Available online at www.sciencedirect.com

“=.“ ScienceDirect Theoretical

Computer Science

ELSEVIER Theoretical Computer Science 377 (2007) 1-24

www.elsevier.com/locate/tcs

Fundamental study

Tree algebras and varieties of tree languages

Saeed Salehi?, Magnus Steinby ?¢*

4 Department of Mathematics, Institute for Advanced Studies in Basic Sciences, Gava Zang — P.O. Box 45195-1159, Zanjan, Iran
b Department of Mathematics, University of Turku, 20014 Turku, Finland
¢ Turku Centre for Computer Science, Finland

Received 27 June 2006; received in revised form 18 January 2007; accepted 4 February 2007

Communicated by A.K. Salomaa

Abstract

We consider several aspects of Wilke’s [T. Wilke, An algebraic characterization of frontier testable tree languages, Theoret.
Comput. Sci. 154 (1996) 85-106] tree algebra formalism for representing binary labelled trees and compare it with approaches
that represent trees as terms in the traditional way. A convergent term rewriting system yields normal form representations of
binary trees and contexts, as well as a new completeness proof and a computational decision method for the axiomatization of tree
algebras. Varieties of binary tree languages are compared with varieties of tree languages studied earlier in the literature. We also
prove a variety theorem thus solving a problem noted by several authors. Syntactic tree algebras are studied and compared with
ordinary syntactic algebras. The expressive power of the language of tree algebras is demonstrated by giving equational definitions
for some well-known varieties of binary tree languages.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Tree automata; Tree languages; Tree algebras; Binary trees; Varieties of tree languages; Syntactic tree algebras

1. Introduction

In algebraic language theory words are usually regarded as elements of the free monoid X* (or the free semigroup
X if the empty word is omitted) generated by a given alphabet X. In particular, the syntactic monoid (cf. [8,22])
of a language L C X* is defined with this interpretation in mind. Similarly, in algebraic treatments of regular tree
languages (cf. [7,32,13,14]) trees are often defined as terms, and the syntactic algebra [1,28,29] of a tree language is
then a quotient algebra of the appropriate term algebra. However, Wilke [34] has proposed a different framework in
which trees are not directly viewed as elements of any algebraic structure but are represented by terms over a signature
I" with six operation symbols involving the three sorts label, tree and context. The trees thus represented are binary
trees over a given label alphabet. A tree algebra is a ['-algebra satisfying certain identities that equate some pairs of
I'-terms representing the same tree or the same context. The component of sort tree of the syntactic tree algebra of a
binary tree language T is essentially the syntactic algebra of T in the sense of [1,28,29], while its context-component

* Corresponding author at: Department of Mathematics, University of Turku, 20014 Turku, Finland.
E-mail addresses: saced@math.net (S. Salehi), steinby @utu.fi (M. Steinby).

0304-3975/$ - see front matter (©) 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2007.02.006

http://www.elsevier.com/locate/tcs
mailto:saeed@math.net
mailto:steinby@utu.fi
http://dx.doi.org/10.1016/j.tcs.2007.02.006

2 S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24

gives the syntactic semigroup of 7" as defined (as monoids) in [33], and studied further in [27], [21] and [23]. A binary
tree language is regular if and only if its syntactic tree algebra is finite [34]. Hence, one may characterize families of
binary tree languages by syntactic tree algebras as shown by Wilke [34] in the case of frontier testable (i.e., reverse
definite) tree languages.

In this paper we study several aspects of the tree algebra formalism. The theory is formulated in such a way that it

(1) lets us derive the conceptual machinery directly from some general ideas of algebraic language theory,

(2) yields many fundamental results, including the general theorems of [34], in a natural way with transparent
algebraic proofs, and

(3) facilitates the comparison with other algebraic approaches to regular tree languages.

A classification theory for binary tree languages based on syntactic tree algebras was called for already in [34],
and the lack of an appropriate variety theorem was noted also in [30], [10] and [11]. Here such a theorem is proved.
For this, we have to consider varieties of finite tree algebras of a special kind as the direct bijection between varieties
of binary tree languages (VBTLs) and all varieties of finite tree algebras fails to hold. We also show that any general
variety of tree languages of the kind studied in [30], yields a VBTL when restricted to binary ranked alphabets. That
not every VBTL is obtained this way, is due to a subtle difference in the tree homomorphisms used in the definitions
of the two kinds of varieties. A similar difference can be noted in the relation between syntactic tree algebras and
ordinary syntactic algebras: the syntactic algebra completely determines the syntactic tree algebra, but the converse
is only partially true. Anyway, it seems that mostly the same families of binary tree languages are definable in terms
of the two syntactic invariants. On the other hand, the language of tree algebras lends itself better for equational
definitions of VBTLs.

