2ⁿ subsets.
(ii) For any n∈ N we have 2ⁿ > n.

Theorem

In any (finite) directed graph, there exists a set of vertices which is not the outgoing set of any vertex.

Non-Constructive Proof.

For any directed graph with n nodes we have 2^n (sub)sets of nodes [by Lemma(i)] and at most n outgoing sets. Thus [from Lemma(ii)] there must exist some set of nodes which is not outgoing.

http://SaeedSalehi.ir/ 30 May 2016

One More Example

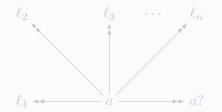
Theorem (G. CANTOR)

In any directed graph, there exists a set of vertices which is not the outgoing set of any vertex.

(4)

Constructive Proof.

Let LoopLess = $\{x \in V \mid x \not \!\!\! E x\}$. If $\{\ell_1, \ell_2, \ell_3, \cdots\}$ = LoopLess = Outgoing $(a) = \{x \mid aEx\}$



http://SaeedSalehi.ir/ 30 May 2016

One More Example

Theorem (G. CANTOR)

In any directed graph, there exists a set of vertices which is not the outgoing set of any vertex.

(4)

Constructive Proof. Let LoopLess = $\{x \in V \mid x \not \!\!\! E x\}$.

then $a \not\!\!E a \longleftrightarrow a \in \text{LoopLess} \longleftrightarrow a \in \{x \mid aEx\} \longleftrightarrow aEa !$

http://SaeedSalehi.ir/ 30 May 2016

One More Example

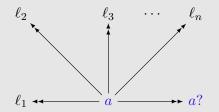
Theorem (G. CANTOR)

In any directed graph, there exists a set of vertices which is not the outgoing set of any vertex.

(4)

Constructive Proof.

Let LoopLess = $\{x \in V \mid x \not \models x\}$. If $\{\ell_1, \ell_2, \ell_3, \dots\}$ = LoopLess = Outgoing $(a) = \{x \mid aEx\}$



http://SaeedSalehi.ir/ 30 May 2016

One More Example

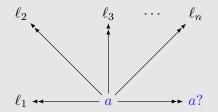
Theorem (G. CANTOR)

In any directed graph, there exists a set of vertices which is not the outgoing set of any vertex.

(4)

Constructive Proof.

Let LoopLess = $\{x \in V \mid x \not \models x\}$. If $\{\ell_1, \ell_2, \ell_3, \dots\}$ = LoopLess = Outgoing $(a) = \{x \mid aEx\}$



http://SaeedSalehi.ir/ 30 May 2016

One More Example

(5)

More Constructive (Diagonal) Proofs. For any injective $\mathfrak{g}: V \to V$ let $D_{\mathfrak{g}} = \{\mathfrak{g}(x) \mid x \not \not \! \mathfrak{g}(x)\}$. For any $a \in V$ we have $\mathfrak{g}(a) \in D_{\mathfrak{g}} \longleftrightarrow \exists x.\mathfrak{g}(a) = \mathfrak{g}(x) \& x \not \not \! \mathfrak{g}(x)$ $\longleftrightarrow a \not \! \mathfrak{g}(a) \longleftrightarrow \mathfrak{g}(a) \notin \operatorname{Outgoing}(a)$, and so $D_{\mathfrak{g}}$ differs from every $\operatorname{Outgoing}(a)$ set (at $\mathfrak{g}(a)$).

A New Theorem:

EVERY SUCH SET (different from any outgoing set) is *Constructed* as above for some suitable (not necessarily injective) function g.

So, its every constructive proof is a diagonal argument.

http://SaeedSalehi.ir/ 30 May 2016

One More Example

(5)

More Constructive (Diagonal) Proofs. For any injective $\mathfrak{g}: V \to V$ let $D_{\mathfrak{g}} = \{\mathfrak{g}(x) \mid x \not \not \! \! \! \mathbb{g}(x)\}$. For any $a \in V$ we have $\mathfrak{g}(a) \in D_{\mathfrak{g}} \longleftrightarrow \exists x.\mathfrak{g}(a) = \mathfrak{g}(x) \& x \not \! \! \! \! \mathbb{g}(x)$ $\longleftrightarrow a \not \! \! \! \! \! \! \! \! \! \! \mathfrak{g}(a) \longleftrightarrow \mathfrak{g}(a) \notin \operatorname{Outgoing}(a)$, and so $D_{\mathfrak{g}}$ differs from every $\operatorname{Outgoing}(a)$ set (at $\mathfrak{g}(a)$).

A New Theorem:

EVERY SUCH SET (different from any outgoing set) is *Constructed* as above for some suitable (not necessarily injective) function g.

So, its every constructive proof is a diagonal argument.

http://SaeedSalehi.ir/ 30 May 2016

See you Later

Lots of Open Problems &

A Nice Question to Ask at the End of Lectures (to hide sleepiness): Does It Have A Constructive Proof?

To Be Continued ...

Tutorial I:	
• Tutorial II:	
Gödel's Incompleteness Theorem	30 May 2016
• Tutorial III:	
Constructivity of Proofs for Gödel's Th	neorem 31 May 2016

http://SaeedSalehi.ir/ 30 May 2016

See you Later

Lots of Open Problems &

A Nice Question to Ask at the End of Lectures (to hide sleepiness): Does It Have A Constructive Proof?

To Be Continued ...

30 May 2016
30 May 2016
31 May 2016

GÖDEL'S INCOMPLETENESS THEOREM: CONStructivity of Its Various Proofs SAFED SALEHI University of Tabriz & IPM SWAMPLANDIA 2016

Tutorial I: Constructive Proofs

http://SaeedSalehi.ir/ 30 May 2016

Thanks to

The Participants For Listening ····

and

The Organizers – For Taking Care of Everything \cdots

SAEEDSALEHL, ir

GÖDEL'S INCOMPLETENESS THEOREM: COnstructivity of Its Various Proofs SAEED SALEHI University of Tabriz &

SWAMPLANDIA 2016

University of Tabriz & IPM Tutorial II: Gödel's Incompleteness Theorem http://SaeedSalehi.ir/ 30 May 2016

Hello!

GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs

Saeed Salehi

University of Tabriz & IPM

http://SaeedSalehi.ir/

SWAMPLANDIA 2016, Ghent University Tutorial II: Gödel's Incompleteness Theorem 30 May 2016

 GÖDEL'S INCOMPLETENESS THEOREM:
 Constructivity of Its Various Proofs

 SAEED SALEHI
 University of Tabriz & IPM

 SWAMPLANDIA 2016
 Tutorial II: Gödel's Incompleteness Theorem

 30 May 2016

•	Tutorial I: Constructive Proofs	30 May 2016
•	Tutorial II: Gödel's Incompleteness Theorem	30 May 2016
•	Tutorial III: Constructivity of Proofs for Gödel's Theorem	31 May 2016

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 http://SaeedSalehi.ir/

 SAEED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial II: Godel's Incompleteness Theorem
 30 May 2016

Tutorial I: Constructive Proofs	30 May 2016
Tutorial II: Gödel's Incompleteness Theorem	30 May 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem 	31 May 2016

 GÖDEL'S INCOMPLETENESS THEOREM:
 Constructivity of Its Various Proofs

 SAEED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial II: Gödel's Incompleteness Theorem
 30 May 2016

Tutorial I: Constructive Proofs	30 May 2016
Tutorial II: Gödel's Incompleteness Theorem	30 May 2016
Tutorial III: Constructivity of Proofs for Gödel's Theorem	31 May 2016

http://SaeedSalehi.ir/ 30 May 2016

A Conversation At The End Of A Lecture

question Does Your Theorem Have A Constructive Proof?
answer YES / NO / I Don't Know
question (if YES) Do You Know Its (Computational) Complexity?
question (if NO) Have Your Proved It? (the it can never have a constructive proof?)
answer ... Oh ... Well ... YES / NO
question (if YES-YES) Have You Proved A Lower/Upper Bound For

http://SaeedSalehi.ir/ 30 May 2016

A Conversation At The End Of A Lecture

question Does Your Theorem Have A Constructive Proof?

answer YES / NO / I Don't Know

question (if YES) Do You Know Its (Computational) Complexity?

question (if NO) Have Your Proved It?

(the it can never have a constructive proof?)

answer ... Oh ... Well ... YES / NO

question (if YES-YES) Have You Proved A Lower/Upper Bound For It?

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs

 SAEED SALEHI

 SWAMPLANDIA 2016

Tutorial II: Gödel's Incompleteness Theorem

http://SaeedSalehi.ir/ 30 May 2016

A Conversation At The End Of A Lecture

question Does Your Theorem Have A Constructive Proof? answer YES / NO / I Don't Know

question (if YES) Do You Know Its (Computational) Complexity?

question (if NO) Have Your Proved It?

(the it can never have a constructive proof?)

answer ... Oh ... Well ... YES / NO

question (if YES-YES) Have You Proved A Lower/Upper Bound For It?

http://SaeedSalehi.ir/ 30 May 2016

A Conversation At The End Of A Lecture

question Does Your Theorem Have A Constructive Proof? answer YES / NO / I Don't Know question (if YES) Do You Know Its (Computational) Complexity?

http://SaeedSalehi.ir/ 30 May 2016

A Conversation At The End Of A Lecture

- question Does Your Theorem Have A Constructive Proof?
- answer YES / NO / I Don't Know
- question (if YES) Do You Know Its (Computational) Complexity?
- question (if NO) Have Your Proved It? (the it can never have a constructive proof?)

http://SaeedSalehi.ir/ 30 May 2016

A Conversation At The End Of A Lecture

- question Does Your Theorem Have A Constructive Proof?
- answer YES / NO / I Don't Know
- question (if YES) Do You Know Its (Computational) Complexity?
- question (if NO) Have Your Proved It? (the it can never have a constructive proof?)
 - answer ... Oh ... Well ... YES / NO

question (if YES-YES) Have You Proved A Lower/Upper Bound For It?

http://SaeedSalehi.ir/ 30 May 2016

A Conversation At The End Of A Lecture

- question Does Your Theorem Have A Constructive Proof?
- answer YES / NO / I Don't Know
- question (if YES) Do You Know Its (Computational) Complexity?
- question (if NO) Have Your Proved It? (the it can never have a constructive proof?)
 - answer ... Oh ... Well ... YES / NO
- question (if YES-YES) Have You Proved A Lower/Upper Bound For It?

http://SaeedSalehi.ir/ 30 May 2016

A Conversation At The End Of A Lecture

- question Does Your Theorem Have A Constructive Proof?
- answer YES / NO / I Don't Know
- question (if YES) Do You Know Its (Computational) Complexity?
- question (if NO) Have Your Proved It? (the it can never have a constructive proof?)
 - answer ... Oh ... Well ... YES / NO
- question (if YES-YES) Have You Proved A Lower/Upper Bound For It?

http://SaeedSalehi.ir/ 30 May 2016

A Conversation At The End Of A Lecture

- question Does Your Theorem Have A Constructive Proof?
- answer YES / NO / I Don't Know
- question (if YES) Do You Know Its (Computational) Complexity?
- question (if NO) Have Your Proved It? (the it can never have a constructive proof?)
 - answer ... Oh ... Well ... YES / NO
- question (if YES-YES) Have You Proved A Lower/Upper Bound For It?

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 Iniversity of Tabriz & IPM
 http://SaeedSalehi.ir/

 SNED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial II: Gödel's Incompleteness Theorem
 30 May 2016

Chaitin-Kolmogorov Complexity(1)

Definition (Information-Theoretic Complexity)

The (descriptive) **COMPLEXITY** of an *object* is the least (minimum) *size* of a process (program) that results (produces/outputs) it.

 $complexity(object) = min size[result^{-1}(object)]$

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 Iniversity of Tabriz & IPM
 http://SaeedSalehi.ir/

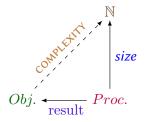
 SNED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial II: Gödel's Incompleteness Theorem
 30 May 2016

Chaitin-Kolmogorov Complexity(1)

Definition (Information-Theoretic Complexity)

The (descriptive) **COMPLEXITY** of an *object* is the least (minimum) *size* of a process (program) that results (produces/outputs) it.



 $complexity(object) = min size[result^{-1}(object)]$

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 Iniversity of Tabriz & IPM
 http://SaeedSalehi.ir/

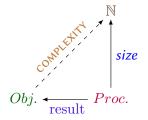
 SNED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial II: Gödel's Incompleteness Theorem
 30 May 2016

Chaitin-Kolmogorov Complexity(1)

Definition (Information-Theoretic Complexity)

The (descriptive) **COMPLEXITY** of an *object* is the least (minimum) *size* of a process (program) that results (produces/outputs) it.



 $COMPLEXITY(object) = \min size[result^{-1}(object)]$

Chaitin-Kolmogorov Complexity(2)

$$Obj. \leftarrow Proc.$$

Example (A Simple One)

Let $Obj = \mathbb{N}$, $Proc = \langle \mathfrak{c}_0, \mathfrak{c}_1, \cdots \rangle = \mathbb{N}$, $\operatorname{result}(\mathfrak{c}_i) = \mathfrak{c}_i$, $\operatorname{size}(\mathfrak{c}_i) = i$. Then $\operatorname{COMPLEXITY}(n) = \min\{i \mid (\mathfrak{c}_i = n)\}$. If $Proc = \langle \underbrace{0}_1, \underbrace{1, 1}_2, \underbrace{2, 2, 2}_3, \underbrace{3, 3, 3, 3}_4, \underbrace{4, 4, 4, 4}_5, \cdots \rangle$ then $\underbrace{\mathcal{C}(0) = 0}_{\mathfrak{c}_0 = 0}, \underbrace{\mathcal{C}(1) = 1}_{\mathfrak{c}_1 = 1}, \underbrace{\mathcal{C}(2) = 3}_{\mathfrak{c}_3 = 2}, \underbrace{\mathcal{C}(3) = 6}_{\mathfrak{c}_6 = 3}, \cdots, \underbrace{\mathcal{C}(n) = \frac{n(n+1)}{2}}_2, \cdots$

Some Computability Theory

Convention (Classic Computability-Theoretic Notation)

Enumerate all the single-input computable (partial) functions $\mathbb{N} {\rightarrow} \mathbb{N}$ as

 $\varphi_0, \varphi_1, \varphi_2, \cdots$ *Denote the universal (computable) function by* $\Phi(x, y) = \varphi_x(y)$. There exists a computable (partial) binary function $\Phi \colon \mathbb{N}^2 \to \mathbb{N}$ such that for any computable (partial) unary function $f \colon \mathbb{N} \to \mathbb{N}$ there is some $e \in \mathbb{N}$ such that $f(x) = \Phi(e, x)$.

Example (Recursion-Theoretic)

Let $Obj = \mathbb{N}$, $Proc = \{\varphi_0, \varphi_1, \varphi_2, \cdots\}$, $\operatorname{result}(\varphi_i) = \varphi_i(0)$, and $\operatorname{size}(\varphi_i) = i$. Then (also with $Proc = \langle \varphi_0(0), \varphi_1(0), \varphi_2(0), \cdots \rangle$) COMPLEXITY $(n) = \min\{i \mid (\varphi_i(0) = n)\} = \mathscr{K}(n)$.

Chaitin—) *K*olmogorov Complexity

Some Computability Theory

Convention (Classic Computability-Theoretic Notation)

Enumerate all the single-input computable (partial) functions $\mathbb{N}{\rightarrow}\mathbb{N}$ as

 $\varphi_0, \varphi_1, \varphi_2, \cdots$ *Denote the universal (computable) function by* $\Phi(x, y) = \varphi_x(y)$. There exists a computable (partial) binary function $\Phi \colon \mathbb{N}^2 \to \mathbb{N}$ such that for any computable (partial) unary function $f \colon \mathbb{N} \to \mathbb{N}$ there is some $e \in \mathbb{N}$ such that $f(x) = \Phi(e, x)$.

Example (Recursion-Theoretic)

Let $Obj = \mathbb{N}$, $Proc = \{\varphi_0, \varphi_1, \varphi_2, \cdots\}$, result $(\varphi_i) = \varphi_i(0)$, and $size(\varphi_i) = i$. Then (also with $Proc = \langle \varphi_0(0), \varphi_1(0), \varphi_2(0), \cdots \rangle$) COMPLEXITY $(n) = \min\{i \mid (\varphi_i(0) = n)\} = \mathscr{K}(n)$.

(Chaitin–) Kolmogorov Complexity

∻

GÖDEL'S INCOMPLETENESS THEOREM: CONStructivity of Its Various Proofs SAFED SALEHI University of Tabriz & IPM http://SaeedSalehi.ir/ SWAMPLANDIA 2016 Tutorial II: Gödel's Incompleteness Theorem 30 May 2016

Chaitin-Kolmogorov Complexity (3)

Lemma (The Main Lemma)

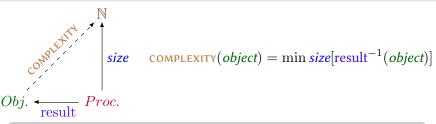
If the set Obj of objects is infinite and for any $n \in \mathbb{N}$ the set $size^{-1}(n)$ of processes with size n is finite, then for any $m \in \mathbb{N}$ there exists some object ℓ such that <u>COMPLEXITY</u> $(\ell) > m$.

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 Introversity of Tabriz & IPM
 http://SaeedSalehi.ir/

 SAEED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial II: Gödel's Incompleteness Theorem
 30 May 2016

 Chaitin-Kolmogorov Complexity (3)



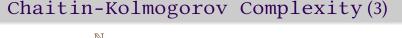
Lemma (The Main Lemma)

If the set Obj of objects is infinite and for any $n \in \mathbb{N}$ the set $size^{-1}(n)$ of processes with size n is finite, then for any $m \in \mathbb{N}$ there exists some object ℓ such that $COMPLEXITY(\ell) > m$.

Non-Constructive Proof.

The set $\bigcup_{i \leq m} size^{-1}(i)$ is finite and so is the set $\{ \alpha \in Obj \mid \mathsf{COMPLEXITY}(\alpha) \leq m \} = \bigcup_{i \leq m} \mathrm{result}[size^{-1}(i)].$

GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs SAEED SALEHI University of Tabriz & IPM http://SaeedSalehi.ir/ SWAMPLANDIA 2016 Tutorial II: Gödel's Incompleteness Theorem 30 May 2016 Chaitin-Kolmogorov Complexity (3)



Example (That Simple One) For $Obj = \mathbb{N}$, result $(\mathfrak{c}_i) = \mathfrak{c}_i$, size $(\mathfrak{c}_i) = i$, $Proc = \langle 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, \cdots \rangle$ we have $\mathcal{C}(n) = \frac{n(n+1)}{2}$ and so $\mathcal{C}(m+1) > m$ for any $m \in \mathbb{N}$.

Example (Kolmogorov Complexity) Is there a computable function f with $\forall m \in \mathbb{N} \ \mathscr{K}(f(m)) > m$?

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs

 SAEED SALEHI
 University of Tabriz & IPM

 SWAMPLANDIA 2016
 Tutorial II: Gödel's Incompleteness Theorem

 30 May 2016

Chaitin-Kolmogorov Complexity(3)

$$Obj. \leftarrow Proc.$$

Example (That Simple One) For $Obj = \mathbb{N}$, result(\mathfrak{c}_i) = \mathfrak{c}_i , size(\mathfrak{c}_i) = i, $Proc = \langle 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, \cdots \rangle$ we have $\mathcal{C}(n) = \frac{n(n+1)}{2}$ and so $\mathcal{C}(m+1) > m$ for any $m \in \mathbb{N}$.

Example (Kolmogorov Complexity)	
Is there a computable function f with $\forall m \in \mathbb{N} \ \mathscr{K}(f(m)) > m$?	