Let us now review the contents of the paper section by section. In Section 2 we introduce algebras, terms and trees
as well as several related notions, fixing at the same time some general notation to be used throughout the paper. In
Section 3 Wilke’s tree algebras are introduced, and the representations of binary trees and contexts by Wilke’s terms
are formalized by homomorphisms from the appropriate term algebras to the corresponding tree algebras of binary
trees. In Section 4 we turn Wilke’s axioms for tree algebras into a convergent term rewriting system, and describe
the corresponding normal form representations of binary trees and contexts. The term rewriting system also yields a
completeness theorem for Wilke’s axioms, proved differently in [34], as well as a computational method to test the
equivalence of two tree or context representations.

In Section 5 we define and survey some basic properties of the syntactic congruences and syntactic algebras of
subsets of ['-algebras, making use of the general many-sorted theory developed in [25]. When these definitions are
applied in Section 6 to binary tree languages, regarding these as subsets of sort tree of free tree algebras, we obtain
Wilke’s syntactic tree algebras as well as some basic facts about them. In particular, by noting some relationships
between the syntactic tree algebra STA(T) of a binary tree language 7 and its ordinary syntactic algebra SA(T)
and syntactic semigroup SS(7T"), we get in a new way Wilke’s theorem stating that T is regular iff STA(T) is finite.
Moreover, we note several general properties of syntactic tree algebras needed in the variety theory.

In Section 7 we introduce varieties of binary tree languages (VBTLs) and varieties of finite tree algebras (VFTAs).
However, the natural maps between VBTLs and VFTAs, defined via syntactic algebras, do not yield the complete
correspondence one could expect. In Section 8§ it is then shown how a Variety Theorem for VBTLs can be obtained
by replacing VFTAs with varieties of finite reduced tree algebras; we call a tree algebra reduced if it is generated by
its elements of sort label, and no two elements of sort label, or of sort context, are equivalent with respect to the
operations of the algebra that yield elements of sort tree. All syntactic tree algebras are reduced in this sense. We also
show how any tree algebra M can be transformed to a reduced tree algebra that is maximal among the reduced tree
algebras covered by M.

Varieties of binary tree languages are less general than varieties of [1], [28] or [29] in that they involve binary
trees only. On the other hand, they are more general in the sense that the alphabet of labels is not fixed. In this they
resemble the general varieties of tree languages (GVTLs) of [30] where tree languages over all ranked alphabets and
leaf alphabets appear. In Section 9 we show that, when a GVTL is restricted to the ranked alphabets of binary tree
languages, a VBTL is obtained. Thus the binary parts of many known families of regular tree languages are VBTLs.
However, not every VBTL can be obtained this way from a GVTL. This ultimately depends on the fact that in the
binary trees of [34] leaves and inner nodes are labelled with the same symbols. A similar subtle difference surfaces
when we study connections between the syntactic tree algebra STA(T), the syntactic algebra SA(T) and the syntactic
semigroup SS(7') of a binary tree language 7. Although STA(T) is completely determined by SA(T), and we can

S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24 3

construct STA(T') from SA(T), the converse is not completely true. Nevertheless, it appears that essentially the same
families of binary tree languages can be characterized by syntactic tree algebras as by syntactic algebras.

In spite of the above conclusion drawn from the results of Section Section 9, it seems that the language of tree
algebras has certain advantages and is very convenient for defining VBTLs by equations. This was first shown by
Wilke [34] who gave an elegant equational description of the frontier testable binary tree languages. Wilke also
proved that frontier testability is a decidable property for binary tree languages. However, the equational description
did not by itself yield a decision method, but a closer analysis of the syntactic tree algebras of frontier testable sets was
required. In Section 10 we present, after some relevant general facts, three more examples of equational descriptions
of VBTLs.

This paper has been written over a rather long period of time. Hence it both precedes and follows the doctoral
dissertation of the first-named author, and some of the results appear already in [24]. However, even in those cases,
the presentation may be somewhat different here. The bibliography contains several general references related to the
subject matter of this paper. In particular, [31] surveys various algebraic approaches to the classification of regular
tree languages and contains many further relevant references.

2. Algebras, terms, trees and contexts

In this section we recall some basic notions mainly to fix our notation for later reference. First a word on notation:
we shall frequently write a := b to indicate that a is defined to be equal to b.

Let X be a ranked alphabet, i.e., a finite set of operation symbols each of which has a given non-negative integer
arity. For each m > 0, let X, denote the set of m-ary symbols in Y. A X -algebra D = (D, X)) consists of a non-
empty set D (of the elements of D) and a X -indexed family of operations such that if f € X, then f2: D" — D
is an m-ary operation on D. In particular, any ¢ € X fixes a constant ¢© € D.