∻

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs

 SAEED SALEHI
 University of Tabriz & IPM

 SWAMPLANDIA 2016
 Tutorial II: Gödel's Incompleteness Theorem

 30 May 2016

Chaitin-Kolmogorov Complexity(3)

$$Obj. \leftarrow Proc.$$

Example (That Simple One)
For
$$Obj = \mathbb{N}$$
, result(\mathfrak{c}_i) = \mathfrak{c}_i , size(\mathfrak{c}_i) = i ,
 $Proc = \langle \underbrace{0}, \underbrace{1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, \dots }$ we have
 $\mathcal{C}(n) = \frac{n(n+1)}{2}$ and so $\mathcal{C}(m+1) > m$ for any $m \in \mathbb{N}$.

Example (Kolmogorov Complexity)

Is there a computable function f with $\forall m \in \mathbb{N} \ \mathscr{K}(f(m)) > m$?

♦

∻

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 SAEED SALEHI
 University of Tabriz & IPM
 http://Sa

 SWAMPLANDIA 2016
 Tutorial II: Gödel's Incompleteness Theorem

http://SaeedSalehi.ir/ 30 May 2016

A Non-Constructive Theorem

Theorem (Non-Constructivity of the Main Lemma)

There is no computable function f such that $\forall m \in \mathbb{N} \ \mathscr{K}(f(m)) > m$.

Berry's Paradox:

The Smallest Number Not Outputable by Program-Size of $\leqslant \cdots$

Proof.

For any f by Kleene's (2nd) Recursion (fixed-point) Theorem there exists some e such that $\varphi_e(0) = f(e)$, thus $\mathscr{K}(f(e)) \leq e$!

A Cornerstone of Computability Theory KLEENE 's Second Recursion Theorem: For any computable $f: \mathbb{N} \to \mathbb{N}$ there exists some $e \in \mathbb{N}$ such that $\varphi_e(0) = f(e)$.

http://SaeedSalehi.ir/ 30 May 2016

A Non-Constructive Theorem

Theorem (Non-Constructivity of the Main Lemma)

There is no computable function f such that $\forall m \in \mathbb{N} \ \mathscr{K}(f(m)) > m$.

BERRY's Paradox:

The Smallest Number Not Outputable by Program-Size of $\leqslant \cdots$

Proof.

For any f by Kleene's (2nd) Recursion (fixed-point) Theorem there exists some e such that $\varphi_e(0) = f(e)$, thus $\mathscr{K}(f(e)) \leq e$!

A Cornerstone of Computability Theory KLEENE 's Second Recursion Theorem: For any computable $f: \mathbb{N} \to \mathbb{N}$ there exists some $e \in \mathbb{N}$ such that $\varphi_e(0) = f(e)$.

http://SaeedSalehi.ir/ 30 May 2016

A Non-Constructive Theorem

Theorem (Non-Constructivity of the Main Lemma)

There is no computable function f such that $\forall m \in \mathbb{N} \ \mathscr{K}(f(m)) > m$.

BERRY's Paradox:

The Smallest Number Not Outputable by Program-Size of $\leqslant \cdots$

Proof.

For any f by Kleene's (2nd) Recursion (fixed-point) Theorem there exists some e such that $\varphi_e(0) = f(e)$, thus $\mathscr{K}(f(e)) \leq e$!

A Cornerstone of Computability Theory KLEENE 's Second Recursion Theorem: For any computable

 $f:\mathbb{N}\to\mathbb{N}$ there exists some $e\in\mathbb{N}$ such that $\varphi_e(0)=f(e)$.

Chaitin-Kolmogorov Complexity(4)

Corollary (Uncomputability of \mathscr{K})

The Kolmogorov Complexity is not computable.

Proof. Otherwise, $f(x) = \min\{z \mid \mathscr{K}(z) > x\}$ which satisfies $\forall x : \mathscr{K}(f(x)) > x$ would be computable by this algorithm: input xput y := 0while $\mathscr{K}(y) \le x$ do $\{y := y + 1\}$ print y

This would contradict The Main Lemma.

Chaitin-Kolmogorov Complexity(4)

Corollary (Uncomputability of \mathscr{K})

The Kolmogorov Complexity is not computable.

Proof.

Otherwise, $f(x) = \min\{z \mid \mathscr{K}(z) > x\}$ which satisfies $\forall x : \mathscr{K}(f(x)) > x$ would be computable by this algorithm: input x put y := 0while $\mathscr{K}(y) \le x$ do $\{y := y + 1\}$ print y

This would contradict The Main Lemma.

GÖDEL'S INCOMPLETENESS THEOREM:	Constructivity of Its Various Proofs	
Saeed Salehi	University of Tabriz & IPM	http://SaeedSalehi.ir/
SWAMPLANDIA 2016	Tutorial II: Gödel's Incompleteness Theorem	30 May 2016

Some More Computability Theory (i)

Definition (Computably Decidable)

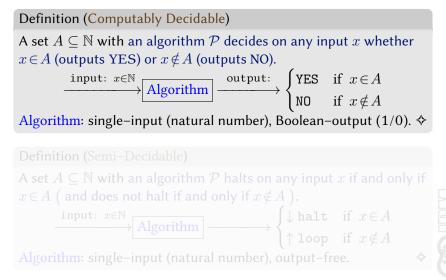
A set $A \subseteq \mathbb{N}$ with an algorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YES) or $x \notin A$ (outputs NO).

Algorithm: single-input (natural number), Boolean-output (1/0), \diamondsuit

Definition (Semi-Decidable) A set $A \subseteq \mathbb{N}$ with an algorithm \mathcal{P} halts on any input x if and only if $x \in A$ (and does not halt if and only if $x \notin A$). $\xrightarrow{input: x \in \mathbb{N}}$ Algorithm $\longrightarrow \begin{cases} \downarrow \text{ halt } \text{ if } x \in A \\ \uparrow \text{ loop } \text{ if } x \notin A \end{cases}$ Algorithm: single-input (natural number), output-free. \diamondsuit

GÖDEL'S INCOMPLETENESS THEOREM:	Constructivity of Its Various Proofs	
Saeed Salehi	University of Tabriz & IPM	http://SaeedSalehi.ir/
SWAMPLANDIA 2016	Tutorial II: Gödel's Incompleteness Theorem	30 May 2016

Some More Computability Theory (i)



GÖDEL'S INCOMPLETENESS THEOREM:	Constructivity of Its Various Proofs	
Saeed Salehi	University of Tabriz & IPM	http://SaeedSalehi.ir/
SWAMPLANDIA 2016	Tutorial II: Gödel's Incompleteness Theorem	30 May 2016

Some More Computability Theory (i)

Definition (Computably Decidable) A set $A \subseteq \mathbb{N}$ with an algorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YES) or $x \notin A$ (outputs NO). $\xrightarrow{\text{input: } x \in \mathbb{N}} \xrightarrow{\text{Algorithm}} \xrightarrow{\text{output:}} \begin{cases} \text{YES} & \text{if } x \in A \\ \text{NO} & \text{if } x \notin A \end{cases}$ Algorithm: single-input (natural number), Boolean-output (1/0). Definition (Semi–Decidable) A set $A \subseteq \mathbb{N}$ with an algorithm \mathcal{P} halts on any input x if and only if $x \in A$ (and does not halt if and only if $x \notin A$).

 $\xrightarrow{\text{input: } x \in \mathbb{N}} \overrightarrow{\text{Algorithm}} \longrightarrow \begin{cases} \downarrow \text{ halt } \text{ if } x \in A \\ \uparrow \text{ loop } \text{ if } x \notin A \end{cases}$ Algorithm: single-input (natural number), output-free.

Some More Computability Theory(ii)

Example

Almost all the sets of natural numbers that we know:

- every finite set
- $\{0, 3, 6, 9, \cdots, 3k, \cdots\}$
- $\{0, 1, 4, 9, 16, 25, \cdots, k^2, \cdots\}$
- $\{2,3,5,7,11,13,\cdots,\mathfrak{prime},\cdots\}$

Theorem (Decidability \equiv SemiDecidability + Co-SemiDecidability)

A set is decidable iff it and its complement are both semidecidable.

Proof.

If \mathcal{P} semidecides A and \mathcal{Q} semidecides \overline{A} then for deciding A, on any input, run \mathcal{P} and \mathcal{Q} in parallel (a step of each in turn) and if \mathcal{P} halts then print YES and if \mathcal{Q} halts then print NO.

Some More Computability Theory (ii)

Example

Almost all the sets of natural numbers that we know:

- every finite set
- $\{0, 3, 6, 9, \cdots, 3k, \cdots\}$
- $\{0, 1, 4, 9, 16, 25, \cdots, k^2, \cdots\}$
- $\{2,3,5,7,11,13,\cdots,\mathfrak{prime},\cdots\}$

Theorem (Decidability \equiv SemiDecidability + Co-SemiDecidability)

A set is decidable iff it and its complement are both semidecidable.

Proof.

If \mathcal{P} semidecides A and \mathcal{Q} semidecides \overline{A} then for deciding A, on any input, run \mathcal{P} and \mathcal{Q} in parallel (a step of each in turn) and if \mathcal{P} halts then print YES and if \mathcal{Q} halts then print NO.

GÖDEL'S INCOMPLETENESS THEOREM: CONStructivity of Its Various Proofs SAFED SALEHI University of Tabriz & IPM http://SaeedSalehi.ir/ SWAMPLANDIA 2016 Tutorial II: Gödel's Incompleteness Theorem 30 May 2016

Some More Computability Theory (ii)

Example

Almost all the sets of natural numbers that we know:

- every finite set
- $\{0, 3, 6, 9, \cdots, 3k, \cdots\}$

GÖDEL'S INCOMPLETENESS THEOREM: CONStructivity of Its Various Proofs SAFED SALEHI University of Tabriz & IPM http://SaeedSalehi.ir/ SWAMPLANDIA 2016 Tutorial II: Gödel's Incompleteness Theorem 30 May 2016

Some More Computability Theory (ii)

Example

Almost all the sets of natural numbers that we know:

- every finite set
- $\{0, 3, 6, 9, \cdots, 3k, \cdots\}$
- $\{0, 1, 4, 9, 16, 25, \cdots, k^2, \cdots\}$

Some More Computability Theory (ii)

Example

Almost all the sets of natural numbers that we know:

- every finite set
- $\{0, 3, 6, 9, \cdots, 3k, \cdots\}$
- $\{0, 1, 4, 9, 16, 25, \cdots, k^2, \cdots\}$
- $\{2, 3, 5, 7, 11, 13, \cdots, prime, \cdots\}$

Theorem (Decidability \equiv SemiDecidability + Co-SemiDecidability)

A set is decidable iff it and its complement are both semidecidable.

Proof.

If \mathcal{P} semidecides A and \mathcal{Q} semidecides \overline{A} then for deciding A, on any input, run \mathcal{P} and \mathcal{Q} in parallel (a step of each in turn) and if \mathcal{P} halts then print YES and if \mathcal{Q} halts then print NO.

Some More Computability Theory (ii)

Example

Almost all the sets of natural numbers that we know:

- every finite set
- $\{0, 3, 6, 9, \cdots, 3k, \cdots\}$
- $\{0, 1, 4, 9, 16, 25, \cdots, k^2, \cdots\}$
- $\{2, 3, 5, 7, 11, 13, \cdots, prime, \cdots\}$

Theorem (Decidability \equiv SemiDecidability + Co-SemiDecidability) A set is decidable iff it and its complement are both semidecidable.

Proof.

If \mathcal{P} semidecides A and \mathcal{Q} semidecides \overline{A} then for deciding A, on any input, run \mathcal{P} and \mathcal{Q} in parallel (a step of each in turn) and if \mathcal{P} halts then print YES and if \mathcal{Q} halts then print NO.

Some More Computability Theory (ii)

Example

Almost all the sets of natural numbers that we know:

- every finite set
- $\{0, 3, 6, 9, \cdots, 3k, \cdots\}$
- $\{0, 1, 4, 9, 16, 25, \cdots, k^2, \cdots\}$
- $\{2, 3, 5, 7, 11, 13, \cdots, prime, \cdots\}$

Theorem (Decidability \equiv SemiDecidability + Co-SemiDecidability)

A set is decidable iff it and its complement are both semidecidable.

Proof.

If \mathcal{P} semidecides A and \mathcal{Q} semidecides \overline{A} then for deciding A, on any input, run \mathcal{P} and \mathcal{Q} in parallel (a step of each in turn) and if \mathcal{P} halts then print YES and if \mathcal{Q} halts then print NO.

∻

A Semi-Decidable But Un-Decidable Set

Theorem $(2^{\aleph_0} > \aleph_0)$

	0	1	2	3	4	5	
$arphi_0$		\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
$oldsymbol{arphi}_1$	\downarrow		\downarrow	\uparrow	\downarrow	\uparrow	
$arphi_2$	\uparrow	\uparrow		\uparrow	\uparrow	\uparrow	
φ_3	\uparrow	\uparrow	\uparrow		\downarrow	\downarrow	
$arphi_4$	\downarrow	\downarrow	\uparrow	\uparrow		\downarrow	
$oldsymbol{arphi}_5$	\uparrow	\downarrow	\downarrow	\downarrow	\uparrow		
•	•			•	•		••••
K		Х	Х	Х	4	5	

A Semi-Decidable But Un-Decidable Set

Theorem $(2^{\aleph_0} > \aleph_0)$

	0	1	2	3	4	5	•••
φ_0	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	0 0 0
$arphi_1$	\downarrow		\downarrow	\uparrow	\downarrow	\uparrow	
$arphi_2$	\uparrow	\uparrow		\uparrow	\uparrow	\uparrow	
$arphi_3$	\uparrow	\uparrow	\uparrow		\downarrow	\downarrow	
$arphi_4$	\downarrow	\downarrow	\uparrow	\uparrow		\downarrow	
φ_5	\uparrow	\downarrow	\downarrow	\downarrow	\uparrow		
	•						
K		Х	Х	Х	4	5	

A Semi-Decidable But Un-Decidable Set

Theorem $(2^{\aleph_0} > \aleph_0)$

	0	1	2	3	4	5	•••
$oldsymbol{arphi}_0$	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	•••
$arphi_1$	\downarrow		\downarrow	\uparrow	\downarrow	\uparrow	
$arphi_2$	\uparrow	\uparrow		\uparrow	\uparrow	\uparrow	
$arphi_3$	\uparrow	\uparrow	\uparrow		\downarrow	\downarrow	
$arphi_4$	\downarrow	\downarrow	\uparrow	\uparrow		\downarrow	
$arphi_5$	\uparrow	\downarrow	\downarrow	\downarrow			
•	•						••••
K		Х	Х	Х	4	5	

A Semi-Decidable But Un-Decidable Set

Theorem $(2^{\aleph_0} > \aleph_0)$

	0	1	2	3	4	5	
$oldsymbol{arphi}_0$	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
$oldsymbol{arphi}_1$	\downarrow	1	\downarrow	\uparrow	\downarrow	\uparrow	• • •
$arphi_2$	\uparrow	\uparrow		\uparrow	\uparrow	\uparrow	
$arphi_3$	\uparrow	\uparrow	\uparrow		\downarrow	\downarrow	
$arphi_4$	\downarrow	\downarrow	\uparrow	\uparrow		\downarrow	
$oldsymbol{arphi}_5$	\uparrow	\downarrow	\downarrow	\downarrow	\uparrow		
•	•						•
K		Х	Х	Х	4	5	

A Semi-Decidable But Un-Decidable Set

Theorem $(2^{\aleph_0} > \aleph_0)$

	0	1	2	3	4	5	
$oldsymbol{arphi}_0$	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	• • •
$oldsymbol{arphi}_1$	↓	\uparrow	\downarrow	\uparrow	\downarrow	\uparrow	• • •
$oldsymbol{arphi}_2$	↑	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	
$arphi_3$	\uparrow	\uparrow	\uparrow		\downarrow	\downarrow	
$arphi_4$	\downarrow	\downarrow	\uparrow	\uparrow		\downarrow	
$arphi_5$	\uparrow	\downarrow	\downarrow		\uparrow		
• •	•						•
K			X			5	

A Semi-Decidable But Un-Decidable Set

Theorem $(2^{\aleph_0} > \aleph_0)$

	0	1	2	3	4	5	• • •
$oldsymbol{arphi}_0$	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
$oldsymbol{arphi}_1$	\downarrow	1	\downarrow	\uparrow	\downarrow	\uparrow	• • •
$oldsymbol{arphi}_2$	↑	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	• • •
$arphi_3$	↑	\uparrow	\uparrow	\uparrow	\downarrow	\downarrow	• • •
$arphi_4$	\downarrow	\downarrow	\uparrow	\uparrow		\downarrow	
$oldsymbol{arphi}_5$	\uparrow	\downarrow	\downarrow	\downarrow	\uparrow		
0 0							•
K		Х	Х	Х	4	5	

A Semi-Decidable But Un-Decidable Set

Theorem $(2^{\aleph_0} > \aleph_0)$

	0	1	2	3	4	5	• • •
$oldsymbol{arphi}_0$	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	•••
$oldsymbol{arphi}_1$	\downarrow	\uparrow	\downarrow	\uparrow	\downarrow	\uparrow	• • •
$oldsymbol{arphi}_2$	1	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	• • •
$arphi_3$	1	\uparrow	\uparrow	\uparrow	\downarrow	\downarrow	•••
$oldsymbol{arphi}_4$	↓↓	\downarrow	\uparrow	\uparrow	\downarrow	\downarrow	•••
$arphi_5$	\uparrow	\downarrow	\downarrow	\downarrow	\uparrow		
							• • •
K			Х	Х	4	5	

A Semi-Decidable But Un-Decidable Set

Theorem $(2^{\aleph_0} > \aleph_0)$

	0	1	2	3	4	5	• • •
$arphi_0$	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	•••
$oldsymbol{arphi}_1$	↓↓	\uparrow	\downarrow	\uparrow	\downarrow	\uparrow	•••
$oldsymbol{arphi}_2$	↑	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	•••
$arphi_3$	↑	\uparrow	\uparrow	\uparrow	\downarrow	\downarrow	•••
$oldsymbol{arphi}_4$	↓	\downarrow	\uparrow	\uparrow	\downarrow	\downarrow	•••
$oldsymbol{arphi}_5$	↑	\downarrow	\downarrow	\downarrow	\uparrow	\downarrow	•••
							•
K		Х	Х	Х	4	5	

A Semi-Decidable But Un-Decidable Set

Theorem $(2^{\aleph_0} > \aleph_0)$

	0	1	2	3	4	5	•••
$oldsymbol{arphi}_0$	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	• • •
$oldsymbol{arphi}_1$	\downarrow	1	\downarrow	\uparrow	\downarrow	\uparrow	•••
$oldsymbol{arphi}_2$	↑	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	•••
$oldsymbol{arphi}_3$	↑	\uparrow	\uparrow	\uparrow	\downarrow	\downarrow	• • •
$oldsymbol{arphi}_4$	↓↓	\downarrow	\uparrow	\uparrow	\downarrow	\downarrow	• • •
$oldsymbol{arphi}_5$	\uparrow	\downarrow	\downarrow	\downarrow	\uparrow	\downarrow	•••
÷	÷	÷	÷	÷	÷	÷	·
K		Х	Х	Х	4	5	

A Semi-Decidable But Un-Decidable Set

Theorem $(2^{\aleph_0} > \aleph_0)$

	0	1	2	3	4	5	
$oldsymbol{arphi}_0$	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	• • •
$oldsymbol{arphi}_1$	\downarrow	\uparrow	\downarrow	\uparrow	\downarrow	\uparrow	• • •
$oldsymbol{arphi}_2$	↑	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	• • •
$arphi_3$	1	\uparrow	\uparrow	\uparrow	\downarrow	\downarrow	• • •
$oldsymbol{arphi}_4$	↓↓	\downarrow	\uparrow	\uparrow	\downarrow	\downarrow	
$oldsymbol{arphi}_5$	↑	\downarrow	\downarrow	\downarrow	\uparrow	\downarrow	• • •
÷	÷	÷	:	÷	:	÷	·
\overline{K}	Х						
K			Х	Х	4	5	