Next we recall the usual definition of trees as terms (cf. [7,32,13,14], for example). Let X be a finite set of symbols
disjoint from X, called a leaf alphabet. The set T's; (X) of X-terms over X is defined inductively:

(D) 2pUX CTx(X);
Q) Ft1, ... tw) € T (X)ifm >0, f € Sy andty, ..., tm € Ts(X).

We shall view terms in the usual way as (syntactic representations of) trees labelled with symbols in X' U X, and call
them also Y X-trees.

The height hg(t) of a X X-tree ¢ is defined by setting (1) hg(r) = 0 for any ¢+ € 3y U X, and (2) hg(*) =
maxfhg(#)), ..., hg(t,)} + 1 fort = f(t1, ..., twm).

Let & be a new symbol that does not appear in X' or X. A Y X-context is a X'(X U {£})-tree in which & appears
exactly once. The set of ' X-contexts is denoted by Cy;(X). Furthermore, let C}(X) = Cx(X) \ {£} be the set of
non-unit X' X -contexts; & is the unit context. In the special case X = ¢J, we get the sets Ty;, Cx; and C g of X-trees (or
ground X-terms), X'-contexts, and non-unit X'-contexts, respectively.

The &-depth ds (p) of p € Cx(X) is the distance of the £-labelled node from the root of p, that is, (1) d¢(§) = 0,
and 2)if p = f(t1, ..., tic1,q, tit1s ... tm) forsomem > 0,1 <i <m,t,...,ti—1,ti+1,...,tm € Tx(X) and
g € Cx(X), thendg(p) = de(q) + 1.

If pg e Cx(X)andt € Tx;(X),theng - p := p(q) € Cx(X)and ¢t - p := p(t) € Tx(X) are obtained from p
by replacing the single occurrence of & with ¢ and with ¢, respectively. Obviously, £(p) = p(§) = pand &(r) = ¢
for any context p and any tree ¢. Clearly, (C 5 (X), -, £) is a monoid for the product p - g. Similarly, (C } (X),)isa
semigroup.

In what follows, we consider especially binary trees in which both the inner nodes and the leaves are labelled
with symbols from a given finite non-empty alphabet A, the label alphabet. To obtain compatibility with the term
formalism, we define them formally as follows. First of all, we associate with A the ranked alphabet X4 = Eg‘ U EZA,
where 264 = {c, | a € A} and ZzA = {f. | a € A}. We shall call X4-trees and ¥*-contexts simply A-trees and
A-contexts, respectively, and the notation is simplified correspondingly. Hence the set T4 of A-trees and the set Cy
of A-contexts are defined inductively:

(1) ¢ € Tp foreverya € A,and & € Cyu;
(2) fa(s,t) € Toand f,(p,t), fo(t, p) € Cqpforalla € A,s,t € T4 and p € Cy.

4 S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24

Moreover, let Cj = Cya \ {&} be the set of non-unit A-contexts.
The XA-algebra of A-trees Ty = (Ta, £*) is defined by setting

(1) cZA = ¢, foreverya € A, and
2 faTA (s,1) = fa(s,t) foreverya € Aand all s, 1 € Ty.

Since T is the X4-term algebra generated by the empty set, there is for each X 4-algebra D a unique homomorphism
¢p : Ty — D defined by

(D) capp = caD fora € A, and
Q) fals,)op = faD(S(pD, top) foranya € Aand s, t € Ty.

Subsets of T4 we call A-tree languages, and a binary tree language is any set that is an A-tree language for some
label alphabet A.

Let us now introduce Wilke’s [34] formalism for representing binary trees by terms over a 3-sorted ranked alphabet.
An overview of the theory of many-sorted algebras, as well as many further references, can be found in [19]. In [25]
we have developed a general theory of varieties of recognizable subsets of many-sorted algebras, and some of the
notions and facts to be presented here could be obtained by a suitable specialization from that theory.

The set of sorts is S = {label, tree, context}. For the sort names we use the abbreviations 1 = label, t = tree and
¢ = context. An S-sorted set M is a triple (M}, My, M) in which M}, My and M, are the sets of elements of M of sort
label, tree and context, respectively. Although this would not be quite necessary, we shall always assume that the sets
My, My and M, are pairwise disjoint, i.e., that the sort of each element of M is uniquely determined.

Now let I' = {¢, k, A, p, n, o'} be the S-sorted ranked alphabet where the rypes of the symbols are as follows:

t:l—>t k:ltt—t XL p:lt—>c n:ct—t o:cc—c

For example, in any ['-algebra the A-operation forms an element of sort ¢ from an element of sort 1 and an element of
sort t.

For the general notion of many-sorted terms we refer the reader to [19] or [25]. Here we introduce just the kind
of I'-terms to be used in this paper. The S-sorted set (A, Tr(A), CZJE(A)) of I'A-terms, where Tr(A) is the set of

I' A-tree terms, and C]JC(A) the set of non-unit I" A-context terms, is defined inductively as follows:

(1) ifa € A, then t(a) € Tr(A);

2) ifa e Aands,t € Tr(A), thenx(a,s,t) € Tr(A);
(3) ifa € Aand t € Tr(A), then A(a, 1) € CF(A);

(@) ifa € Aand t € Tr(A), then p(a, t) € CF(A);

(5) if p € Cf(A) and t € Tp(A), then n(p, t) € Tr(A);
(6) if p,q € Cf(A), then o (p, q) € CF(A).

Hence, the I" A-terms are the I'-terms over the sorted set of variables X = (A, @,) where A is a given label alphabet.
To distinguish them from A-trees and A-contexts, the symbols denoting them are written in Roman type.

Remark 2.1. Note that C lt (A) does not include the unit context £. Similarly, the syntactic tree algebras — to be
defined later — do not automatically have a unit element of sort context. This means that, in a way, Wilke’s [34] theory
corresponds to Eilenberg’s [8] theory of +-varieties and syntactic semigroups. By adding to I" a constant of sort
context one could obtain a variant of the theory that corresponds to the theory of x-varieties and syntactic monoids.

Binary A-trees and A-contexts are represented by I'A-tree terms and [I'A-context terms as follows. For any
t € Tr(A), let t denote the A-tree represented by t. Similarly, p denotes the A-context represented by a I" A-context
termp € Clt (A). The representations are defined by setting forany a € A,s,t € Tr(A) and p,q € CF (A),

(1) t(a) represents the A-tree c,,

(2) k(a, s, t) represents the A-tree f,(3, 1),
(3) A(a,t) represents the A-context f, (&, o,
4) p(a,t) represents the A-context f, &, &),
(5) n(p, t) represents the A-tree ﬁ(f), and
(6) o(p, q) represents the A-context p(q).

S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24 5

The following facts are easy to verify by induction on A-trees and A-contexts.

Lemma 2.2. Let A be any label alphabet. For any A-tree t we can find a I' A-tree term t € Tr(A) such that t = t,
and for any non-unit A-context p a I' A-context term p € C F (A) such that p = p.

These representations are usually not unique. For example, the {a, b}-tree terms « (b, k(a, t(b), t(a)), t(a)) and
n(A(b, t(a)), k(a, t(b), t(a))) both represent the same {a, b}-tree f5(f,(cp, ca), cq). In Lemma 3.2 we will formulate
this representation relation as a homomorphism.

3. Tree algebras

A I'-algebra M = ({(My, My, M), I') consists of a nonempty set M) of elements of sort label, a nonempty set My
of elements of sort tree, and a nonempty set M, of elements of sort context, and operations

(I)LM:M|—>Mt (2)KM:M1xMtxMt—>Mt
3) AM: My x My — M, @) pM: My x My — M,
5) ™M Me x My — M 6) oM Me x Me — M,

defined as realizations of the symbols in I'. Usually we write simply M = (M, I') with the understanding that
M = (M, My, M,).

The basic algebraic notions, such as subalgebras, congruences, homomorphisms etc., are defined for I"-algebras
the same way as for many-sorted algebras in general (cf. [19] or [25]). For example, a homomorphism ¢: M — N
from a I'-algebra M = (M, I') to a ['-algebra N' = (N, I') is a sorted mapping ¢ : M — N, i.e., an S-sorted triple
of maps

(p1: My — N1, ¢¢: My — Ni, o0 Me — N¢)

that preserves all the I'-operations between M and N, that is to say, M (@)pr = N (apr) for every a € My,
KM(a,S,l‘)(pt = KN(a<p1,s<pt, tgy) for all @ € My and s,t € My, etc. A homomorphism ¢: M — N is an
epimorphism if ¢ is surjective, i.e., gj: Mj — Nj is surjective for every i € S. Similarly, ¢ is a monomorphism
if every @j: Mj — Nj is injective. Finally, an isomorphism is a bijective homomorphism. The fact that M and N\ are
isomorphic is denoted by writing M = N.