A Semi-Decidable But Un-Decidable Set

Theorem $(2^{\aleph_0} > \aleph_0)$

0	1	2	3	4	5	•••
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	• • •
↓	\uparrow	\downarrow	\uparrow	\downarrow	\uparrow	• • •
↑	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	• • •
↑	\uparrow	\uparrow	\uparrow	\downarrow	\downarrow	•••
↓	\downarrow	\uparrow	\uparrow	\downarrow	\downarrow	• • •
↑	\downarrow	\downarrow	\downarrow	\uparrow	\downarrow	• • •
:	÷	÷	÷	÷	÷	۰.
X	1	2	3	Х	Х	
0	Х	Х	Х	4	5	
	$\begin{array}{c} \bullet \\ \bullet $	$\begin{array}{c} \bullet & \bullet \\ \downarrow & \downarrow \\ \uparrow & \uparrow \\ \uparrow & \uparrow \\ \uparrow & \uparrow \\ \downarrow & \downarrow \\ \uparrow & \downarrow \\ \vdots & \vdots \\ X & 1 \end{array}$	$\begin{array}{c} & \downarrow & \downarrow \\ \downarrow & \uparrow & \downarrow \\ \uparrow & \uparrow & \uparrow \\ \uparrow & \uparrow & \uparrow \\ \uparrow & \uparrow & \uparrow \\ \downarrow & \downarrow & \uparrow \\ \uparrow & \downarrow & \downarrow \\ \vdots & \vdots & \vdots \\ X & 1 & 2 \end{array}$	$\begin{array}{c} \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \\ \downarrow \uparrow \downarrow \uparrow \\ \uparrow \uparrow \uparrow \uparrow \\ \uparrow \uparrow \uparrow \uparrow \\ \downarrow \downarrow \uparrow \uparrow \\ \uparrow \downarrow \downarrow \downarrow \\ \vdots \vdots \vdots \vdots \\ X 1 2 3 \end{array}$	$\begin{array}{c} \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ \downarrow & \uparrow & \downarrow & \uparrow & \downarrow \\ \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ \uparrow & \uparrow & \uparrow & \uparrow & \uparrow$	$\begin{array}{c} \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow $

A Semi-Decidable But Un-Decidable Set

Theorem $(2^{\aleph_0} > \aleph_0)$

	0	1	2	3	4	5	•••
$oldsymbol{arphi}_0$	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	• • •
$oldsymbol{arphi}_1$	\downarrow	1	\downarrow	\uparrow	\downarrow	\uparrow	•••
$oldsymbol{arphi}_2$	1	\uparrow	1	\uparrow	\uparrow	\uparrow	•••
$oldsymbol{arphi}_3$	↑	\uparrow	\uparrow	\uparrow	\downarrow	\downarrow	• • •
$oldsymbol{arphi}_4$	↓	\downarrow	\uparrow	\uparrow	\downarrow	\downarrow	• • •
$oldsymbol{arphi}_5$	\uparrow	\downarrow	\downarrow	\downarrow	\uparrow	\downarrow	•••
:	÷	÷	÷	÷	÷	÷	·
\overline{K}	Х	1	2	3	Х	Х	•••
K	0	Х	Х	Х	4	5	

A Semi-Decidable But Un-Decidable Set

Theorem (A Diagonal Argument)

There exists a semi-decidable but undecidable set.

Constructive) Proof.

$$\overline{K} = \{n \in \mathbb{N} \mid \varphi_n(n) \uparrow\}$$
 were semi-decidable by (say) φ
 $\varphi_x(x) \uparrow \iff x \in \overline{K} \iff \varphi_k(x) \downarrow$
 $\varphi_k(k) \uparrow \iff \varphi_k(k) \downarrow$

contradiction!

Whence, \overline{K} , and also $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$, is undecidable. But the set $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$ is semi-decidable by the (computable) function $n \mapsto \mathbf{\Phi}(n, n)$ since,

$$x \in K \longleftrightarrow \mathbf{\Phi}(x, x) \downarrow.$$

A Semi-Decidable But Un-Decidable Set

Theorem (A Diagonal Argument)

There exists a semi-decidable but undecidable set.

(Constructive) Proof.

If $\overline{K} = \{n \in \mathbb{N} \mid \varphi_n(n) \uparrow\}$ were semi-decidable by (say) φ_k , then so, for x = k, $\varphi_x(x) \uparrow \iff x \in \overline{K} \iff \varphi_k(x) \downarrow$

contradiction!

Whence, \overline{K} , and also $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$, is undecidable.

But the set $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$ is semi-decidable by the (computable) function $n \mapsto \Phi(n, n)$ since,

A Semi-Decidable But Un-Decidable Set

Theorem (A Diagonal Argument)

There exists a semi-decidable but undecidable set.

(Constructive) Proof.

If $\overline{K} = \{n \in \mathbb{N} \mid \varphi_n(n) \uparrow\}$ were semi-decidable by (say) φ_k , then so, for x = k, $\varphi_x(x) \uparrow \iff x \in \overline{K} \iff \varphi_k(x) \downarrow$

contradiction!

Whence, \overline{K} , and also $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$, is undecidable.

But the set $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$ is semi-decidable by the (computable) function $n \mapsto \Phi(n, n)$ since,

A Semi-Decidable But Un-Decidable Set

Theorem (A Diagonal Argument)

There exists a semi-decidable but undecidable set.

(Constructive) Proof.

If $\overline{K} = \{n \in \mathbb{N} \mid \varphi_n(n) \uparrow\}$ were semi-decidable by (say) φ_k , then so, for x = k, $\varphi_x(x) \uparrow \iff x \in \overline{K} \iff \varphi_k(x) \downarrow$

contradiction!

Whence, \overline{K} , and also $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$, is undecidable.

But the set $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$ is semi-decidable by the (computable) function $n \mapsto \Phi(n, n)$ since,

A Semi-Decidable But Un-Decidable Set

Theorem (A Diagonal Argument)

There exists a semi-decidable but undecidable set.

(Constructive) Proof.

If $\overline{K} = \{n \in \mathbb{N} \mid \varphi_n(n) \uparrow\}$ were semi-decidable by (say) φ_k , then so, for x = k, $\varphi_x(x) \uparrow \iff x \in \overline{K} \iff \varphi_k(x) \downarrow$

 $\boldsymbol{\varphi}_k(k)\!\uparrow\!\Longleftrightarrow\boldsymbol{\varphi}_k(k)\!\downarrow$

contradiction!

Whence, \overline{K} , and also $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$, is undecidable.

But the set $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$ is semi-decidable by the (computable) function $n \mapsto \Phi(n, n)$ since,

A Semi-Decidable But Un-Decidable Set

Theorem (A Diagonal Argument)

There exists a semi-decidable but undecidable set.

(Constructive) Proof.

If $\overline{K} = \{n \in \mathbb{N} \mid \varphi_n(n) \uparrow\}$ were semi-decidable by (say) φ_k , then so, for x = k, $\varphi_x(x) \uparrow \iff x \in \overline{K} \iff \varphi_k(x) \downarrow$

 $\boldsymbol{\varphi}_k(k)\!\uparrow\!\Longleftrightarrow\boldsymbol{\varphi}_k(k)\!\downarrow$

contradiction!

Whence, \overline{K} , and also $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$, is undecidable.

But the set $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$ is semi-decidable by the (computable) function $n \mapsto \Phi(n, n)$ since,

A Semi-Decidable But Un-Decidable Set

Theorem (A Diagonal Argument)

There exists a semi-decidable but undecidable set.

(Constructive) Proof.

If $\overline{K} = \{n \in \mathbb{N} \mid \varphi_n(n) \uparrow\}$ were semi-decidable by (say) φ_k , then so, for x = k, $\varphi_x(x) \uparrow \iff x \in \overline{K} \iff \varphi_k(x) \downarrow$

 $\boldsymbol{\varphi}_k(k)\!\uparrow\!\Longleftrightarrow\boldsymbol{\varphi}_k(k)\!\downarrow$

contradiction!

Whence, \overline{K} , and also $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$, is undecidable. But the set $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$ is semi-decidable by the (computable) function $n \mapsto \mathbf{\Phi}(n, n)$ since,

A Semi-Decidable But Un-Decidable Set

Theorem (A Diagonal Argument)

There exists a semi-decidable but undecidable set.

(Constructive) Proof.

If $\overline{K} = \{n \in \mathbb{N} \mid \varphi_n(n) \uparrow\}$ were semi-decidable by (say) φ_k , then so, for x = k, $\varphi_x(x) \uparrow \iff x \in \overline{K} \iff \varphi_k(x) \downarrow$

 $\varphi_k(k)\!\uparrow\!\Longleftrightarrow \varphi_k(k)\!\downarrow$

contradiction!

Whence, \overline{K} , and also $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$, is undecidable. But the set $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$ is semi-decidable by the (computable) function $n \mapsto \mathbf{\Phi}(n, n)$ since,

The set of **PROOFS** of an *Axiomatizable Theory* must be **Decidable**.

The decidability of its set of axioms suffices (and is necessary).

Proposition (Axioms \in Dec. \Longrightarrow Proofs \in Dec.&Theorems \in SeDec.)

If the set of axioms of a theory is decidable, then the set of its proofs is decidable, and the set of its theorems is semi-decidable.

Proof.

If T is decidable, then the set of sequences $\langle \psi_0, \psi_1, \cdots, \psi_n \rangle$ with

- each ψ_i is either a logical axiom or a member of T, or
- each ψ_i results from some previous ones by an inference rule, is decidable. Now, a formula ψ is a theorem of T if and only if one can find such a sequence with $\psi_n = \psi$.

Proof Search Algorithm

The set of **PROOFS** of an *Axiomatizable Theory* must be **Decidable**. The **decidability** of its *set of axioms* suffices (and is necessary).

Proposition (Axioms \in Dec. \Longrightarrow Proofs \in Dec.&Theorems \in SeDec.)

If the set of axioms of a theory is decidable, then the set of its proofs is decidable, and the set of its theorems is semi-decidable.

Proof.

If T is decidable, then the set of sequences $\langle \psi_0, \psi_1, \cdots, \psi_n \rangle$ with

- each ψ_i is either a logical axiom or a member of T, or
- each ψ_i results from some previous ones by an inference rule, is decidable. Now, a formula ψ is a theorem of T if and only if one can find such a sequence with $\psi_n = \psi$.

Proof Search Algorithm

The set of **PROOFS** of an *Axiomatizable Theory* must be **Decidable**. The **decidability** of its *set of axioms* suffices (and is necessary).

Proposition (Axioms \in Dec. \Longrightarrow Proofs \in Dec.&Theorems \in SeDec.)

If the set of axioms of a theory is decidable, then the set of its proofs is decidable, and the set of its theorems is semi-decidable.

Proof.

If T is decidable, then the set of sequences $\langle \psi_0, \psi_1, \cdots, \psi_n \rangle$ with

- each ψ_i is either a logical axiom or a member of T, or
- each ψ_i results from some previous ones by an inference rule, is decidable. Now, a formula ψ is a theorem of T if and only if one can find such a sequence with $\psi_n = \psi$.

Proof Search Algorithm

The set of **PROOFS** of an *Axiomatizable Theory* must be **Decidable**. The **decidability** of its *set of axioms* suffices (and is necessary).

Proposition (Axioms \in Dec. \Longrightarrow Proofs \in Dec.&Theorems \in SeDec.)

If the set of axioms of a theory is decidable, then the set of its proofs is decidable, and the set of its theorems is semi-decidable.

Proof.

If T is decidable, then the set of sequences $\langle \psi_0, \psi_1, \cdots, \psi_n
angle$ with

- each ψ_i is either a logical axiom or a member of T, or
- each ψ_i results from some previous ones by an inference rule, is decidable. Now, a formula ψ is a theorem of T if and only if one can find such a sequence with $\psi_n = \psi$.

Proof Search Algorithm

The set of PROOFS of an *Axiomatizable Theory* must be **Decidable**. The **decidability** of its *set of axioms* suffices (and is necessary).

Proposition (Axioms \in Dec. \Longrightarrow Proofs \in Dec.&Theorems \in SeDec.)

If the set of axioms of a theory is decidable, then the set of its proofs is decidable, and the set of its theorems is semi-decidable.

Proof.

If T is decidable, then the set of sequences $\langle \psi_0, \psi_1, \cdots, \psi_n
angle$ with

- each ψ_i is either a logical axiom or a member of T, or
- each ψ_i results from some previous ones by an inference rule, is decidable. Now, a formula ψ is a theorem of T if and only if one can find such a sequence with $\psi_n = \psi$.

Proof Search Algorithm

Gödel's First Incompleteness Theorem

Follows from (and in fact is equivalent to) the existence of a semi-decidable but un-decidable set:

Theorem (Gödel's First Incompleteness Theorem-Semantic Form)

No semi-decidable and sound theory can be complete.

Kleene's Proof.

For a semi-decidable and undecidable set A (such that A is not semi-decidable) let $\overline{A}_T = \{n \in \mathbb{N} \mid T \vdash "n \notin A"\}$. Then, by the soundness of T we have $\overline{A}_T \subseteq \overline{A}$, but \overline{A}_T is semi-decidable $[n \mapsto \operatorname{Proof-Search}_T(n \notin A)]$ and \overline{A} isn't. So, there must be some $\mathbf{n} \in \overline{A}$ such that $\mathbf{n} \notin \overline{A}_T$. Thus, $\mathbb{N} \models \mathbf{n} \notin A$ but $T \not\vdash "\mathbf{n} \notin A"$.

The proof in this form is not constructive, since ${f n}$ is not (constructively) speci

Gödel's First Incompleteness Theorem

Follows from (and in fact is equivalent to) the existence of a semi-decidable but un-decidable set:

Theorem (Gödel's First Incompleteness Theorem-Semantic Form)

No semi-decidable and sound theory can be complete.

Kleene's Proof.

For a semi-decidable and undecidable set A (such that \overline{A} is not semi-decidable) let $\overline{A}_T = \{n \in \mathbb{N} \mid T \vdash ``n \notin A"\}$. Then, by the soundness of T we have $\overline{A}_T \subseteq \overline{A}$, but \overline{A}_T is semi-decidable $[n \mapsto \operatorname{Proof-Search}_T(n \notin A)]$ and \overline{A} isn't So, there must be some $\mathbf{n} \in \overline{A}$ such that $\mathbf{n} \notin \overline{A}_T$. Thus, $\mathbb{N} \models \mathbf{n} \notin A$ but $T \nvDash ``\mathbf{n} \notin A"$.

The proof in this form is not constructive, since ${f n}$ is not (constructively) specifie

Gödel's First Incompleteness Theorem

Follows from (and in fact is equivalent to) the existence of a semi-decidable but un-decidable set:

Theorem (Gödel's First Incompleteness Theorem-Semantic Form)

No semi-decidable and sound theory can be complete.

Kleene's Proof.

For a semi-decidable and undecidable set A (such that \overline{A} is not semi-decidable) let $\overline{A}_T = \{n \in \mathbb{N} \mid T \vdash ``n \notin A"\}$. Then, by the soundness of T we have $\overline{A}_T \subseteq \overline{A}$, but \overline{A}_T is semi-decidable $[n \mapsto \operatorname{Proof-Search}_T(n \notin A)]$ and \overline{A} isn' So, there must be some $\mathbf{n} \in \overline{A}$ such that $\mathbf{n} \notin \overline{A}_T$. Thus, $\mathbb{N} \models \mathbf{n} \notin A$ but $T \nvDash ``\mathbf{n} \notin A"$.

The proof in this form is not constructive, since ${f n}$ is not (constructively) specific

Gödel's First Incompleteness Theorem

Follows from (and in fact is equivalent to) the existence of a semi-decidable but un-decidable set:

Theorem (Gödel's First Incompleteness Theorem-Semantic Form)

No semi-decidable and sound theory can be complete.

Kleene's Proof.

For a semi-decidable and undecidable set A (such that \overline{A} is not semi-decidable) let $\overline{A}_T = \{n \in \mathbb{N} \mid T \vdash ``n \notin A"\}$. Then, by the soundness of T we have $\overline{A}_T \subseteq \overline{A}$, but \overline{A}_T is semi-decidable $[n \mapsto \operatorname{Proof-Search}_T(n \notin A)]$ and \overline{A} isn't So, there must be some $n \in \overline{A}$ such that $n \notin \overline{A}_T$. Thus, $\mathbb{N} \models n \notin A$ but $T \nvDash ``n \notin A"$.

The proof in this form is not constructive, since ${f n}$ is not (constructively) specif

Follows from (and in fact is equivalent to) the existence of a semi-decidable but un-decidable set:

Theorem (Gödel's First Incompleteness Theorem-Semantic Form)

No semi-decidable and sound theory can be complete.

Kleene's Proof.

For a semi-decidable and undecidable set A (such that A is not semi-decidable) let $\overline{A}_T = \{n \in \mathbb{N} \mid T \vdash ``n \notin A"\}$. Then, by the soundness of T we have $\overline{A}_T \subseteq \overline{A}$, but \overline{A}_T is semi-decidable $[n \mapsto \operatorname{Proof-Search}_T(n \notin A)]$ and \overline{A} isn't. So, there must be some $\mathbf{n} \in \overline{A}$ such that $\mathbf{n} \notin \overline{A}_T$. Thus, $\mathbb{N} \models \mathbf{n} \notin A$ but $T \not\vdash ``\mathbf{n} \notin A"$.

The proof in this form is not constructive, since ${f n}$ is not (constructively) specifi

Follows from (and in fact is equivalent to) the existence of a semi-decidable but un-decidable set:

Theorem (Gödel's First Incompleteness Theorem-Semantic Form)

No semi-decidable and sound theory can be complete.

Kleene's Proof.

For a semi-decidable and undecidable set A (such that \overline{A} is not semi-decidable) let $\overline{A}_T = \{n \in \mathbb{N} \mid T \vdash "n \notin A"\}$. Then, by the soundness of T we have $\overline{A}_T \subseteq \overline{A}$, but \overline{A}_T is semi-decidable $[n \mapsto \operatorname{Proof-Search}_T(n \notin A)]$ and \overline{A} isn't. So, there must be some $\mathbf{n} \in \overline{A}$ such that $\mathbf{n} \notin \overline{A}_T$.

Γhus, $\mathbb{N} \models \mathbf{n} \notin A$ but $T
eq ``\mathbf{n} \notin A"$.

The proof in this form is not constructive, since

n is not (constructively) specified.

Follows from (and in fact is equivalent to) the existence of a semi-decidable but un-decidable set:

Theorem (Gödel's First Incompleteness Theorem-Semantic Form)

No semi-decidable and sound theory can be complete.

Kleene's Proof.

For a semi-decidable and undecidable set A (such that A is not semi-decidable) let $\overline{A}_T = \{n \in \mathbb{N} \mid T \vdash ``n \notin A"\}$. Then, by the soundness of T we have $\overline{A}_T \subseteq \overline{A}$, but \overline{A}_T is semi-decidable $[n \mapsto \operatorname{Proof-Search}_T(n \notin A)]$ and \overline{A} isn't. So, there must be some $\mathbf{n} \in \overline{A}$ such that $\mathbf{n} \notin \overline{A}_T$. Thus, $\mathbb{N} \models \mathbf{n} \notin A$ but $T \not\vdash ``\mathbf{n} \notin A"$.

The proof in this form is not constructive, since

 ${f n}$ is not (constructively) specified.

Follows from (and in fact is equivalent to) the existence of a semi-decidable but un-decidable set:

Theorem (Gödel's First Incompleteness Theorem-Semantic Form)

No semi-decidable and sound theory can be complete.

Kleene's Proof.