For any label alphabet A, the I'-algebra of I' A-terms

Tr(A) = (A, Tr(A), C1(A), I)

is defined by setting
1) IrM(a) = 1(a) Q) kIr®(a, s, t) = «(a,s, 1)
3) A TrD(a,t) = Aa, t) @ pTr M (a, 1) = pa, v)
3) 7T, 1) = n(p, v) ©) T D (p,q) = o (p. q)

foralla € A,s,t € Tr(A) and p, q € C}.(A).
Following [34], we call a I'-algebra a tree algebra if it satisfies the following set of identities 7TA:

(TA1) o(o(p,q),1) ~o(p,o(q,1))
(TA2) n(o(p,q9),v ~ n(p,n(q,t)
(TA3) n(i(a,s),t) = «k(a,t,s)
(TA4) n(p(a,s),t) = k(a,s,t).

Here, a is a variable of sort label, s and t are variables of sort tree, and p, q and r variables of sort context. Let TA
denote the equational class of all tree algebras.

For each label alphabet A, a tree algebra of special interest is the I'-algebra of A-trees Fra(A) = ((A, T4, C :{), I,
where forany a € A,s,t € T4 and p,q € CX,

(1) I (q) = ¢, Q) k78D (a, 5, 1) = fols, 1)

B AN 1) = fu (&, 1) @) pP N (a, 1) = fu(t,8)
) 'MW (p, 1) = p(r) ©) a7 N (p, q) = p(q).

6 S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24

As shown by Wilke ([34], Proposition 1), and suggested by our notation, F1a (A) is the free tree algebra generated
by (A, @, ¥). This means that Fa (A) satisfies the identities TA, and that if M = (M, I') is any tree algebra, then
every mapping ¢o : A — Mj can be extended in a unique way to a homomorphism ¢ = (¢, ¢, @) of I"-algebras
from Fra (A) to M where ¢ = ¢g.

For any label alphabet A, an A-instance of an identity in TA is any pair of I" A-tree or I" A-context terms obtained
from the identity by assigning each of the variables a, s, t, p, q and r appearing in it a value from the appropriate set
A, Ty or CX. For example, if b, ¢ € A, then

(n((c. t(B)), 1(e)), k(c,t(b), 1(c)))
is the A-instance of (TA3) obtained by the substitution
arc, s— (b)), t— i(c).

Moreover, let =4 be the fully invariant congruence on 7 (A) generated by the set of all A-instances of 7A, i.e., the
equational theory in variables (A, @,) defined by TA.

It is clear that if (u, v) is an A-instance of an identity in TA, then 0 = ¥. Furthermore, if (u, v) is obtained from
pairs of I" A-terms representing the same A-tree or the same A-context by any inference rule of Birkhoff’s equational
logic (for the many-sorted version, cf. Section 5.2 in [19]), then again 0 = v. Hence we get at this point the soundness
property of Wilke’s axiom system 7A.

Proposition 3.1. Let A be any label alphabet. For any s,t € Tr(A) andp,q € C F(A),

(a) ifs =2 t, then§ =1, and
(b) ifp =¢ g, thenp = §.
As the I'-algebras 71 (A) and Fr1a (A) both are generated by (A, ¥,), the identity mapping 14 : A — A (of sort

label) can be extended in a unique way to an epimorphism VA Tr(A) — Fra(A) of I -algebras that we call the
canonical A-homomorphism. It is the triple of mappings

i 1 A= A, v Tr(A) — Ta, v CH(A) — Cf)

such that foralla € A,s,t € Tr(A) and p, q € CF(A),

(D vi{@)=a

@) v (@) = cq

3) vk (a,s,0) = fa({ (), v (D)
@) v (@, v) = faE v D)

5) vi(pa. V) = f,({ 1), &)

©) v (n(p, V) = AP W®)

(7) vA (o (p, @) = v (P)(v2(Q)).

The following lemma is obtained immediately by comparing the above equalities with the clauses defining the
A-trees and A-contexts represented by I"A-terms.

Lemma 3.2. For any I'A-tree term t € Tr(A) and any I'A-context term p € Cl't(A), we have vtA (t) = tand
v (p) = p.
4. Normal form representations

We now transform the set of identities 7A into a convergent (i.e., terminating and confluent) term rewriting system.
As noted by many authors, the general theory of term rewriting (as presented in [3,4,6,17], for example) can easily be
extended to the many-sorted case simply by requiring that all the reductions preserve the sorts of terms. In our special
case this is particularly obvious, and confluence and termination can be proved by standard methods.

Definition 4.1. Let R be the term rewriting system consisting of the rules

(RD) o(o(p,q),1) = o(p,o(q,1)),

S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24 7

(R2) n(o(p,q),) = n(p, n(q, 1)),
(R3) n(r(a,s),t) — k(a,t,s), and
R4) n(p(a,s),t) — «(a,s,t).