For a semi-decidable and undecidable set A (such that A is not semi-decidable) let $\overline{A}_T = \{n \in \mathbb{N} \mid T \vdash ``n \notin A"\}$. Then, by the soundness of T we have $\overline{A}_T \subseteq \overline{A}$, but \overline{A}_T is semi-decidable $[n \mapsto \operatorname{Proof-Search}_T(n \notin A)]$ and \overline{A} isn't. So, there must be some $\mathbf{n} \in \overline{A}$ such that $\mathbf{n} \notin \overline{A}_T$. Thus, $\mathbb{N} \models \mathbf{n} \notin A$ but $T \not\vdash ``\mathbf{n} \notin A"$.

The proof in this form is not constructive, since

 ${f n}$ is not (constructively) specified.

Gödel's First Incompleteness Theorem-Constructively

Kleene's Constructive Proof.

Let T be a sufficiently strong^{*a*}, sound and semi-decidable theory.

 $[n \in \mathbb{N} \mid T \vdash \varphi_n(n) \uparrow\} \subseteq \{n \in \mathbb{N} \mid \varphi_n(n) \uparrow\}.$

The first set is semi-decidable, say by

 $\boldsymbol{\varphi}_{\mathbf{t}}(x) = \operatorname{Proof-Search}_{T}[\boldsymbol{\varphi}_{x}(x)\uparrow] (*) \ \varphi_{\mathbf{t}}(x) \downarrow \iff T \vdash \boldsymbol{\varphi}_{x}(x) \uparrow$

and the second set is not.

Now, on the one hand, (1) $\varphi_{\mathbf{t}}(\mathbf{t})$, since otherwise (if $\varphi_{\mathbf{t}}(\mathbf{t})\downarrow$)

 \triangleright by the sufficiently strongness, $T \vdash \varphi_{\mathbf{t}}(\mathbf{t}) \downarrow$; and also

> by (*) we should have $TDash arphi_{\mathbf{t}}(\mathbf{t})\!\uparrow;$ contradiction!

On the other hand, (2) $T \not\vdash \varphi_t(t)\uparrow$, since otherwise (if $T \vdash \varphi_t(t)\uparrow$) we should had $\varphi_t(t)\downarrow$ by (*), contradiction with (1)!

Thus, (1) $\varphi_t(t)$ \uparrow and (2) $T \not\vdash \varphi_t(t)$ \uparrow (and also $T \not\vdash \varphi_t(t)$).

 ${}^{a} \text{i.e.}, \varphi_{n}(m) \!\downarrow \Longrightarrow T \vdash "\varphi_{n}(m) \!\downarrow "$

 GÖDEL'S INCOMPLETENESS THEOREM: COnstructivity of Its Various Proofs

 SAEED SALEHI

 SWAMPLANDIA 2016

Tutorial II: Gödel's Incompleteness Theorem

Gödel's First Incompleteness Theorem-Constructively

Kleene's Constructive Proof.

Let T be a sufficiently strong^a, sound and semi-decidable theory.

 $\{n\!\in\!\mathbb{N}\mid T\vdash \varphi_n(n)\!\uparrow\}\subseteq\{n\!\in\!\mathbb{N}\mid \varphi_n(n)\!\uparrow\}.$

The first set is semi-decidable, say by

 $\boldsymbol{\varphi}_{\mathbf{t}}(x) \!=\! \mathrm{Proof}\text{-}\!\mathrm{Search}_{T}[\boldsymbol{\varphi}_{x}(x)\!\uparrow] (*) \, \boldsymbol{\varphi}_{\mathbf{t}}(x) \!\downarrow \, \Longleftrightarrow \, T \vdash \boldsymbol{\varphi}_{x}(x) \!\uparrow$

and the second set is not.

Now, on the one hand, (1) $arphi_{\mathbf{t}}(\mathbf{t})$ \uparrow , since otherwise (if $arphi_{\mathbf{t}}(\mathbf{t})$ \downarrow)

 \triangleright by the sufficiently strongness, $T \vdash \varphi_{\mathbf{t}}(\mathbf{t}) \downarrow$; and also

> by (*) we should have $T \vdash \varphi_t(t)$ ↑; contradiction!

On the other hand, (2) $T \not\vdash \varphi_t(t) \uparrow$, since otherwise (if $T \vdash \varphi_t(t) \uparrow$) we should had $\varphi_t(t) \downarrow$ by (*), contradiction with (1)!

Thus, (1) $\varphi_t(t)$ \uparrow and (2) $T \not\vdash \varphi_t(t)$ \uparrow (and also $T \not\vdash \varphi_t(t)$).

Gödel's First Incompleteness Theorem-Constructively

Kleene's Constructive Proof.

Let T be a sufficiently strong^{*a*}, sound and semi-decidable theory.

 $\{n\!\in\!\mathbb{N}\mid T\vdash \varphi_n(n)\!\uparrow\}\subseteq\{n\!\in\!\mathbb{N}\mid \varphi_n(n)\!\uparrow\}.$

The first set is semi-decidable, say by

 $\boldsymbol{\varphi}_{\mathbf{t}}(x) \!=\! \mathsf{Proof-Search}_{T}[\boldsymbol{\varphi}_{x}(x)\!\uparrow] (*) \boldsymbol{\varphi}_{\mathbf{t}}(x) \!\downarrow \, \Longleftrightarrow \, T \vdash \boldsymbol{\varphi}_{x}(x) \!\uparrow$

and the second set is not.

Now, on the one hand, (1) $\varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow , since otherwise (if $\varphi_{\mathbf{t}}(\mathbf{t})$ \downarrow)

 \triangleright by the sufficiently strongness, $T \vdash \varphi_t(t) \downarrow$; and also

> by (*) we should have $T \vdash \varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow ; contradiction!

On the other hand, (2) $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t}) \uparrow$, since otherwise (if $T \vdash \varphi_{\mathbf{t}}(\mathbf{t}) \uparrow$) we should had $\varphi_{\mathbf{t}}(\mathbf{t}) \downarrow$ by (*), contradiction with (1) !

Thus, (1) $\varphi_t(t)$ \uparrow and (2) $T \not\vdash \varphi_t(t)$ \uparrow (and also $T \not\vdash \varphi_t(t)$).

Gödel's First Incompleteness Theorem-Constructively

Kleene's Constructive Proof.

Let T be a sufficiently strong^{*a*}, sound and semi-decidable theory.

 $\{n\!\in\!\mathbb{N}\mid T\vdash \varphi_n(n)\!\uparrow\}\subseteq\{n\!\in\!\mathbb{N}\mid \varphi_n(n)\!\uparrow\}.$

The first set is semi-decidable, say by

 $\boldsymbol{\varphi}_{\mathbf{t}}(x) \!=\! \mathsf{Proof-Search}_{T}[\boldsymbol{\varphi}_{x}(x)\!\uparrow] (*) \, \boldsymbol{\varphi}_{\mathbf{t}}(x) \!\downarrow \, \Longleftrightarrow \, T \vdash \boldsymbol{\varphi}_{x}(x) \!\uparrow$

and the second set is not.

Now, on the one hand, (1) $\varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow , since otherwise (if $\varphi_{\mathbf{t}}(\mathbf{t})$ \downarrow)

 \triangleright by the sufficiently strongness, $T \vdash \varphi_t(t) \downarrow$; and also

> by (*) we should have $TDash oldsymbol{arphi_t}(\mathbf{t})\!\uparrow;$ contradiction!

On the other hand, (2) $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t}) \uparrow$, since otherwise (if $T \vdash \varphi_{\mathbf{t}}(\mathbf{t}) \uparrow$) we should had $\varphi_{\mathbf{t}}(\mathbf{t}) \downarrow$ by (*), contradiction with (1) !

Thus, (1) $\varphi_t(t)$ \uparrow and (2) $T \not\vdash \varphi_t(t)$ \uparrow (and also $T \not\vdash \varphi_t(t)$).

 GödeL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 Http://SaeedSalehi.ir/

 SAEED SALEHI
 University of Tabriz & IPM

 SWAMPLANDIA 2016
 Tutorial II: Gödel's Incompleteness Theorem

 30 May 2016

Gödel's First Incompleteness Theorem-Constructively

Kleene's Constructive Proof.

Let T be a sufficiently strong^{*a*}, sound and semi-decidable theory.

 $\{n\!\in\!\mathbb{N}\mid T\vdash \pmb{\varphi}_n(n)\!\uparrow\}\subseteq\{n\!\in\!\mathbb{N}\mid \pmb{\varphi}_n(n)\!\uparrow\}.$

The first set is semi-decidable, say by

 $\boldsymbol{\varphi}_{\mathbf{t}}(x) \!=\! \mathrm{Proof}\text{-}\!\mathrm{Search}_{T}[\boldsymbol{\varphi}_{x}(x)\!\uparrow] (*) \, \boldsymbol{\varphi}_{\mathbf{t}}(x) \!\downarrow \, \Longleftrightarrow \, T \vdash \boldsymbol{\varphi}_{x}(x) \!\uparrow$

and the second set is not.

Now, on the one hand, (1) $\varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow , since otherwise (if $\varphi_{\mathbf{t}}(\mathbf{t})$ \downarrow)

 \triangleright by the sufficiently strongness, $T \vdash \varphi_{\mathbf{t}}(\mathbf{t}) \downarrow$; and also

> by (*) we should have $T \vdash \varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow ; contradiction!

On the other hand, (2) $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t}) \uparrow$, since otherwise (if $T \vdash \varphi_{\mathbf{t}}(\mathbf{t}) \uparrow$) we should had $\varphi_{\mathbf{t}}(\mathbf{t}) \downarrow$ by (*), contradiction with (1) !

Thus, (1) $\varphi_t(t)$ \uparrow and (2) $T \not\vdash \varphi_t(t)$ \uparrow (and also $T \not\vdash \varphi_t(t)$).

Gödel's First Incompleteness Theorem-Constructively

Kleene's Constructive Proof.

Let T be a sufficiently strong^{*a*}, sound and semi-decidable theory.

 $\{n\!\in\!\mathbb{N}\mid T\vdash \pmb{\varphi}_n(n)\!\uparrow\}\subseteq\{n\!\in\!\mathbb{N}\mid \pmb{\varphi}_n(n)\!\uparrow\}.$

The first set is semi-decidable, say by

 $\boldsymbol{\varphi}_{\mathbf{t}}(x) = \operatorname{Proof-Search}_{T}[\boldsymbol{\varphi}_{x}(x)\uparrow] (*) \boldsymbol{\varphi}_{\mathbf{t}}(x) \downarrow \Longleftrightarrow T \vdash \boldsymbol{\varphi}_{x}(x) \uparrow$

and the second set is not.

Now, on the one hand, (1) $\varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow , since otherwise (if $\varphi_{\mathbf{t}}(\mathbf{t})$ \downarrow)

 \triangleright by the sufficiently strongness, $T \vdash \varphi_{\mathbf{t}}(\mathbf{t}) \downarrow$; and also

> by (*) we should have $T \vdash \varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow ; contradiction!

On the other hand, (2) $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t}) \uparrow$, since otherwise (if $T \vdash \varphi_{\mathbf{t}}(\mathbf{t}) \uparrow$) we should had $\varphi_{\mathbf{t}}(\mathbf{t}) \downarrow$ by (*), contradiction with (1) !

Thus, (1) $\varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow and (2) $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow (and also $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t})$).

Gödel's First Incompleteness Theorem-Constructively

Kleene's Constructive Proof.

Let T be a sufficiently strong^{*a*}, sound and semi-decidable theory.

 $\{n\!\in\!\mathbb{N}\mid T\vdash \pmb{\varphi}_n(n)\!\uparrow\}\subseteq\{n\!\in\!\mathbb{N}\mid \pmb{\varphi}_n(n)\!\uparrow\}.$

The first set is semi-decidable, say by

 $\boldsymbol{\varphi}_{\mathbf{t}}(x) \!=\! \mathrm{Proof}\text{-}\!\mathrm{Search}_{T}[\boldsymbol{\varphi}_{x}(x)\!\uparrow] (*) \; \boldsymbol{\varphi}_{\mathbf{t}}(x) \!\downarrow \, \Longleftrightarrow \, T \vdash \boldsymbol{\varphi}_{x}(x) \!\uparrow$

and the second set is not.

Now, on the one hand, (1) $arphi_{\mathbf{t}}(\mathbf{t})$ \uparrow , since otherwise (if $arphi_{\mathbf{t}}(\mathbf{t})$ \downarrow)

 \triangleright by the sufficiently strongness, $T \vdash \varphi_t(t) \downarrow$; and also

> by (*) we should have $T \vdash \varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow ; contradiction!

On the other hand, (2) $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t}) \uparrow$, since otherwise (if $T \vdash \varphi_{\mathbf{t}}(\mathbf{t}) \uparrow$) we should had $\varphi_{\mathbf{t}}(\mathbf{t}) \downarrow$ by (*), contradiction with (1) !

Thus, (1) $\varphi_t(t)$ \uparrow and (2) $T \not\vdash \varphi_t(t)$ \uparrow (and also $T \not\vdash \varphi_t(t)$).

Gödel's First Incompleteness Theorem-Constructively

Kleene's Constructive Proof.

Let T be a sufficiently strong^{*a*}, sound and semi-decidable theory.

 $\{n\!\in\!\mathbb{N}\mid T\vdash \pmb{\varphi}_n(n)\!\uparrow\}\subseteq\{n\!\in\!\mathbb{N}\mid \pmb{\varphi}_n(n)\!\uparrow\}.$

The first set is semi-decidable, say by

 $\boldsymbol{\varphi}_{\mathbf{t}}(x) \!=\! \mathrm{Proof}\text{-}\!\mathrm{Search}_{T}[\boldsymbol{\varphi}_{x}(x)\!\uparrow] (*) \; \boldsymbol{\varphi}_{\mathbf{t}}(x) \!\downarrow \, \Longleftrightarrow \, T \vdash \boldsymbol{\varphi}_{x}(x) \!\uparrow$

and the second set is not.

Now, on the one hand, (1) $\varphi_{t}(t)\uparrow$, since otherwise (if $\varphi_{t}(t)\downarrow$) \triangleright by the sufficiently strongness, $T \vdash \varphi_{t}(t)\downarrow$; and also \triangleright by (*) we should have $T \vdash \varphi_{t}(t)\uparrow$; contradiction!

On the other hand, (2) $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t}) \uparrow$, since otherwise (if $T \vdash \varphi_{\mathbf{t}}(\mathbf{t}) \uparrow$) we should had $\varphi_{\mathbf{t}}(\mathbf{t}) \downarrow$ by (*), contradiction with (1)!

Thus, (1) $\varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow and (2) $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow (and also $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t})$).

Gödel's First Incompleteness Theorem-Constructively

Kleene's Constructive Proof.

Let T be a sufficiently strong^{*a*}, sound and semi-decidable theory.

 $\{n\!\in\!\mathbb{N}\mid T\vdash \pmb{\varphi}_n(n)\!\uparrow\}\subseteq\{n\!\in\!\mathbb{N}\mid \pmb{\varphi}_n(n)\!\uparrow\}.$

The first set is semi-decidable, say by

 $\boldsymbol{\varphi}_{\mathbf{t}}(x) \!=\! \mathrm{Proof}\text{-}\!\mathrm{Search}_{T}[\boldsymbol{\varphi}_{x}(x)\!\uparrow] (*) \; \boldsymbol{\varphi}_{\mathbf{t}}(x) \!\downarrow \, \Longleftrightarrow \, T \vdash \boldsymbol{\varphi}_{x}(x) \!\uparrow$

and the second set is not.

Now, on the one hand, (1) $\varphi_t(t)\!\uparrow\!,$ since otherwise (if $\varphi_t(t)\!\downarrow\!)$

▷ by the sufficiently strongness, $T \vdash \varphi_t(\mathbf{t}) \downarrow$; and also ▷ by (*) we should have $T \vdash \varphi_t(\mathbf{t}) \uparrow$; contradiction!

On the other hand, (2) $T \not\vdash \varphi_t(t) \uparrow$, since otherwise (if $T \vdash \varphi_t(t) \uparrow$) we should had $\varphi_t(t) \downarrow$ by (*), contradiction with (1)!

Thus, (1) $\varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow and (2) $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow (and also $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t})$).

Gödel's First Incompleteness Theorem-Constructively

Kleene's Constructive Proof.

Let T be a sufficiently strong^a, sound and semi-decidable theory.

 $\{n\!\in\!\mathbb{N}\mid T\vdash \pmb{\varphi}_n(n)\!\uparrow\}\subseteq\{n\!\in\!\mathbb{N}\mid \pmb{\varphi}_n(n)\!\uparrow\}.$

The first set is semi-decidable, say by

 $\boldsymbol{\varphi}_{\mathbf{t}}(x) \!=\! \mathsf{Proof-Search}_{T}[\boldsymbol{\varphi}_{x}(x)\!\uparrow] (*) \boldsymbol{\varphi}_{\mathbf{t}}(x) \!\downarrow \, \Longleftrightarrow \, T \vdash \boldsymbol{\varphi}_{x}(x) \!\uparrow$

and the second set is not.

Now, on the one hand, (1) $\varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow , since otherwise (if $\varphi_{\mathbf{t}}(\mathbf{t})$ \downarrow)

 \triangleright by the sufficiently strongness, $T \vdash \varphi_{\mathbf{t}}(\mathbf{t}) \downarrow$; and also

Displa by (*) we should have $TDispla arphi_{\mathbf{t}}(\mathbf{t})$ \uparrow ; contradiction!

On the other hand, (2) $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t}) \uparrow$, since otherwise (if $T \vdash \varphi_{\mathbf{t}}(\mathbf{t}) \uparrow$) we should had $\varphi_{\mathbf{t}}(\mathbf{t}) \downarrow$ by (*), contradiction with (1) !

Thus, (1) $\varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow and (2) $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow (and also $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t})$).

Gödel's First Incompleteness Theorem-Constructively

Kleene's Constructive Proof.

Let T be a sufficiently strong^a, sound and semi-decidable theory.

$$\{n\!\in\!\mathbb{N}\mid T\vdash \boldsymbol{\varphi}_n(n)\!\uparrow\}\subseteq\{n\!\in\!\mathbb{N}\mid \boldsymbol{\varphi}_n(n)\!\uparrow\}.$$

The first set is semi-decidable, say by

 $\boldsymbol{\varphi}_{\mathbf{t}}(x) \!=\! \mathrm{Proof}\text{-}\!\mathrm{Search}_{T}[\boldsymbol{\varphi}_{x}(x)\!\uparrow] (*) \; \boldsymbol{\varphi}_{\mathbf{t}}(x) \!\downarrow \, \Longleftrightarrow \, T \vdash \boldsymbol{\varphi}_{x}(x) \!\uparrow$

and the second set is not.

Now, on the one hand, (1) $\varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow , since otherwise (if $\varphi_{\mathbf{t}}(\mathbf{t})$ \downarrow)

▷ by the sufficiently strongness, $T \vdash \varphi_t(t) \downarrow$; and also ▷ by (*) we should have $T \vdash \varphi_t(t) \uparrow$; contradiction!

On the other hand, (2) $T \not\vdash \varphi_t(t)\uparrow$, since otherwise (if $T \vdash \varphi_t(t)\uparrow$) we should had $\varphi_t(t)\downarrow$ by (*), contradiction with (1)!

Thus, (1) $\varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow and (2) $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow (and also $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t})$).

Gödel's First Incompleteness Theorem-Constructively

Kleene's Constructive Proof.

Let T be a sufficiently strong^a, sound and semi-decidable theory.

$$\{n\!\in\!\mathbb{N}\mid T\vdash \boldsymbol{\varphi}_n(n)\!\uparrow\}\subseteq\{n\!\in\!\mathbb{N}\mid \boldsymbol{\varphi}_n(n)\!\uparrow\}.$$

The first set is semi-decidable, say by

 $\boldsymbol{\varphi}_{\mathbf{t}}(x) \!=\! \mathrm{Proof}\text{-}\!\mathrm{Search}_{T}[\boldsymbol{\varphi}_{x}(x)\!\uparrow] (*) \; \boldsymbol{\varphi}_{\mathbf{t}}(x) \!\downarrow \, \Longleftrightarrow \, T \vdash \boldsymbol{\varphi}_{x}(x) \!\uparrow$

and the second set is not.

Now, on the one hand, (1) $\varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow , since otherwise (if $\varphi_{\mathbf{t}}(\mathbf{t})$ \downarrow)

▷ by the sufficiently strongness, $T \vdash \varphi_t(t) \downarrow$; and also ▷ by (*) we should have $T \vdash \varphi_t(t) \uparrow$; contradiction!

On the other hand, (2) $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t}) \uparrow$, since otherwise (if $T \vdash \varphi_{\mathbf{t}}(\mathbf{t}) \uparrow$) we should had $\varphi_{\mathbf{t}}(\mathbf{t}) \downarrow$ by (*), contradiction with (1)!

Thus, (1) $\varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow and (2) $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow (and also $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t})$).

Gödel's First Incompleteness Theorem-Constructively

Kleene's Constructive Proof.

Let T be a sufficiently strong^a, sound and semi-decidable theory.

$$\{n\!\in\!\mathbb{N}\mid T\vdash \boldsymbol{\varphi}_n(n)\!\uparrow\}\subseteq\{n\!\in\!\mathbb{N}\mid \boldsymbol{\varphi}_n(n)\!\uparrow\}.$$

The first set is semi-decidable, say by

 $\boldsymbol{\varphi}_{\mathbf{t}}(x) \!=\! \mathrm{Proof}\text{-}\!\mathrm{Search}_{T}[\boldsymbol{\varphi}_{x}(x)\!\uparrow] (*) \; \boldsymbol{\varphi}_{\mathbf{t}}(x) \!\downarrow \, \Longleftrightarrow \, T \vdash \boldsymbol{\varphi}_{x}(x) \!\uparrow$

and the second set is not.

Now, on the one hand, (1) $\varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow , since otherwise (if $\varphi_{\mathbf{t}}(\mathbf{t})$ \downarrow)

 \triangleright by the sufficiently strongness, $T \vdash \varphi_t(t) \downarrow$; and also

 \triangleright by (*) we should have $T \vdash \varphi_t(t)$; contradiction!

On the other hand, (2) $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t})\uparrow$, since otherwise (if $T \vdash \varphi_{\mathbf{t}}(\mathbf{t})\uparrow$) we should had $\varphi_{\mathbf{t}}(\mathbf{t})\downarrow$ by (*), contradiction with (1) !

Thus, (1) $\varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow and (2) $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t})$ \uparrow (and also $T \not\vdash \varphi_{\mathbf{t}}(\mathbf{t})$).

GÖDEL'S INCOMPLETENESS THEOREM: CONStructivity of Its Various Proofs SAFED SALEHI University of Tabriz & IPM http://SaeedSalehi.ir/ SWAMPLANDIA 2016 Tutorial II: Gödel's Incompleteness Theorem 30 May 2016

Gödel's First Incompleteness Theorem–Constructively

Kleene's Constructive Proof.

Let T be a sufficiently strong^a, sound and semi-decidable theory.

$$\{n\!\in\!\mathbb{N}\mid T\vdash \boldsymbol{\varphi}_n(n)\!\uparrow\}\subseteq\{n\!\in\!\mathbb{N}\mid \boldsymbol{\varphi}_n(n)\!\uparrow\}.$$

The first set is semi-decidable, say by

 $\varphi_{t}(x) = \operatorname{Proof-Search}_{T}[\varphi_{x}(x)\uparrow](*) \varphi_{t}(x)\downarrow \iff T \vdash \varphi_{x}(x)\uparrow$

and the second set is not.

Now, on the one hand, (1) $\varphi_t(t)\uparrow$, since otherwise (if $\varphi_t(t)\downarrow$)

 \triangleright by the sufficiently strongness, $T \vdash \varphi_t(\mathbf{t}) \downarrow$; and also

 \triangleright by (*) we should have $T \vdash \varphi_t(\mathbf{t}) \uparrow$; contradiction!

On the other hand, (2) $T \not\vdash \varphi_t(t) \uparrow$, since otherwise (if $T \vdash \varphi_t(t) \uparrow$) we should had $\varphi_t(t) \downarrow$ by (*), contradiction with (1)!

Thus, (1) $\varphi_t(\mathbf{t}) \uparrow$ and (2) $T \not\vdash \varphi_t(\mathbf{t}) \uparrow$ (and also $T \not\vdash \varphi_t(\mathbf{t}) \downarrow$).

^{*a*}i.e., $\varphi_n(m) \downarrow \Longrightarrow T \vdash "\varphi_n(m) \downarrow "$

 \square

GÖDEL'S INCOMPLETENESS THEOREM: COnstructivity of Its Various Proofs SAEED SALEHI University of Tabr SWAMPLANDIA 2016 Tutorial II: Gödel

University of Tabriz & IPM Tutorial II: Gödel's Incompleteness Theorem http://SaeedSalehi.ir/ 30 May 2016

Gödel's Proof

Gödel's Proof (for sound and definable T).

Denote the *n*-th Formula by \mathcal{F}_n (via a Gödel coding).

 $\{n \in \mathbb{N} \mid T \vdash \neg \mathcal{F}_n(\overline{n})\} \subseteq \{n \in \mathbb{N} \mid \mathbb{N} \models \neg \mathcal{F}_n(\overline{n})\}.$

The first set is arithmetically definable, while the second set is not! (Tarski's Theorem: if it were by $\mathcal{F}_t(x)$ then $\mathcal{F}_t(t) \leftrightarrow \neg \mathcal{F}_t(t)$!). The first set is definable by $\mathcal{F}_g(x)$; from $\mathcal{F}_g(x) \equiv T \vdash \neg \mathcal{F}_x(x)$ we have $\neg \mathcal{F}_g(g) \leftrightarrow T \not\vdash \neg \mathcal{F}_g(g)$ (Diagonal Lemma). So, for some sentence \mathcal{G} we have $\mathcal{G} \equiv T \not\vdash \mathcal{G}$ (Diagonal Lemma). Now, (1) $\mathbb{N} \models \mathcal{G}$, since otherwise $T \vdash \mathcal{G}$, and so $\mathbb{N} \models \mathcal{G}$. Also, (2) $T \not\vdash \mathcal{G}$ since otherwise $\mathbb{N} \not\models \mathcal{G}$, contradiction with (1)! GÖDEL'S INCOMPLETENESS THEOREM: COnstructivity of Its Various Proofs SAEED SALEHI University of Tabri SWAMPLANDIA 2016 Tutorial II: Gödel

University of Tabriz & IPM Tutorial II: Gödel's Incompleteness Theorem http://SaeedSalehi.ir/ 30 May 2016

Gödel's Proof

Gödel's Proof (for sound and definable T).

Denote the *n*-th Formula by \mathcal{F}_n (via a Gödel coding).

 $\{n \in \mathbb{N} \mid T \vdash \neg \mathcal{F}_n(\overline{n})\} \subseteq \{n \in \mathbb{N} \mid \mathbb{N} \models \neg \mathcal{F}_n(\overline{n})\}.$

The first set is arithmetically definable, while the second set is not! (Tarski's Theorem: if it were by $\mathcal{F}_t(x)$ then $\mathcal{F}_t(t) \leftrightarrow \neg \mathcal{F}_t(t)$!). The first set is definable by $\mathcal{F}_g(x)$; from $\mathcal{F}_g(x) \equiv T \vdash \neg \mathcal{F}_x(x)$ we have $\neg \mathcal{F}_g(g) \leftrightarrow T \nvDash \neg \mathcal{F}_g(g)$ (Diagonal Lemma). So, for some sentence \mathcal{G} we have $\mathcal{G} \equiv T \nvDash \mathcal{G}$ (Diagonal Lemma). Now, (1) $\mathbb{N} \models \mathcal{G}$, since otherwise $T \vdash \mathcal{G}$, and so $\mathbb{N} \models \mathcal{G}$. Also, (2) $T \nvDash \mathcal{G}$ since otherwise $\mathbb{N} \nvDash \mathcal{G}$, contradiction with (1)!

University of Tabriz & IPM Tutorial II: Gödel's Incompleteness Theorem http://SaeedSalehi.ir/ 30 May 2016

Gödel's Proof

Gödel's Proof (for sound and definable T).

Denote the *n*-th Formula by \mathcal{F}_n (via a Gödel coding).

$$\{n \in \mathbb{N} \mid T \vdash \neg \mathcal{F}_n(\overline{n})\} \subseteq \{n \in \mathbb{N} \mid \mathbb{N} \models \neg \mathcal{F}_n(\overline{n})\}.$$

GÖDEL'S INCOMPLETENESS THEOREM: CONStructivity of Its Various Proofs SAFED SALEHI University of Tabriz & IPM SWAMPLANDIA 2016

Tutorial II: Gödel's Incompleteness Theorem

http://SaeedSalehi.ir/ 30 May 2016

Gödel's Proof

Gödel's Proof (for sound and definable T).

Denote the *n*-th Formula by \mathcal{F}_n (via a Gödel coding).

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs

 SAEED SALEHI

 University of Tabriz & IPM

 SWAMPLANDIA 2016

 Tutorial II: Gödel's Incompleteness Theorem

http://SaeedSalehi.ir/ 30 May 2016

Gödel's Proof

Gödel's Proof (for sound and definable T).

Denote the *n*-th Formula by \mathcal{F}_n (via a Gödel coding).

$$\{n \in \mathbb{N} \mid T \vdash \neg \mathcal{F}_n(\overline{n})\} \subseteq \{n \in \mathbb{N} \mid \mathbb{N} \models \neg \mathcal{F}_n(\overline{n})\}.$$

GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs SAEED SALEHI University of Tabriz & IPM SWAMPLANDIA 2016 Tutorial II: Gödel's Incompleteness Theorem

http://SaeedSalehi.ir/ 30 May 2016

Gödel's Proof

Gödel's Proof (for sound and definable *T*).

Denote the *n*-th Formula by \mathcal{F}_n (via a Gödel coding).

$$\{n \in \mathbb{N} \mid T \vdash \neg \mathcal{F}_n(\overline{n})\} \subseteq \{n \in \mathbb{N} \mid \mathbb{N} \models \neg \mathcal{F}_n(\overline{n})\}.$$

GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs SAEED SALEHI University of Tabriz & IPM SWAMPLANDIA 2016 Tutorial II: Gödel's Incompleteness Theorem

http://SaeedSalehi.ir/ 30 May 2016

Gödel's Proof

Gödel's Proof (for sound and definable *T*).

Denote the *n*-th Formula by \mathcal{F}_n (via a Gödel coding).

$$\{n \in \mathbb{N} \mid T \vdash \neg \mathcal{F}_n(\overline{n})\} \subseteq \{n \in \mathbb{N} \mid \mathbb{N} \models \neg \mathcal{F}_n(\overline{n})\}.$$

University of Tabriz & IPM Tutorial II: Gödel's Incompleteness Theorem http://SaeedSalehi.ir/ 30 May 2016

Gödel's Proof

Gödel's Proof (for sound and definable *T*).

Denote the *n*-th Formula by \mathcal{F}_n (via a Gödel coding).

$$\{n \in \mathbb{N} \mid T \vdash \neg \mathcal{F}_n(\overline{n})\} \subseteq \{n \in \mathbb{N} \mid \mathbb{N} \models \neg \mathcal{F}_n(\overline{n})\}.$$

University of Tabriz & IPM Tutorial II: Gödel's Incompleteness Theorem http://SaeedSalehi.ir/ 30 May 2016

Gödel's Proof

Gödel's Proof (for sound and definable *T*).

Denote the *n*-th Formula by \mathcal{F}_n (via a Gödel coding).

$$\{n \in \mathbb{N} \mid T \vdash \neg \mathcal{F}_n(\overline{n})\} \subseteq \{n \in \mathbb{N} \mid \mathbb{N} \models \neg \mathcal{F}_n(\overline{n})\}.$$

University of Tabriz & IPM Tutorial II: Gödel's Incompleteness Theorem http://SaeedSalehi.ir/ 30 May 2016

Gödel's Proof

Gödel's Proof (for sound and definable *T*).

Denote the *n*-th Formula by \mathcal{F}_n (via a Gödel coding).

$$\{n \in \mathbb{N} \mid T \vdash \neg \mathcal{F}_n(\overline{n})\} \subseteq \{n \in \mathbb{N} \mid \mathbb{N} \models \neg \mathcal{F}_n(\overline{n})\}.$$

University of Tabriz & IPM Tutorial II: Gödel's Incompleteness Theorem http://SaeedSalehi.ir/ 30 May 2016

Gödel's Proof

Gödel's Proof (for sound and definable *T*).

Denote the *n*-th Formula by \mathcal{F}_n (via a Gödel coding).

$$\{n \in \mathbb{N} \mid T \vdash \neg \mathcal{F}_n(\overline{n})\} \subseteq \{n \in \mathbb{N} \mid \mathbb{N} \models \neg \mathcal{F}_n(\overline{n})\}.$$

University of Tabriz & IPM Tutorial II: Gödel's Incompleteness Theorem http://SaeedSalehi.ir/ 30 May 2016

Gödel's Proof

Gödel's Proof (for sound and definable *T*).

Denote the *n*-th Formula by \mathcal{F}_n (via a Gödel coding).

$$\{n \in \mathbb{N} \mid T \vdash \neg \mathcal{F}_n(\overline{n})\} \subseteq \{n \in \mathbb{N} \mid \mathbb{N} \models \neg \mathcal{F}_n(\overline{n})\}.$$

University of Tabriz & IPM Tutorial II: Gödel's Incompleteness Theorem http://SaeedSalehi.ir/ 30 May 2016

Gödel's Proof

Gödel's Proof (for sound and definable T).

Denote the *n*-th Formula by \mathcal{F}_n (via a Gödel coding).

$$\{n \in \mathbb{N} \mid T \vdash \neg \mathcal{F}_n(\overline{n})\} \subseteq \{n \in \mathbb{N} \mid \mathbb{N} \models \neg \mathcal{F}_n(\overline{n})\}.$$

University of Tabriz & IPM Tutorial II: Gödel's Incompleteness Theorem http://SaeedSalehi.ir/ 30 May 2016

Gödel's Proof

Gödel's Proof (for sound and definable *T*).

Denote the *n*-th Formula by \mathcal{F}_n (via a Gödel coding).

$$\{n \in \mathbb{N} \mid T \vdash \neg \mathcal{F}_n(\overline{n})\} \subseteq \{n \in \mathbb{N} \mid \mathbb{N} \models \neg \mathcal{F}_n(\overline{n})\}.$$

The first set is arithmetically definable, while the second set is not! (Tarski's Theorem: if it were by $\mathcal{F}_t(x)$ then $\mathcal{F}_t(t) \leftrightarrow \neg \mathcal{F}_t(t)$!). The first set is definable by $\mathcal{F}_g(x)$; from $\mathcal{F}_g(x) \equiv T \vdash \neg \mathcal{F}_x(x)$ we have $\neg \mathcal{F}_g(g) \leftrightarrow T \not\vdash \neg \mathcal{F}_g(g)$ (Gödel's Sentence). So, for some sentence \mathcal{G} we have $\mathcal{G} \equiv T \not\vdash \mathcal{G}$ (Diagonal Lemma). Now, (1) $\mathbb{N} \models \mathcal{G}$, since otherwise $T \vdash \mathcal{G}$, and so $\mathbb{N} \models \mathcal{G}$. Also, (2) $T \not\vdash \mathcal{G}$ since otherwise $\mathbb{N} \not\models \mathcal{G}$, contradiction with (1)!

Gödel's Paradox!

University of Tabriz & IPM Tutorial II: Gödel's Incompleteness Theorem http://SaeedSalehi.ir/ 30 May 2016

Gödel's Proof

Gödel's Proof (for sound and definable *T*).

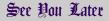
Denote the *n*-th Formula by \mathcal{F}_n (via a Gödel coding).

$$\{n \in \mathbb{N} \mid T \vdash \neg \mathcal{F}_n(\overline{n})\} \subseteq \{n \in \mathbb{N} \mid \mathbb{N} \models \neg \mathcal{F}_n(\overline{n})\}.$$

GÖDEL'S INCOMPLETENESS THEOREM: CONStructivity of Its Various Proofs University of Tabriz & IPM SAEED SALEHI SWAMPLANDIA 2016

Tutorial II: Gödel's Incompleteness Theorem

http://SaeedSalehi.ir/ 30 May 2016



To BE CONTINUED ...

Tutorial I: Constructive Proofs	30 May 2016
Tutorial II: Gödel's Incompleteness Theorem	30 May 2016
Tutorial III: Constructivity of Proofs for Gödel's Theorem	31 May 2016

GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs SAEED SALEHI University of Tabri

SWAMPLANDIA 2016

University of Tabriz & IPM Tutorial II: Gödel's Incompleteness Theorem http://SaeedSalehi.ir/ 30 May 2016

Thanks to

The Participants For Listening ····

and

The Organizers – For Taking Care of Everything \cdots

SAEEDSALEHI. ir

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 http://SaeedSalehi.r/

 SAEED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.r/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Hello!

Gödel's Incompleteness Theorem: Constructivity of Its Various Proofs*

Saeed Salehi

University of Tabriz & IPM

http://SaeedSalehi.ir/

*A Joint Work with Payam Seraji.

SWAMPLANDIA 2016, Ghent University Tutorial III: Constructivity of Proofs for Gödel's Theorem 31 May 2016

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs

 SAEED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.r/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Tutorial I: Constructive Proofs 30 May 2016 Tutorial II: Gödel's Incompleteness Theorem 30 May 2016 Tutorial III: Constructivity of Proofs for Gödel's Theorem 31 May 2016

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 http://SaeedSalehi.ir/

 SAEED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Tutorial I: Constructive Proofs	30 May 2016
Tutorial II: Gödel's Incompleteness Theorem	30 May 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem 	31 May 2016

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 http://SaeedSalehi.ir/

 SAEED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Tutorial I: Constructive Proofs	30 May 2016
 Tutorial II: Gödel's Incompleteness Theorem 	30 May 2016
Tutorial III: Constructivity of Proofs for Gödel's Theorem	31 May 2016

SAEED SALEHI SWAMPLANDIA 2016 University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

The Proof of G. Boolos

J. BARWISE, Notices of the American Mathematical Society 36:4 (1989) 388. "This Month's Column"

The column also contains ... a very lovely proof of Gödel's Incompleteness Theorem, probably the deepest single result about the relationship between computers and mathematics, as well as having played an important (if slightly ironic) role in the development of computers, as I have discussed earlier. I am pleased to include in this column the most straightforward proof of this result that I have ever seen.