Proposition 4.2. The system R is convergent.

Proof. It is clear that R is compatible with the lexicographic path ordering induced by any order on I" such that
n > k. Hence, R is terminating. There are just two critical pairs. The pair

(n(e . 0@, 0, np,q.n0)
produced by (R1) and (R2) converges to 1(p, n(q, n(r, t))) by applications of (R2), and the other critical pair

(o(@p.o(q.0). 1), oo, q,o,r))

obtained by overlapping (R1) with itself, converges to o (p, o (q, o (r, r'))) by further applications of (R1). Hence, R
is confluent as well. [

Let 4= be the (S-sorted) reduction relation defined by R on the S-sorted set (A, Tr(A), CF (A)) of I'A-terms,
and let 4 <* be its equivalence closure. It follows directly from the definitions of R and =* that 4 <* = =4. This
suggests the idea to define normal form representations of A-trees and A-contexts by using R.

Let IRR(R, A)1, IRR(R, A)t and IRR(R, A). be the sets of I'A-terms irreducible by R of sort label, tree and
context, respectively. It is clear that / RR(R, A); = A. The other two sets are described in the following proposition.

Proposition 4.3. Let A be any label alphabet.

a. A I'A-tree term is irreducible iff it contains the operators v and k only, that is to say, RR(R, A)¢ is the smallest
subset of Tr (A) such that
(1) t(a) € IRR(R, A)t for every a € A, and
(2) ifae Aands,t € IRR(R, A)¢, then k(a,s,t) € IRR(R, A).
b. IRR(R, A)¢ is the smallest subset of Cl't (A) such that
(1) A(a,t), p(a,t) € IRR(R, A)c foralla € Aandt € IRR(R, A)¢, and
(2’) o(Ma,t),p) € IRR(R,A) and o(p(a,t),p) € IRR(R,A)c forany a € A, t € IRR(R, A)t and
pE€IRR(R, A).

Proof. By considering the rules of R one sees that clauses (1) and (2) define a set of irreducible I"A-tree terms. On
the other hand, any I" A-tree term with a subterm of the form 7 (p, t) is reducible because the I" A-context term p must
begin with A, p or o. Hence, all irreducible I A-tree terms are obtained by clauses (1) and (2).

It is clear that no rule of R applies to any I"A-context term obtained by rules (1’) and (2’). That (1’) and (2’)
yield all irreducible I" A-context terms, is verified by induction on the £-depth dg (p) of the A-context represented by
p € IRR(R, A)¢. If de(p) = 1, then p must be a I"A-context term given by (1°). If dg (p) > 1, then p = o (q, 1) for
some q,r € IRR(R, A)¢, and because of rule (R1), g must be of the form A(a,t) or p(a,t) witht € IRR(R, A);.
Since the inductive assumption applies to r, also p is of the required type. [

As noted in Proposition 3.1, any two =“-congruent I" A-tree terms represent the same A-tree. Therefore it follows

now from Lemma 2.2 and Proposition 4.2 that any A-tree is represented by a unique irreducible I'A-tree term.
By Proposition 4.3 only the operators ¢ and « appear in irreducible I'A-tree terms, and hence it is clear that if
s,t € IRR(R, A)¢ and s # t, then § # t. Similarly, A-contexts are represented by unique irreducible I" A-context
terms, and since these are of the form

o(p1, (@(p2,...0(Pp—1,pPn) ---),

where n > 1, and each p; is of the form A(a,t) or p(a,t) witha € Aandt € IRR(R, A)y, it is again clear that
p # q for any two distinct p, q € I RR(R, A).. These observations yield the following proposition that completes the
picture.

8 S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24

Proposition 4.4. Let A be any label alphabet. Every A-tree is represented by a unique R-irreducible I' A-tree term
and hence, if § = 1 for any I A-tree terms s,t € Tr(A), then s = t. Similarly, each A-context is represented
by a unique R-irreducible I' A-context term, and any two I' A-context terms that represent the same A-context are
=A_congruent.

By combining this result with Lemma 3.2 and Proposition 3.1, we get the following fact. Recall that the kernel
(ker ¢) of a homomorphism ¢ is the set of all pairs (a, b) such that ap = bg.

Corollary 4.5. For any label alphabet A, ker v4 = =4,

Furthermore, we now get Wilke’s [34] Proposition 1 in a new way:
Corollary 4.6. Fa (A) is the free tree algebra generated by (A, @,).