SAEED SALEHI SWAMPLANDIA 2016 University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem

Boolos' Proof (history)

- ► G. BOOLOS, A New Proof of the Gödel Incompleteness Theorem, Notices of the American Mathematical Society 36:4 (1989) 388–390.
 - М. Кікисні, A Note on Boolos' Proof of the Incompleteness Theorem, *Mathematical Logic Quarterly* 40:4 (1994) 528–532.
 - D.K. Roy, The Shortest Definition of a Number in Peano Arithmetic, *Mathematical Logic Quarterly* 49:1 (2003) 83–86.
 - G. SERÉNY, Boolos-Style Proofs of Limitative Theorems *Mathematical Logic Quarterly* 50:2 (2004) 211–216.
 - М. Кікисні & Т. Киканаяні & H. Sакаі, On Proofs of the Incompleteness Theorems Based on Berry's Paradox by Vopěnka, Chaitin, and Boolos, *Mathematical Monthly* 58:45 (2012) 307–316.
 - C.C. LEARY, *A Friendly Introduction to Mathematical Logic*, Prentice Hall (1999, 1st ed.) Milne Library (2015, 2nd ed.)
 - S. HEDMAN, A First Course in Logic: an introduction to model theory, proof theory, computability, and complexity, Oxford Univ. Press (2004)

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 Nuiversity of Tabriz & IPM
 http://SaeedSalehi.ir/

 SAEED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Boolos' Proof (history)

- ► G. BOOLOS, A New Proof of the Gödel Incompleteness Theorem, Notices of the American Mathematical Society 36:4 (1989) 388–390.
 - М. Кікисні, A Note on Boolos' Proof of the Incompleteness Theorem, *Mathematical Logic Quarterly* 40:4 (1994) 528–532.
 - D.K. Roy, The Shortest Definition of a Number in Peano Arithmetic, *Mathematical Logic Quarterly* 49:1 (2003) 83–86.
 - G. SERÉNY, Boolos-Style Proofs of Limitative Theorems Mathematical Logic Quarterly 50:2 (2004) 211–216.
 - М. Кікисні & Т. Киканаяні В. Sакаі, On Proofs of the Incompleteness Theorems Based on Berry's Paradox by Vopěnka, Chaitin, and Boolos, Mathematical Monthly 58:45 (2012) 307–316.
 - C.C. LEARY, *A Friendly Introduction to Mathematical Logic*, Prentice Hall (1999, 1st ed.) Milne Library (2015, 2nd ed.)
 - S. HEDMAN, A First Course in Logic: an introduction to model theory, proof theory, computability, and complexity, Oxford Univ. Press (2004)

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SAEED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Boolos' Proof (history)

- ► G. BOOLOS, A New Proof of the Gödel Incompleteness Theorem, Notices of the American Mathematical Society 36:4 (1989) 388–390.
 - М. Кікисні, A Note on Boolos' Proof of the Incompleteness Theorem, *Mathematical Logic Quarterly* 40:4 (1994) 528–532.
 - D.K. Roy, The Shortest Definition of a Number in Peano Arithmetic, *Mathematical Logic Quarterly* 49:1 (2003) 83–86.
 - G. SERÉNY, Boolos-Style Proofs of Limitative Theorems Mathematical Logic Quarterly 50:2 (2004) 211–216.
 - М. Кікисні & Т. Киканаяні В. Sакаі, On Proofs of the Incompleteness Theorems Based on Berry's Paradox by Vopěnka, Chaitin, and Boolos, Mathematical Monthly 58:45 (2012) 307–316.
 - C.C. LEARY, *A Friendly Introduction to Mathematical Logic*, Prentice Hall (1999, 1st ed.) Milne Library (2015, 2nd ed.)
 - S. HEDMAN, A First Course in Logic: an introduction to model theory, proof theory, computability, and complexity, Oxford Univ. Press (2004).

SAEED SALEHI SWAMPLANDIA 2016 University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

Boolos' Proof

Proof.

Let Def-Len(y, z) be the formula which states that "there is a formula $\varphi(x)$ with the only free variable x and the length smaller than z such that $T \vdash \forall x [\varphi(x) \leftrightarrow x = \overline{y}]$ ". Let Berry(u, v) denote

SAEED SALEHI SWAMPLANDIA 2016 University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

Boolos' Proof

Proof.

Let Def-Len(y, z) be the formula which states that "there is a formula $\varphi(x)$ with the only free variable x and the length smaller than z such that $T \vdash \forall x [\varphi(x) \leftrightarrow x = \overline{y}]$ ". Let Berry(u, v) denote "u is the least number not definable by a formula with length less than v", i.e., \neg Def-Len $(u, v) \land \forall y < u$ Def-Len(y, v). If ℓ is the length

SAEED SALEHI SWAMPLANDIA 2016 University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

Boolos' Proof

Proof.

Let Def-Len(y, z) be the formula which states that "there is a formula $\varphi(x)$ with the only free variable x and the length smaller than z such that $T \vdash \forall x [\varphi(x) \leftrightarrow x = \overline{y}]$ ". Let Berry(u, v) denote "*u* is the least number not definable by a formula with length less than v", i.e., \neg Def-Len $(u, v) \land \forall y < u$ Def-Len(y, v). If ℓ is the length of Berry(u, v) let $Boolos(x) = Berry(x, 5\ell)$ and let b be the least number not definable by a formula with length $< 5\ell$. So, BOOLOS(b)

SAEED SALEHI SWAMPLANDIA 2016 University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

Boolos' Proof

Proof.

Let Def-Len(y, z) be the formula which states that "there is a formula $\varphi(x)$ with the only free variable x and the length smaller than z such that $T \vdash \forall x [\varphi(x) \leftrightarrow x = \overline{y}]$ ". Let Berry(u, v) denote "u is the least number not definable by a formula with length less than v", i.e., \neg Def-Len $(u, v) \land \forall y < u$ Def-Len(y, v). If ℓ is the length of Berry(u, v) let $Boolos(x) = Berry(x, 5\ell)$ and let b be the least number not definable by a formula with length $< 5\ell$. So, BOOLOS(b) IS A TRUE FORMULA; BUT IT IS UNPROVABLE IN T. Since, otherwise, if $T \vdash \text{Boolos}(b)$, then, since $\text{Berry}(\mathbf{u}, v) \land \text{Berry}(\mathbf{w}, v) \rightarrow \mathbf{u} = \mathbf{w}$ is provable in arithmetic (and in T), (*) $T \vdash \forall x [Boolos(x) \leftrightarrow x = \overline{\mathfrak{b}}]$.

SAEED SALEHI SWAMPLANDIA 2016 University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

Boolos' Proof

Proof.

Let Def-Len(y, z) be the formula which states that "there is a formula $\varphi(x)$ with the only free variable x and the length smaller than z such that $T \vdash \forall x [\varphi(x) \leftrightarrow x = \overline{y}]$ ". Let Berry(u, v) denote "u is the least number not definable by a formula with length less than v", i.e., \neg Def-Len $(u, v) \land \forall y < u$ Def-Len(y, v). If ℓ is the length of Berry(u, v) let $Boolos(x) = Berry(x, 5\ell)$ and let b be the least number not definable by a formula with length $< 5\ell$. So, BOOLOS(b) IS A TRUE FORMULA; BUT IT IS UNPROVABLE IN T. Since, otherwise, if $T \vdash \text{Boolos}(b)$, then, since $\text{Berry}(\mathbf{u}, v) \land \text{Berry}(\mathbf{w}, v) \rightarrow \mathbf{u} = \mathbf{w}$ is provable in arithmetic (and in T), (*) $T \vdash \forall x [Boolos(x) \leftrightarrow x = b]$. Now on the one hand we have (i) $T \vdash \neg \text{Def-Len}(\mathbf{b}, 5\boldsymbol{\ell})$ and on the other hand, since Def-Len($\overline{\mathbf{b}}, \overline{5\ell}$) is a true (Σ_1 -)formula by (*), T can prove it: (ii) $T \vdash \text{Def-Len}(\overline{\mathbf{b}}, \overline{5\ell})$; contradiction !

SAEED SALEHI SWAMPLANDIA 2016 University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

Boolos' Proof

Proof.

Let Def-Len(y, z) be the formula which states that "there is a formula $\varphi(x)$ with the only free variable x and the length smaller than z such that $T \vdash \forall x [\varphi(x) \leftrightarrow x = \overline{y}]$ ". Let Berry(u, v) denote "u is the least number not definable by a formula with length less than v", i.e., \neg Def-Len $(u, v) \land \forall y < u$ Def-Len(y, v). If ℓ is the length of Berry(u, v) let $Boolos(x) = Berry(x, 5\ell)$ and let b be the least number not definable by a formula with length $< 5\ell$. So, BOOLOS(b) IS A TRUE FORMULA; BUT IT IS UNPROVABLE IN T. Since, otherwise, if $T \vdash \text{Boolos}(b)$, then, since $\text{Berry}(\mathbf{u}, v) \land \text{Berry}(\mathbf{w}, v) \rightarrow \mathbf{u} = \mathbf{w}$ is provable in arithmetic (and in T), (*) $T \vdash \forall x [Boolos(x) \leftrightarrow x = \overline{\mathfrak{b}}]$. Now on the one hand we have (i) $T \vdash \neg \text{Def-Len}(\mathbf{b}, 5\boldsymbol{\ell})$ and on the other hand, since Def-Len($\overline{\mathbf{b}}, \overline{5\ell}$) is a true (Σ_1 -)formula by (*), T can prove it: (ii) $T \vdash \text{Def-Len}(\overline{\mathbf{b}}, \overline{5\ell})$; contradiction !

SAEED SALEHI SWAMPLANDIA 2016 University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

CHAITIN'S Proof

M.D. DAVIS, *What is a Computation?*, in: Mathematics Today, twelve informal essays (ed. L.A. Steen, Springer 1978) p. 265; and in: Randomness and Complexity, from Leibniz to Chaitin (ed. C.S. Calude, WS 2007) p. 110.

 ... mathematical theory of random strings ... was developed around 1965 by Gregory Chaitin, who was at the time an undergraduate at City College of New York (and independently by the world famous A.N. Kolmogorov, a member of the Academy of Sciences of the U.S.S.R.). Chaitin later showed how his ideas could be used to obtain a dramatic extension of Gödel's incompleteness theorem ...

Definition (Kolmogorov Complexity) $\mathscr{K}(n) = \min \{i \mid \varphi_i(0) = n\}.$

Theorem (The Main (non-Constructive) Lemma)

For any m there is some ℓ such that $\mathscr{K}(\ell) > m$, and there is no computable function f such that $\forall m : \mathscr{K}(f(m)) > m$.

SAEED SALEHI SWAMPLANDIA 2016 University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

CHAITIN'S Proof

M.D. DAVIS, *What is a Computation?*, in: Mathematics Today, twelve informal essays (ed. L.A. Steen, Springer 1978) p. 265; and in: Randomness and Complexity, from Leibniz to Chaitin (ed. C.S. Calude, WS 2007) p. 110.

... mathematical theory of random strings ... was developed around 1965 by Gregory Chaitin, who was at the time an undergraduate at City College of New York (and independently by the world famous A.N. Kolmogorov, a member of the Academy of Sciences of the U.S.S.R.). Chaitin later showed how his ideas could be used to obtain a dramatic extension of Gödel's incompleteness theorem ...

Definition (Kolmogorov Complexity)

 $\mathcal{K}(n) = \min \ \{ i \mid \varphi_i(0) = n \}.$

Theorem (The Main (non-Constructive) Lemma)

For any m there is some ℓ such that $\mathscr{K}(\ell) > m$, and there is no computable function f such that $\forall m : \mathscr{K}(f(m)) > m$.

SAEED SALEHI SWAMPLANDIA 2016 University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

CHAITIN'S Proof

M.D. DAVIS, *What is a Computation?*, in: Mathematics Today, twelve informal essays (ed. L.A. Steen, Springer 1978) p. 265; and in: Randomness and Complexity, from Leibniz to Chaitin (ed. C.S. Calude, WS 2007) p. 110.

 ... mathematical theory of random strings ... was developed around 1965 by Gregory Chaitin, who was at the time an undergraduate at City College of New York (and independently by the world famous A.N. Kolmogorov, a member of the Academy of Sciences of the U.S.S.R.). Chaitin later showed how his ideas could be used to obtain a dramatic extension of Gödel's incompleteness theorem ...

Definition (Kolmogorov Complexity) $\mathcal{K}(n) = \min \{i \mid \varphi_i(0) = n\}.$

Theorem (The Main (non-Constructive) Lemma)

For any m there is some ℓ such that $\mathscr{K}(\ell) > m$, and there is no computable function f such that $\forall m : \mathscr{K}(f(m)) > m$.

SAEED SALEHI SWAMPLANDIA 2016 University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

CHAITIN'S Proof

M.D. DAVIS, *What is a Computation?*, in: Mathematics Today, twelve informal essays (ed. L.A. Steen, Springer 1978) p. 265; and in: Randomness and Complexity, from Leibniz to Chaitin (ed. C.S. Calude, WS 2007) p. 110.

 ... mathematical theory of random strings ... was developed around 1965 by Gregory Chaitin, who was at the time an undergraduate at City College of New York (and independently by the world famous A.N. Kolmogorov, a member of the Academy of Sciences of the U.S.S.R.). Chaitin later showed how his ideas could be used to obtain a dramatic extension of Gödel's incompleteness theorem ...

Definition (Kolmogorov Complexity) $\mathcal{K}(n) = \min \{i \mid \varphi_i(0) = n\}.$

Theorem (The Main (non-Constructive) Lemma)

For any m there is some ℓ such that $\mathscr{K}(\ell) > m$, and there is no computable function f such that $\forall m : \mathscr{K}(f(m)) > m$.

∻

SAEED SALEHI SWAMPLANDIA 2016 University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

CHAITIN'S Proof

Theorem (Chaitin's Theorem)

For any sound and semi-decidable theory there are w, m such that $\mathscr{K}(w) > m$ but the theory cannot prove that.

Non-Constructive Proof.

For any such T there is some m such that $T \not\vdash \mathscr{K}(\omega) > m$ for any ω . Since, otherwise if for any m there were some ω such that $T \vdash \mathscr{K}(\omega) > m$ then, for a given m, by a proof-search algorithm one could constructively find some ω with $(T \vdash)\mathscr{K}(\omega) > m$ contradicting the non-constructivity of the Main Lemma. For a fixed such an m, by the Main Lemma, there is some w with $\mathscr{K}(w) > m$; and of course $T \not\vdash \mathscr{K}(w) > m$.

SAEED SALEHI SWAMPLANDIA 2016 University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

CHAITIN'S Proof

Theorem (Chaitin's Theorem)

For any sound and semi-decidable theory there are w, m such that $\mathscr{K}(w) > m$ but the theory cannot prove that.

Non-Constructive Proof.

For any such T there is some m such that $T \not\vdash \mathscr{K}(\omega) > m$ for any ω . Since, otherwise if for any m there were some ω such that $T \vdash \mathscr{K}(\omega) > m$ then, for a given m, by a proof-search algorithm one could constructively find some ω with $(T \vdash)\mathscr{K}(\omega) > m$ contradicting the non-constructivity of the Main Lemma. For a fixed such an m, by the Main Lemma, there is some w with $\mathscr{K}(w) > m$; and of course $T \not\vdash \mathscr{K}(w) > m$.

SAEED SALEHI SWAMPLANDIA 2016 University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

CHAITIN'S Proof

Theorem (Chaitin's Theorem)

For any sound and semi-decidable theory there are w, m such that $\mathscr{K}(w) > m$ but the theory cannot prove that.

Non-Constructive Proof.

For any such T there is some m such that $T \not\vdash \mathscr{K}(\omega) > m$ for any ω . Since, otherwise if for any m there were some ω such that $T \vdash \mathscr{K}(\omega) > m$ then, for a given m, by a proof-search algorithm one could constructively find some ω with $(T \vdash)\mathscr{K}(\omega) > m$ contradicting the non-constructivity of the Main Lemma. For a fixed such an m, by the Main Lemma, there is some w with

 $\mathscr{K}(w) > m$; and of course $T \not\vdash \mathscr{K}(w) > m$.

SAEED SALEHI SWAMPLANDIA 2016 University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

CHAITIN'S Proof

Theorem (Chaitin's Theorem)

For any sound and semi-decidable theory there are w, m such that $\mathscr{K}(w) > m$ but the theory cannot prove that.

Non-Constructive Proof.

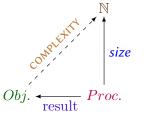
For any such T there is some m such that $T \not\vdash \mathscr{K}(\omega) > m$ for any ω . Since, otherwise if for any m there were some ω such that $T \vdash \mathscr{K}(\omega) > m$ then, for a given m, by a proof-search algorithm one could constructively find some ω with $(T \vdash)\mathscr{K}(\omega) > m$ contradicting the non-constructivity of the Main Lemma. For a fixed such an m, by the Main Lemma, there is some w with $\mathscr{K}(w) > m$; and of course $T \not\vdash \mathscr{K}(w) > m$.

SAFED SALEHI

SWAMPLANDIA 2016

University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

BOOLOS' Proof (again)



COMPLEXITY(*object*) = min *size*[result⁻¹(*object*)]

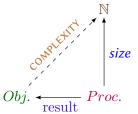
Fix an Arithmetical Theory T. size(formula) = length [number of symbols]. $|size^{-1}(n)| < \infty$ result(φ)=the unique *n* with $T \vdash \forall x [\varphi(x) \leftrightarrow x = \bar{n}]$.

Saeed Salehi

SWAMPLANDIA 2016

University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

Boolos' Proof (again)



COMPLEXITY(*object*) = min *size*[result⁻¹(*object*)]

Example (Logical)

Saeed Salehi

SWAMPLANDIA 2016

University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

Boolos' Proof (again)

 $e \quad \text{complexity}(object) = \min \text{size}[\text{result}^{-1}(object)]$

Example (Logical)

Saeed Salehi

SWAMPLANDIA 2016

University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

Boolos' Proof (again)

$$Obj. \quad \underbrace{\mathsf{result}}_{\text{result}} \operatorname{Proc.}^{\mathbb{N}}$$

COMPLEXITY(*object*) = min *size*[result⁻¹(*object*)]

$\begin{array}{l} \mbox{Example (Logical)} \\ Objects = \mathbb{N}. & \mbox{Fix an Arithmetical Theory T.} \\ & (sufficiently strong-can prove all the true Σ_1-sentences) \\ Processes = formulas & variables: $x, x', x'', x''', x''', \cdots \\ & \mathcal{L}_{anguage} = \mathcal{F}_{unctions} \cup \mathcal{R}_{elations} \cup \{\neg, \rightarrow, \forall, (.), x,'\} \\ size(formula) = length [number of symbols]. & |size^{-1}(n)| < \infty \\ result(\varphi) = the unique n with $T \vdash \forall x[\varphi(x) \leftrightarrow x = \bar{n}]$. \\ \end{array}$

Saeed Salehi

SWAMPLANDIA 2016

University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

BOOLOS' Proof (again)

COMPLEXITY(*object*) = min *size*[result⁻¹(*object*)] size - Proc. Obi. resultExample (Logical) $Objects = \mathbb{N}.$ Fix an Arithmetical Theory T. (sufficiently strong—can prove all the true Σ_1 -sentences) Processes = formulas

Saeed Salehi

SWAMPLANDIA 2016

University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

Boolos' Proof (again)

COMPLEXITY(*object*) = min *size*[result⁻¹(*object*)] size - Proc. Obi. resul Example (Logical) $Objects = \mathbb{N}.$ Fix an Arithmetical Theory T. (sufficiently strong—can prove all the true Σ_1 -sentences) Processes = formulasvariables: $x, x', x'', x''', x'''', \cdots$ $\mathcal{L}_{\text{anguage}} = \mathcal{F}_{\text{unctions}} \cup \mathcal{R}_{elations} \cup \{\neg, \rightarrow, \forall, (,), x, '\}$

Saeed Salehi

SWAMPLANDIA 2016

University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

BOOLOS' Proof (again)

COMPLEXITY(*object*) = min *size*[result⁻¹(*object*)] size - Proc. Obi. resul Example (Logical) $Objects = \mathbb{N}.$ Fix an Arithmetical Theory T. (sufficiently strong—can prove all the true Σ_1 -sentences) Processes = formulasvariables: $x, x', x'', x''', x'''', \cdots$ $\mathcal{L}_{\text{anguage}} = \mathcal{F}_{\text{unctions}} \cup \mathcal{R}_{elations} \cup \{\neg, \rightarrow, \forall, (,), x, '\}$ *size*(formula) = length [number of symbols]. $|size^{-1}(n)| < \infty$

Saeed Salehi

SWAMPLANDIA 2016

University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

Boolos' Proof (again)

COMPLEXITY(*object*) = min *size*[result⁻¹(*object*)] size - Proc. Obi. resul Example (Logical) $Objects = \mathbb{N}.$ Fix an Arithmetical Theory T. (sufficiently strong—can prove all the true Σ_1 -sentences) Processes = formulasvariables: $x, x', x'', x''', x'''', \cdots$ $\mathcal{L}_{\text{anguage}} = \mathcal{F}_{\text{unctions}} \cup \mathcal{R}_{elations} \cup \{\neg, \rightarrow, \forall, (,), x, '\}$ *size*(formula) = length [number of symbols]. $|size^{-1}(n)| < \infty$

Saeed Salehi

SWAMPLANDIA 2016

University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

Boolos' Proof (again)

COMPLEXITY(*object*) = min *size*[result⁻¹(*object*)] size - Proc. Obi. resul Example (Logical) $Objects = \mathbb{N}.$ Fix an Arithmetical Theory T. (sufficiently strong—can prove all the true Σ_1 -sentences) Processes = formulasvariables: $x, x', x'', x''', x'''', \cdots$ $\mathcal{L}_{\text{anguage}} = \mathcal{F}_{\text{unctions}} \cup \mathcal{R}_{elations} \cup \{\neg, \rightarrow, \forall, (,), x, '\}$ *size*(formula) = length [number of symbols]. $|size^{-1}(n)| < \infty$ result(φ)=the unique *n* with $T \vdash \forall x [\varphi(x) \leftrightarrow x = \bar{n}]$.