Proof. Since = is the fully invariant congruence generated by the A-instances of the identities (TA), the quotient
algebra 71 (A)/ = is freely generated by (A, @, #) (we identify each a € A with its =-class {a}) over the class
TA. On the other hand, Fra(A) = 71 (A))/ ker pA by the Homomorphism Theorem (cf. [19] for the many-sorted
version). [

By combining Propositions 3.1 and 4.4, we get as a further corollary the following result.

Proposition 4.7. Let A be any label alphabet.

(a) Foranys,t € Tr(A), 8§ = tifand only if s ={* E‘

(b) Foranyp,q € CF(A), p=qifand only if p ={ q.

This proposition may be regarded as a Completeness Theorem for Wilke’s axiomatization (TA) with respect to
representations of binary trees and contexts. Indeed, it means that any two I A-tree or I A-context terms represent the
same A-tree or A-context, respectively, iff they are TA-provably equal.

By Proposition 4.7 the equational theory =4 is trivially decidable: to decide whether s EtA t holds for any given
s,t € Tr(A), it suffices to construct the A-trees § and t and compare them with each other. Similarly, p Eé‘ q iff
p = q, for any given p,q € Cl't (A). Of course, this fact is implicit also in [34] since it follows from Corollary 4.6
(and also from Corollary 4.5, for that matter). However, let us also note that Proposition 4.2 yields another decision
method that does not require forming the trees or contexts: whether any two given I" A-tree terms, or two I" A-context
terms, are ="-equivalent can be decided by computing their respective R-normal forms.

5. Syntactic ['-algebras

The basic properties of Wilke’s [34] syntactic tree algebra congruences and syntactic tree algebras of binary tree
languages can be obtained conveniently by considering more generally subsets of arbitrary ['-algebras. In [25] we
studied these notions for subsets of general many-sorted algebras. Two kinds of subsets were considered, the sorted
subsets that have a component of each sort, and the “pure” subsets consisting of elements of one given sort. Since
we eventually apply these notions just to binary tree languages, we will focus here on pure subsets. The general
theory will be used here by letting the set of sorts be S = {label, tree, context} and the ranked alphabet to be
I' ={t,k, A, p,n,o} as above. In the following section we will then recover Wilke’s notions by considering subsets
of the free tree algebras Fra (A).

A sorted subset of an S-sorted set M is a triple (Ly, L¢, L¢) such that Ly € M)y, Ly € Mi and Lo © M,. The
inclusion relation and the basic set operations are defined for sorted subsets by the natural sortwise conditions. A
subset of sort i € S of M is any subset of M;. With a subset T C M;j of sort i we associate the sorted subset
(T') = (N}, Tt, Tc) such that T; = T and Tj = ¥ for j € S, j # i. By identifying T with (T'), we may treat T as a
special sorted subset.

Let M = (M, I') be a ['-algebra. For any i,j € S, an elementary ij-translation is any mapping M; — M;
obtained from one of the fundamental operations (of positive arity) of sort j of M by fixing the values of all
arguments save one that is of sorti. Let ETr(M, i, j) denote the set of all elementary ij-translations. Thus, for example,
ETr(M, 1, t) = {M(&)} U (k™M (&, u,v) | u,v € My}, where & is a variable of sort label. The sets Tr(M, i, j) of
ij-translations (i, j € S) are defined inductively by the following:

S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24 9

(1) ETr(M, i, j) € Tr(M, i,) foralli, j € S;
(2) for eachi € S, the identity mapping 1i: Mj — Mj, u — u, is in Tr(M, i, i);
(3) if a(§) € Tr(M, 1, j) and B(&5) € Tr(M, j, k) for some i, j, k € S, then B(a(&)) € Tr(M, i, k).

Let & = (6,6, 0.) be a sorted equivalence on M, i.e., 6, 6 and 6. are equivalences on M), My and M.,
respectively. Then 6 is a congruence on M = (M, I') if it is invariant with respect to the operations of M. For
example, for the x-operation this means that for any a,a’ € My and s,¢,5",t' € My, if abya’, s 6¢s’ and 1 6 t’, then
kM(a, s, t)0cM(a’,s', t'). The congruences of a I'-algebra M enjoy all the general properties the congruences of
usual one-sorted algebras. In particular, every congruence of M is invariant with respect to every translation of M
and, on the other hand, any sorted equivalence on M that is invariant with respect to all elementary translations of M
is a congruence.

Definition 5.1. The syntactic congruence ~T of a subset T C M;j of some sort i € S is the sorted equivalence

(%IT, %tT, %CT) on M defined by the condition that for any j € S and u, v € M;,

u ~jT v & Vo € Tr(M,j, i) (aw) € T < a@) € T),

and its syntactic algebrais M /T := M/~ . For an element u € M; of any given sort j € S, we sometimes use u/T
as a shorthand for the congruence class u/ %JT of u.