Saeed Salehi

SWAMPLANDIA 2016

University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

Boolos' Proof (again)

 $COMPLEXITY(object) = \min size[result^{-1}(object)]$ size -Proc.Obj. resul Example (Logical) $Objects = \mathbb{N}.$ Fix an Arithmetical Theory T. (sufficiently strong—can prove all the true Σ_1 -sentences) Processes = formulasvariables: $x, x', x'', x''', x'''', \cdots$ $\mathcal{L}_{\text{anguage}} = \mathcal{F}_{\text{unctions}} \cup \mathcal{R}_{elations} \cup \{\neg, \rightarrow, \forall, (,), x, '\}$ *size*(formula) = length [number of symbols]. $|size^{-1}(n)| < \infty$ result(φ)=the unique *n* with $T \vdash \forall x [\varphi(x) \leftrightarrow x = \bar{n}]$.

SAEED SALEHI SWAMPLANDIA 2016 University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016

Boolos' Proof (again)

Definition (Complexity of Definability (à la Boolos))

 $\mathscr{D}_T(n) = \min \{ \ell \mid \exists \varphi : \|\varphi\| = \ell \& T \vdash \forall x [\varphi(x) \leftrightarrow x = \bar{n}] \}.$

Lemma (The Main Lemma on the Boolos Complexity) For any m there is some \hbar such that $\mathscr{D}_T(\hbar) > m$.

Theorem (Non-Constructivity of the Main Lemma)

There is no computable function f such that $\forall m : \mathscr{D}_T(f(m)) > m$.

Proof.

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SAEED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Boolos' Proof (again)

Definition (Complexity of Definability (à la BOOLOS)) $\mathscr{D}_T(n) = \min \{ \ell \mid \exists \varphi : ||\varphi|| = \ell \& T \vdash \forall x [\varphi(x) \leftrightarrow x = \overline{n}] \}.$

Lemma (The Main Lemma on the Boolos Complexity)

For any m there is some \hbar such that $\mathscr{D}_T(\hbar) > m$.

Theorem (Non-Constructivity of the Main Lemma)

There is no computable function f such that $\forall m : \mathscr{D}_T(f(m)) > m$.

Proof.

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 Nuiversity of Tabriz & IPM
 http://SaeedSalehi.ir/

 SAEED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Boolos' Proof (again)

Definition (Complexity of Definability (à la BOOLOS)) $\mathscr{D}_T(n) = \min \{ \ell \mid \exists \varphi : ||\varphi|| = \ell \& T \vdash \forall x [\varphi(x) \leftrightarrow x = \bar{n}] \}.$

Lemma (The Main Lemma on the Boolos Complexity) For any m there is some \hbar such that $\mathscr{D}_T(\hbar) > m$.

Theorem (Non-Constructivity of the Main Lemma)

There is no computable function f such that $\forall m : \mathscr{D}_T(f(m)) > m$.

Proof.

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 Nuiversity of Tabriz & IPM
 http://SaeedSalehi.ir/

 SAEED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Boolos' Proof (again)

Definition (Complexity of Definability (à la Boolos))

 $\mathscr{D}_T(n) = \min \{ \ell \mid \exists \varphi : \|\varphi\| = \ell \& T \vdash \forall x [\varphi(x) \leftrightarrow x = \bar{n}] \}.$

Lemma (The Main Lemma on the Boolos Complexity) For any m there is some \hbar such that $\mathscr{D}_T(\hbar) > m$.

Theorem (Non-Constructivity of the Main Lemma)

There is no computable function f such that $\forall m : \mathscr{D}_T(f(m)) > m$.

Proof.

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 Nuiversity of Tabriz & IPM
 http://SaeedSalehi.ir/

 SAEED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Boolos' Proof (again)

Definition (Complexity of Definability (à la Boolos))

 $\mathscr{D}_T(n) = \min \{ \ell \mid \exists \varphi : ||\varphi|| = \ell \& T \vdash \forall x [\varphi(x) \leftrightarrow x = \bar{n}] \}.$

Lemma (The Main Lemma on the Boolos Complexity) For any m there is some \hbar such that $\mathscr{D}_T(\hbar) > m$.

Theorem (Non-Constructivity of the Main Lemma)

There is no computable function f such that $\forall m : \mathscr{D}_T(f(m)) > m$.

Proof.

Indeed there is no such (T-)*representable* function.

• • •

GÖDEL'S INCOMPLETENESS THEOREM: CONSTRUCTIVITY OF Its Various Proofs SAEED SALEHI University of Tabriz & IPM

SWAMPLANDIA 2016

Tutorial III: Constructivity of Proofs for Gödel's Theorem

http://SaeedSalehi.ir/ 31 May 2016

Boolos' Proof (again)

Theorem (Non-Constructivity)

There is no *T*-representable function f with $\forall m : \mathscr{D}_T(f(m)) > m$.

Proof.

If f is representable by F(u, v), i.e., $T \vdash \forall x [F(\bar{m}, x) \leftrightarrow x = \overline{f(m)}]$, for all $m \in \mathbb{N}$, then by the Diagonal Lemma for some formula $\mathbf{G}(x)$ we have $T \vdash \mathbf{G}(x) \leftrightarrow F(\|\mathbf{G}(x)\|, x)$. Now, for $\ell = \|\mathbf{G}\|$, we have $T \vdash \forall x [\mathbf{G}(x) \leftrightarrow F(\overline{\ell}, x) \leftrightarrow x = \overline{f(\ell)}]$, whence $\mathscr{D}_T(f(\ell)) \leq \ell$!

Corollary (BOOLOS - Generalized)

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 Http://SaeedSalehi.ir/

 SAEED SALEHI
 University of Tabriz & IPM

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem

Boolos' Proof (again)

Theorem (Non-Constructivity)

There is no *T*-representable function f with $\forall m : \mathscr{D}_T(f(m)) > m$.

Proof.

If *f* is representable by F(u, v), i.e., $T \vdash \forall x [F(\bar{m}, x) \leftrightarrow x = \overline{f(m)}]$, for all $m \in \mathbb{N}$, then by the Diagonal Lemma for some formula $\mathbf{G}(x)$ we have $T \vdash \mathbf{G}(x) \leftrightarrow F(\|\mathbf{G}(x)\|, x)$. Now, for $\ell = \|\mathbf{G}\|$, we have $T \vdash \forall x [\mathbf{G}(x) \leftrightarrow F(\overline{\ell}, x) \leftrightarrow x = \overline{f(\ell)}]$, whence $\mathscr{D}_T(f(\ell)) \leq \ell$!

Corollary (BOOLOS - Generalized)

 GödeL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs

 SAEED SALEHI
 University of Tabriz & IPM

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem

 31 May 2016

Boolos' Proof (again)

Theorem (Non-Constructivity)

There is no *T*-representable function f with $\forall m : \mathscr{D}_T(f(m)) > m$.

Proof.

If *f* is representable by F(u, v), i.e., $T \vdash \forall x [F(\bar{m}, x) \leftrightarrow x = \overline{f(m)}]$, for all $m \in \mathbb{N}$, then by the Diagonal Lemma for some formula $\mathbf{G}(x)$ we have $T \vdash \mathbf{G}(x) \leftrightarrow F(\|\mathbf{G}(x)\|, x)$. Now, for $\ell = \|\mathbf{G}\|$, we have $T \vdash \forall x [\mathbf{G}(x) \leftrightarrow F(\bar{\ell}, x) \leftrightarrow x = f(\ell)]$, whence $\mathscr{D}_T(f(\ell)) \leq \ell$!

Corollary (BOOLOS - Generalized)

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 Http://SaeedSalehi.ir/

 SAEED SALEHI
 University of Tabriz & IPM

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem

Boolos' Proof (again)

Theorem (Non-Constructivity)

There is no *T*-representable function f with $\forall m : \mathscr{D}_T(f(m)) > m$.

Proof.

If *f* is representable by F(u, v), i.e., $T \vdash \forall x [F(\bar{m}, x) \leftrightarrow x = \overline{f(m)}]$, for all $m \in \mathbb{N}$, then by the Diagonal Lemma for some formula $\mathbf{G}(x)$ we have $T \vdash \mathbf{G}(x) \leftrightarrow F(\|\mathbf{G}(x)\|, x)$. Now, for $\ell = \|\mathbf{G}\|$, we have $T \vdash \forall x [\mathbf{G}(x) \leftrightarrow F(\overline{\ell}, x) \leftrightarrow x = \overline{f(\ell)}]$, whence $\mathscr{D}_T(f(\ell)) \leq \ell$!

Corollary (BOOLOS – Generalized)

GÖDEL'S INCOMPLETENESS THEOREM: CONStructivity of Its Various Proofs SAFED SALEHI University of Tabriz & IPM http://SaeedSalehi.ir/ SWAMPLANDIA 2016 Tutorial III: Constructivity of Proofs for Gödel's Theorem 31 May 2016

BOOLOS' Proof (again)

Theorem (Non-Constructivity)

There is no T-representable function f with $\forall m : \mathscr{D}_T(f(m)) > m$.

Proof.

If f is representable by F(u, v), i.e., $T \vdash \forall x [F(\bar{m}, x) \leftrightarrow x = f(m)]$, for all $m \in \mathbb{N}$, then by the Diagonal Lemma for some formula $\mathbf{G}(x)$ we have $T \vdash \mathbf{G}(x) \leftrightarrow F(\|\mathbf{G}(x)\|, x)$. Now, for $\ell = \|\mathbf{G}\|$, we have $T \vdash \forall x [\mathbf{G}(x) \leftrightarrow F(\overline{\ell}, x) \leftrightarrow x = \overline{f(\ell)}], \text{ whence } \mathscr{D}_T(f(\ell)) \leq \ell!$

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 Http://SaeedSalehi.ir/

 SAEED SALEHI
 University of Tabriz & IPM

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem

Boolos' Proof (again)

Theorem (Non-Constructivity)

There is no *T*-representable function f with $\forall m : \mathscr{D}_T(f(m)) > m$.

Proof.

If f is representable by F(u, v), i.e., $T \vdash \forall x [F(\bar{m}, x) \leftrightarrow x = \overline{f(m)}]$, for all $m \in \mathbb{N}$, then by the Diagonal Lemma for some formula $\mathbf{G}(x)$ we have $T \vdash \mathbf{G}(x) \leftrightarrow F(\|\mathbf{G}(x)\|, x)$. Now, for $\ell = \|\mathbf{G}\|$, we have $T \vdash \forall x [\mathbf{G}(x) \leftrightarrow F(\overline{\ell}, x) \leftrightarrow x = \overline{f(\ell)}]$, whence $\mathscr{D}_T(f(\ell)) \leq \ell$!

Corollary (BOOLOS – Generalized)

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 Iniversity of Tabriz & IPM
 http://SaeedSalehi.ir/

 SNED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

A Letter from GEORGE BOOLOS, Notices of the AMS 36 (1989) p. 676.

Several readers of my "New Proof of the Gödel Incompleteness Theorem," (*Notices*, April 1989, pages 388–390) have commented on its shortness, apparently supposing that the use it makes of Berry's paradox is responsible for that brevity. It would thus seem appropriate to remark that once syntax is arithmetized, an even briefer proof is at hand, essentially the one given by Gödel himself in the introduction to his famous "On Formally Undecidable Propositions . . .";

Say the *m* applies to *n* if F([n]) is the output of *M*, where F(x) is the formula with Gödel number *m*. Let A(x, y) express "applies to," and let *n* be the Gödel number of -A(x, x). If *n* applies to *n*, the false statement -A([n], [n]) is the output of *M*, impossible; thus *n* does not apply to *n* and -A([n], [n]) is a truth not in the output of *M*.

What is concealed in this argument is the large amount of work needed to construct a suitable formula A(x, y); proving the existence of the key formula C(x, y) in the "New Proof" via Berry's paradox requires at least as much effort. What strikes the author as of interest in the proof via Berry's paradox is not its brevity but that it provides a different sort of reason for the incompleteness of algorithms.

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 Iniversity of Tabriz & IPM
 http://SaeedSalehi.ir/

 SNED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

A Letter from GEORGE BOOLOS, Notices of the AMS 36 (1989) p. 676.

Several readers of my "New Proof of the Gödel Incompleteness Theorem," (*Notices*, April 1989, pages 388–390) have commented on its shortness, apparently supposing that the use it makes of Berry's paradox is responsible for that brevity. It would thus seem appropriate to remark that once syntax is arithmetized, an even briefer proof is at hand, essentially the one given by Gödel himself in the introduction to his famous "On Formally Undecidable Propositions . . .";

Say the *m* applies to *n* if F([n]) is the output of *M*, where F(x) is the formula with Gödel number *m*. Let A(x, y) express "applies to," and let *n* be the Gödel number of -A(x, x). If *n* applies to *n*, the false statement -A([n], [n]) is the output of *M*, impossible; thus *n* does not apply to *n* and -A([n], [n]) is a truth not in the output of *M*.

What is concealed in this argument is the large amount of work needed to construct a suitable formula A(x, y); proving the existence of the key formula C(x, y) in the "New Proof" via Berry's paradox requires at least as much effort. What strikes the author as of interest in the proof via Berry's paradox is not its brevity but that it provides a different sort of reason for the incompleteness of algorithms.

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 Iniversity of Tabriz & IPM
 http://SaeedSalehi.ir/

 SNED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

A Letter from GEORGE BOOLOS, Notices of the AMS 36 (1989) p. 676.

Several readers of my "New Proof of the Gödel Incompleteness Theorem," (*Notices*, April 1989, pages 388–390) have commented on its shortness, apparently supposing that the use it makes of Berry's paradox is responsible for that brevity. It would thus seem appropriate to remark that once syntax is arithmetized, an even briefer proof is at hand, essentially the one given by Gödel himself in the introduction to his famous "On Formally Undecidable Propositions . . .";

Say the *m* applies to *n* if F([n]) is the output of *M*, where F(x) is the formula with Gödel number *m*. Let A(x, y) express "applies to," and let *n* be the Gödel number of -A(x, x). If *n* applies to *n*, the false statement -A([n], [n]) is the output of *M*, impossible; thus *n* does not apply to *n* and -A([n], [n]) is a truth not in the output of *M*.

What is concealed in this argument is the large amount of work needed to construct a suitable formula A(x, y); proving the existence of the key formula C(x, y) in the "New Proof" via Berry's paradox requires at least as much effort. What strikes the author as of interest in the proof via Berry's paradox is not its brevity but that it provides a different sort of reason for the incompleteness of algorithms.

GÖDEL'S INCOMPLETENESS THEOREM: CONStructivity of Its Various Proofs SAFED SALEHI University of Tabriz & IPM http://SaeedSalehi.ir/ SWAMPLANDIA 2016 Tutorial III: Constructivity of Proofs for Gödel's Theorem 31 May 2016

Π_1 -Incompleteness Theorems

Theorem (Proofs of the Uniform Π_1 -Incompleteness Theorems) Every uniform Π_1 -incompleteness is of the form

SemiDec. $\{n \in \mathbb{N} \mid T \vdash "n \notin \mathscr{A}"\} \subsetneq \{n \in \mathbb{N} \mid \mathbb{N} \models "n \notin \mathscr{A}"\} = \overline{\mathscr{A}}$ for some semi-decidable and un-decidable set \mathscr{A} ($\overline{\mathscr{A}} \neq SemiDec$.).

Π_1 -Incompleteness Theorems

Theorem (Proofs of the Uniform Π_1 -Incompleteness Theorems) Every uniform Π_1 -incompleteness is of the form

SemiDec. $\{n \in \mathbb{N} \mid T \vdash "n \notin \mathscr{A}"\} \subsetneq \{n \in \mathbb{N} \mid \mathbb{N} \models "n \notin \mathscr{A}"\} = \overline{\mathscr{A}}$

for some semi-decidable and un-decidable set \mathscr{A} ($\overline{\mathscr{A}} \neq$ SemiDec.).

Example (Chaitin's Proof with $\mathbb{C} = \{ \langle a, b \rangle \mid \mathscr{K}(a) \leq b \} \}$

By $\langle a, b \rangle \in \mathbb{C} \iff \bigvee_{i=0}^{b} \varphi_i(0) \downarrow = a$, the set \mathbb{C} is semi-decidable, but cannot be decidable since otherwise the function \mathscr{K} would be computable by $\mathscr{K}(x) = \min\{y \mid \langle x, y \rangle \in \mathbb{C}\} - 1$.

Example (BOOLOS' Proof with $\mathfrak{B} = \{ \langle a, b \rangle \mid \mathscr{D}_T(a) \leq b \}$)

Similarly, the function \mathscr{D}_T is uncomputable and the set \mathfrak{B} is semi-decidable and undecidable.

Π_1 -Incompleteness Theorems

Theorem (Proofs of the Uniform Π_1 -Incompleteness Theorems) Every uniform Π_1 -incompleteness is of the form

SemiDec. $\{n \in \mathbb{N} \mid T \vdash "n \notin \mathscr{A}"\} \subsetneq \{n \in \mathbb{N} \mid \mathbb{N} \models "n \notin \mathscr{A}"\} = \overline{\mathscr{A}}$

for some semi-decidable and un-decidable set \mathscr{A} ($\overline{\mathscr{A}} \neq$ SemiDec.).

Example (Chaitin's Proof with $\mathbb{C} = \{ \langle a, b \rangle \mid \mathscr{K}(a) \leq b \} \}$

By $\langle a, b \rangle \in \mathbb{C} \iff \bigvee_{i=0}^{b} \varphi_i(0) \downarrow = a$, the set \mathbb{C} is semi-decidable, but cannot be decidable since otherwise the function \mathscr{K} would be computable by $\mathscr{K}(x) = \min\{y \mid \langle x, y \rangle \in \mathbb{C}\} - 1$.

Example (BOOLOS' Proof with $\mathfrak{B} = \{ \langle a, b \rangle \mid \mathscr{D}_T(a) \leq b \})$

Similarly, the function \mathscr{D}_T is uncomputable and the set \mathfrak{B} is semi-decidable and undecidable.

 GödeL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 Nutrivity of Tabriz & IPM
 http://SaeedSalehi.ir/

 SAEED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Non-Semi-Decidable Sets

The First Example $\overline{K} = \{ n \in \mathbb{N} \mid \boldsymbol{\varphi}_n(n) \uparrow \}$ Came by Diagonalizing Out.

S.C. KLEENE, Origins of Recursive Function Theory, Annals of the History of Computing 3:1 (1981) 52–67.

> When Church proposed this thesis, I sat down to disprove it by diagonalizing out of the class of the λ -definable functions. But, quickly realizing that the diagonalization cannot be done effectively, I became overnight a supporter of the thesis.

Let $\mathscr{W}_n = \{x \in \mathbb{N} \mid \varphi_n(x) \downarrow\}$ be the n^{th} semi-decidable set. Every non-semidecidable set A should be different from every \mathscr{W}_n ; there must be a function f such that $f(n) \in A \triangle \mathscr{W}_n$ for every $n \in \mathbb{N}$.
 GödeL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SNEAD SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Non-Semi-Decidable Sets

The First Example $\overline{K} = \{n \in \mathbb{N} \mid \varphi_n(n) \uparrow\}$ Came by Diagonalizing Out.

S.C. KLEENE, Origins of Recursive Function Theory, Annals of the History of Computing 3:1 (1981) 52–67.

> When Church proposed this thesis, I sat down to disprove it by diagonalizing out of the class of the λ -definable functions. But, quickly realizing that the diagonalization cannot be done effectively, I became overnight a supporter of the thesis.

Let $\mathscr{W}_n = \{x \in \mathbb{N} \mid \varphi_n(x) \downarrow\}$ be the n^{th} semi-decidable set. Every non-semidecidable set A should be different from every \mathscr{W}_n ; there must be a function f such that $f(n) \in A \triangle \mathscr{W}_n$ for every $n \in \mathbb{N}$.

The First Example $\overline{K} = \{n \in \mathbb{N} \mid \varphi_n(n) \uparrow\}$ Came by Diagonalizing Out.

S.C. KLEENE, Origins of Recursive Function Theory, *Annals of the History of Computing* 3:1 (1981) 52–67.

> When Church proposed this thesis, I sat down to disprove it by diagonalizing out of the class of the λ -definable functions. But, quickly realizing that the diagonalization cannot be done effectively, I became overnight a supporter of the thesis.

Let $\mathscr{W}_n = \{x \in \mathbb{N} \mid \varphi_n(x) \downarrow\}$ be the n^{th} semi-decidable set. Every non-semidecidable set A should be different from every \mathscr{W}_n ; there must be a function f such that $f(n) \in A \triangle \mathscr{W}_n$ for every $n \in \mathbb{N}$.

The First Example $\overline{K} = \{n \in \mathbb{N} \mid \varphi_n(n) \uparrow\}$ Came by Diagonalizing Out.

S.C. KLEENE, Origins of Recursive Function Theory, *Annals of the History of Computing* 3:1 (1981) 52–67.

> When Church proposed this thesis, I sat down to disprove it by diagonalizing out of the class of the λ -definable functions. But, quickly realizing that the diagonalization cannot be done effectively, I became overnight a supporter of the thesis.

Let $\mathscr{W}_n = \{x \in \mathbb{N} \mid \varphi_n(x) \downarrow\}$ be the n^{th} semi-decidable set. Every non-semidecidable set A should be different from every \mathscr{W}_n ; there must be a function f such that $f(n) \in A \bigtriangleup \mathscr{W}_n$ for every $n \in \mathbb{N}$.

The First Example $\overline{K} = \{n \in \mathbb{N} \mid \varphi_n(n) \uparrow\}$ Came by Diagonalizing Out.

S.C. KLEENE, Origins of Recursive Function Theory, *Annals of the History of Computing* 3:1 (1981) 52–67.

> When Church proposed this thesis, I sat down to disprove it by diagonalizing out of the class of the λ -definable functions. But, quickly realizing that the diagonalization cannot be done effectively, I became overnight a supporter of the thesis.

Let $\mathscr{W}_n = \{x \in \mathbb{N} \mid \varphi_n(x) \downarrow\}$ be the n^{th} semi-decidable set. Every non-semidecidable set A should be different from every \mathscr{W}_n ; there must be a function f such that $f(n) \in A \bigtriangleup \mathscr{W}_n$ for every $n \in \mathbb{N}$.

The First Example $\overline{K} = \{n \in \mathbb{N} \mid \varphi_n(n) \uparrow\}$ Came by Diagonalizing Out.

S.C. KLEENE, Origins of Recursive Function Theory, *Annals of the History of Computing* 3:1 (1981) 52–67.

> When Church proposed this thesis, I sat down to disprove it by diagonalizing out of the class of the λ -definable functions. But, quickly realizing that the diagonalization cannot be done effectively, I became overnight a supporter of the thesis.

Let $\mathscr{W}_n = \{x \in \mathbb{N} \mid \varphi_n(x) \downarrow\}$ be the n^{th} semi-decidable set. Every non-semidecidable set A should be different from every \mathscr{W}_n ; there must be a function f such that $f(n) \in A \bigtriangleup \mathscr{W}_n$ for every $n \in \mathbb{N}$.

GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs		
Saeed Salehi	University of Tabriz & IPM	http://SaeedSalehi.ir/
SWAMPLANDIA 2016	Tutorial III: Constructivity of Proofs for Gödel's Theorem	31 May 2016

Effectively Non-Semi-Decidable Sets

Definition (*Completely Productive*)

A set $A \subseteq \mathbb{N}$ is called *Completely Productive* if for some computable gwe have $\forall x : g(x) \in A \longleftrightarrow g(x) \notin \mathscr{W}_x$.

E. L. Post, Recursively Enumerable Sets of Positive Integers and their Decision Problems, Bulletin AMS 50:5 (1944) 284–316.

Definition (*Productive & Creative*)

A set $A \subseteq \mathbb{N}$ is called is called *Productive* if for some computable f (and any x) $\mathscr{W}_x \subseteq A \longrightarrow f(x) \in A - \mathscr{W}_x$.

CREATIVE = semi-decidable + productive complement.

[E]very symbolic logic is incomplete [...]. The conclusion is unescapable that even for such a fixed, well defined body of mathematical propositions,

mathematical thinking is, and must remain, essentially creative.

GÖDEL'S INCOMPLETENESS THEOREM: CONStructivity of Its Various Proofs SAFED SALEHI University of Tabriz & IPM http://SaeedSalehi.ir/ SWAMPLANDIA 2016 Tutorial III: Constructivity of Proofs for Gödel's Theorem 31 May 2016

Effectively Non-Semi-Decidable Sets

Definition (*Completely Productive*)

A set $A \subseteq \mathbb{N}$ is called *Completely Productive* if for some computable gwe have $\forall x : q(x) \in A \longleftrightarrow q(x) \notin \mathscr{W}_x$.

E. L. POST, Recursively Enumerable Sets of Positive Integers and their Decision Problems, Bulletin AMS 50:5 (1944) 284-316.

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 http://SaeedSalehi.ir/

 SAEED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Effectively Non-Semi-Decidable Sets

Definition (*Completely Productive*)

A set $A \subseteq \mathbb{N}$ is called *Completely Productive* if for some computable gwe have $\forall x : g(x) \in A \longleftrightarrow g(x) \notin \mathscr{W}_x$.

E. L. Post, Recursively Enumerable Sets of Positive Integers and their Decision Problems, Bulletin AMS 50:5 (1944) 284–316.

Definition (*Productive & Creative*)

A set $A \subseteq \mathbb{N}$ is called is called *Productive* if for some computable f(and any x) $\mathscr{W}_x \subseteq A \longrightarrow f(x) \in A - \mathscr{W}_x$.

CREATIVE = semi-decidable + productive complement.

[E]very symbolic logic is incomplete [...]. The conclusion is unescapable that even for such a fixed, well defined body of mathematical propositions,

mathematical thinking is, and must remain, essentially creative.

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 http://SaeedSalehi.ir/

 SAEED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Effectively Non-Semi-Decidable Sets

Definition (*Completely Productive*)

A set $A \subseteq \mathbb{N}$ is called *Completely Productive* if for some computable gwe have $\forall x : g(x) \in A \longleftrightarrow g(x) \notin \mathscr{W}_x$.

E. L. Post, Recursively Enumerable Sets of Positive Integers and their Decision Problems, Bulletin AMS 50:5 (1944) 284–316.

Definition (Productive & Creative)

A set $A \subseteq \mathbb{N}$ is called is called *Productive* if for some computable f(and any x) $\mathscr{W}_x \subseteq A \longrightarrow f(x) \in A - \mathscr{W}_x$. CREATIVE = semi-decidable + productive complement.

> [E]very symbolic logic is incomplete [...]. The conclusion is unescapable that even for such a fixed, well defined body of mathematical propositions,

mathematical thinking is, and must remain, essentially creative.

 GödeL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SMED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Non-Semi-Decidable Sets (again)

Remark (Not Every Non-Semidecidable is Effectively So) There are some (uncountably many) non-SEMIDECIDABLE sets which are not (among the countable many) effectively non-SEMIDECIDABLE (completely productive sets).

Theorem (J. MYHILL, Creative Sets, *Zeitschrift für mathematische Logik und Grundlagen der Mathematik* 1:2 (1955) 97–108.)

A is Productive $\iff A$ is Completely Productive

Example (Motivation)

The Set of All True Arithmetical Formulas is productive. The set $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$ is creative.

 GödeL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SNEAD SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Non-Semi-Decidable Sets (again)

Remark (Not Every Non-Semidecidable is Effectively So) There are some (uncountably many) non-SEMIDECIDABLE sets which are not (among the countable many) effectively non-SEMIDECIDABLE (completely productive sets).

Theorem (J. MYHILL, Creative Sets, *Zeitschrift für mathematische Logik und Grundlagen der Mathematik* 1:2 (1955) 97–108.)

A is Productive \iff A is Completely Productive

Example (Motivation)

The Set of All True Arithmetical Formulas is productive. The set $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$ is creative.

 GödeL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SNEAD SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Non-Semi-Decidable Sets (again)

Remark (Not Every Non-Semidecidable is Effectively So) There are some (uncountably many) non-SEMIDECIDABLE sets which are not (among the countable many) effectively non-SEMIDECIDABLE (completely productive sets).

Theorem (J. MYHILL, Creative Sets, *Zeitschrift für mathematische Logik und Grundlagen der Mathematik* 1:2 (1955) 97–108.)

A is Productive \iff A is Completely Productive

Example (Motivation)

The Set of All True Arithmetical Formulas is productive. The set $K = \{n \in \mathbb{N} \mid \varphi_n(n) \downarrow\}$ is creative.

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SNEAD SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Constructive Π_1 -Incompleteness Theorems

Theorem (Proofs of the Uniform Π_1 -Incompleteness Theorems) A Uniform Π_1 -Incompleteness Proof SemiDec. $\{n \in \mathbb{N} \mid T \vdash "n \notin \mathscr{A}"\} \stackrel{\frown}{=} \{n \in \mathbb{N} \mid \mathbb{N} \models "n \notin \mathscr{A}"\} = \overline{\mathscr{A}}$ for some semi-decidable and un-decidable set \mathscr{A} ($\overline{\mathscr{A}} \neq SemiDec$.) is constructive if and only if \mathscr{A} is CREATIVE.

cf. J. MYHILL, Creative Sets, Zeitschr. f. math. Logik und Grundlagen d. Math. 1 (1955) 97-108.

Example (Gödel & Kleene)

- GÖDEL's: $\mathfrak{G} = \{ \lceil \sigma \rceil \mid \sigma \in \Sigma_1 \& \mathbb{N} \models \sigma(\lceil \sigma \rceil) \}$ is creative: any semi-decidable set \mathscr{W}_m is definable by some $\psi \in \Sigma_1$, and $\lceil \psi \rceil \in \mathscr{W}_m \leftrightarrow \mathbb{N} \models \psi(\lceil \psi \rceil) \leftrightarrow \lceil \psi \rceil \in \mathfrak{G} \leftrightarrow \lceil \psi \rceil \notin \mathfrak{G}.$
- Kleene's: $\{n\!\in\!\mathbb{N}\midoldsymbol{arphi}_n(n)\!\downarrow\}$ is creative.

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SNEAD SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Constructive Π_1 -Incompleteness Theorems

Theorem (Proofs of the Uniform Π_1 -Incompleteness Theorems) A Uniform Π_1 -Incompleteness Proof SemiDec. $\{n \in \mathbb{N} \mid T \vdash "n \notin \mathscr{A}"\} \subsetneqq \{n \in \mathbb{N} \mid \mathbb{N} \models "n \notin \mathscr{A}"\} = \overline{\mathscr{A}}$ for some semi-decidable and un-decidable set \mathscr{A} ($\overline{\mathscr{A}} \neq SemiDec$.) is constructive if and only if \mathscr{A} is CREATIVE.

cf. J. MYHILL, Creative Sets, Zeitschr. f. math. Logik und Grundlagen d. Math. 1 (1955) 97-108.

Example (GÖDEL & KLEENE)

- GÖDEL's: $\mathfrak{G} = \{ \lceil \sigma \rceil \mid \sigma \in \Sigma_1 \& \mathbb{N} \models \sigma(\lceil \sigma \rceil) \}$ is creative: any semi-decidable set \mathscr{W}_m is definable by some $\psi \in \Sigma_1$, and $\lceil \psi \rceil \in \mathscr{W}_m \leftrightarrow \mathbb{N} \models \psi(\lceil \psi \rceil) \leftrightarrow \lceil \psi \rceil \in \mathfrak{G} \leftrightarrow \lceil \psi \rceil \notin \overline{\mathfrak{G}}.$
- Kleene's: $\{n\!\in\!\mathbb{N}\midoldsymbol{arphi}_n(n)\!\downarrow\}$ is creative.

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SNEAD SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Constructive Π_1 -Incompleteness Theorems

Theorem (Proofs of the Uniform Π_1 -Incompleteness Theorems) A Uniform Π_1 -Incompleteness Proof SemiDec. $\{n \in \mathbb{N} \mid T \vdash "n \notin \mathscr{A}"\} \subsetneqq \{n \in \mathbb{N} \mid \mathbb{N} \models "n \notin \mathscr{A}"\} = \overline{\mathscr{A}}$ for some semi-decidable and un-decidable set \mathscr{A} ($\overline{\mathscr{A}} \neq SemiDec$.) is constructive if and only if \mathscr{A} is CREATIVE.

cf. J. MYHILL, Creative Sets, Zeitschr. f. math. Logik und Grundlagen d. Math. 1 (1955) 97-108.

Example (GÖDEL & KLEENE)

- GÖDEL's: $\mathfrak{G} = \{ \ulcorner \sigma \urcorner | \sigma \in \Sigma_1 \& \mathbb{N} \models \sigma(\ulcorner \sigma \urcorner) \}$ is creative: any semi-decidable set \mathscr{W}_m is definable by some $\psi \in \Sigma_1$, and $\ulcorner \psi \urcorner \in \mathscr{W}_m \leftrightarrow \mathbb{N} \models \psi(\ulcorner \psi \urcorner) \leftrightarrow \ulcorner \psi \urcorner \in \mathfrak{G} \leftrightarrow \ulcorner \psi \urcorner \notin \overline{\mathfrak{G}}.$
- + Kleene's: $\{n\!\in\!\mathbb{N}\mid \pmb{\varphi}_n(n)\!\downarrow\}$ is creative.

GÖDEL'S INCOMPLETENESS THEOREM:	Constructivity of Its Various Proofs	
Saeed Salehi	University of Tabriz & IPM	http://SaeedSalehi.ir/
SWAMPLANDIA 2016	Tutorial III: Constructivity of Proofs for Gödel's Theorem	31 May 2016

Non-Constructive Π_1 -Incompleteness Theorems

Example (BOOLOS & CHAITIN)

Theorem (Proof Idea from D.R. HIRSCHFELDT) The set $\mathbb{C} = \{ \langle a, b \rangle \mid \mathscr{K}(a) \leq b \}$ is not creative.

http://mathoverflow.net/questions/222925/ 7-10 Nov. 2015

Theorem

The set $\mathfrak{B} = \{ \langle a, b \rangle \mid \mathscr{D}_T(a) \leq b \}$ is not creative.

 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 http://SaeedSalehi.ir/

 SAEED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.ir/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

Non-Constructive Π_1 -Incompleteness Theorems

Example (Boolos & Chaitin)

Theorem (Proof Idea from D.R. HIRSCHFELDT) The set $\mathbb{C} = \{ \langle a, b \rangle \mid \mathscr{K}(a) \leq b \}$ is not creative.

http://mathoverflow.net/questions/222925/ 7-10 Nov. 2015

Theorem

The set $\mathfrak{B} = \{ \langle a, b \rangle \mid \mathscr{D}_T(a) \leq b \}$ is not creative.

GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
SAEED SALEHI University of Tabriz & IPM http://SaeedSalehi.ir/
SWAMPLANDIA 2016 Tutorial III: Constructivity of Proofs for Gödel's Theorem 31 May 2016

Non-Constructive Π_1 -Incompleteness Theorems

Example (BOOLOS & CHAITIN)

Theorem (Proof Idea from D.R. HIRSCHFELDT) The set $\mathbb{C} = \{ \langle a, b \rangle \mid \mathscr{K}(a) \leq b \}$ is not creative.

http://mathoverflow.net/questions/222925/ 7-10 Nov. 2015

Theorem

The set $\mathfrak{B} = \{ \langle a, b \rangle \mid \mathscr{D}_T(a) \leq b \}$ is not creative.

GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
SAEED SALEHI University of Tabriz & IPM http://SaeedSalehi.ir/
SWAMPLANDIA 2016 Tutorial III: Constructivity of Proofs for Gödel's Theorem 31 May 2016

Non-Constructive Π_1 -Incompleteness Theorems

Example (BOOLOS & CHAITIN)

Theorem (Proof Idea from D.R. HIRSCHFELDT) The set $\mathbb{C} = \{ \langle a, b \rangle \mid \mathscr{K}(a) \leq b \}$ is not creative.

http://mathoverflow.net/questions/222925/ 7-10 Nov. 2015

Theorem

The set $\mathfrak{B} = \{ \langle a, b \rangle \mid \mathscr{D}_T(a) \leq b \}$ is not creative.

GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
SAEED SALEHI University of Tabriz & IPM http://SaeedSalehi.ir/
SWAMPLANDIA 2016 Tutorial III: Constructivity of Proofs for Gödel's Theorem 31 May 2016

Non-Constructive Π_1 -Incompleteness Theorems

Example (BOOLOS & CHAITIN)

Theorem (Proof Idea from D.R. HIRSCHFELDT) The set $\mathbb{C} = \{ \langle a, b \rangle \mid \mathscr{K}(a) \leq b \}$ is not creative.

http://mathoverflow.net/questions/222925/ 7-10 Nov. 2015

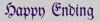
Theorem

The set $\mathfrak{B} = \{ \langle a, b \rangle \mid \mathscr{D}_T(a) \leq b \}$ is not creative.

So, the Incompleteness Theorems of Boolos and Chaitin Can Never Have A Constructive Proof.

GÖDEL'S INCOMPLETENESS THEOREM: CONStructivity of Its Various Proofs

SAEED SALEHI SWAMPLANDIA 2016 University of Tabriz & IPM Tutorial III: Constructivity of Proofs for Gödel's Theorem http://SaeedSalehi.ir/ 31 May 2016



G.J. CHAITIN, A Century of Controversy Over the Foundations of Mathematics, *Complexity* 5:5 (2000) 12–21.

But I must say that philosophers have not picked up the ball. I think logicians hate my work, they detest it! And I'm like pornography, I'm sort of an unmentionable subject in the world of logic, because my results are so disgusting! ... the most interesting thing about the field of program-size complexity is that it has no applications, is that it proves that it cannot be applied! Because you can't calculate the size of the smallest program. But that's what's fascinating about it, because it reveals limits to what we can know. That's why program-size complexity has epistemological significance.
 GÖDEL'S INCOMPLETENESS THEOREM: Constructivity of Its Various Proofs
 http://SaeedSalehi.r/

 SAEED SALEHI
 University of Tabriz & IPM
 http://SaeedSalehi.r/

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem
 31 May 2016

See you Later

THAT WAS FOR NOW ...

Tutorial I: Constructive Proofs	30 May 2016
 Tutorial II: Gödel's Incompleteness Theorem 	30 May 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem 	31 May 2016

 GÖDEL'S INCOMPLETENESS THEOREM:
 Constructivity of Its Various Proofs

 SAEED SALEHI
 University of Tabriz & IPM

 SWAMPLANDIA 2016
 Tutorial III: Constructivity of Proofs for Gödel's Theorem

 31 May 2016

Thanks to

The Participants For Listening ····

and

The Organizers – For Taking Care of Everything \cdots

SAEEDSALEHI. ir