The syntactic congruences and syntactic algebras of (sorted or one-sorted) subsets of I'-algebras have the same
general properties as the corresponding notions defined for monoids and semigroups [8,22], for general algebras [1,
28-30], and for many-sorted algebras [25]. In fact, the following lemmas are special cases of facts presented in [25].

Recall that an equivalence 6 on a set U saturates a subset L of U, if L is the union of some 6-classes. Similarly, a
sorted equivalence 6 on an S-sorted set M saturates a subset T C M;j of some sorti € S, if ; saturates 7.

Lemma 5.2. Let M = (M, I') be a I'-algebra and i € S be a sort. For any subset T C M;, ~T is the greatest
congruence on M that saturates T.

Leta € Tr(M, i, j) be an ij-translation of a given I"-algebra M = (M, I') for some i, j € S.If T C M is a subset
of some sort k € S, then let = (T) := {ue Mj|a(u) e T}ifk =j, and a~1(T) := ¢ otherwise. Furthermore, the
relation po~To ¢! appearing in the following lemma denotes the sorted equivalence

(pro ~ og ' o {0, geo o)
on M, where for all j € S and u, v € Mj, u gjo %jTo (pjfl v iff ug; %JT VYj.

Recall that 7C is the complement of 7.
Lemma 5.3. Let M = (M, I") and N' = (N, I') be any I'-algebras.

[
(@) ~T" = =T for any subset T C M; of any sorti € S.
(b) AT NV TV gnd =T Nl c TV for any subsets T, U C Mj of any sorti € S.
() If a € Tr(M, i,) is an ij-translation of M for some i, j € S, then ~T C %“71<T)for every subset T C My of any
sortk € §. B
(d) If o: M — N is a homomorphism, then go~To ¢~ C ~T% " for every subset T C Nj of any sorti € S. If ¢ is
—1
an epimorphism, then po~To @=! = ~T% " holds.

Let us now formulate the corresponding facts for syntactic algebras. For this we need a couple of definitions.

Definition 5.4. A '-algebra A is said to cover a I'-algebra M, M =< A in symbols, if M is an epimorphic image
of a subalgebra of V.

The covering relation generalizes both

o the subalgebra relation: M C A iff M is (isomorphic to) a subalgebra of A/, and
o the image relation: M <« N iff M is an epimorphic image of A

10 S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24

Definition 5.5. A I'-algebra \ is said to recognize a subset T of some sorti € I of M if there exist a homomorphism
¢: M — N and subset F C Nj of sort i of N such that L = Fw;l.

Lemma 5.6. Let M and N be I'-algebras. Then N recognizes a subset T C M of some sorti € S of M iff
M/T < N.

The lemma expresses the fact that, in a certain sense, the syntactic algebra is the minimal /'-algebra recognizing a
given subset.

Lemma 5.7. Let M = (M, I') and N' = (N, I') be any I"-algebras.

(a) M/TC = M/T for any subset T C M; of any sorti € S.

b M/TNU = M/T x M/U and M/TUU < M/T x M/U forany subsets T,U < M; of any sorti € S.

(¢) Ifa € Tr(M, i,) is an ij-translation of M (where i,j € S), then we have M Ja~ (T) < M/ T for every subset
T C My of any sortk € S.

@) If o: M — N is a homomorphism, then ./\/l/T(pi_1 < N/T for every subset T C Nj and any sorti € S. If ¢ is
an epimorphism, then M/Tgoi_l = N/T.

6. Syntactic tree algebras

When we define the syntactic congruences and syntactic algebras of binary tree languages by regarding these as
subsets of sort tree of free tree algebras F1a (A), the definitions and facts of the previous section get more explicit
forms.

Definition 6.1. Let A be a label alphabet. The syntactic tree algebra congruence, the STA-congruence for short, of
an A-tree language T is its syntactic congruence as a subset of sort tree of the I'-algebra Fra (A) of A-trees. The
syntactic algebra Fra (A)/~7 is called the syntactic tree algebra of T, and it is denoted by STA(T).

Since Fra(A) is a tree algebra, the syntactic tree algebras of A-tree languages are really tree algebras. To show
that the above definition agrees with Wilke’s [34] definitions, we need a careful analysis of the translations of the free
tree algebras Fra (A). The relevant parts of such an analysis are presented in the following lemma.

Lemma 6.2. Let A be any label alphabet.

(a) A mapping a: A — Ty is an It-translation of Fra (A) iff either
(1) there is an A-context p € C 4 such that a(a) = p(c,) for every a € A, or
(2) there exist an A-context p € Ca and A-trees s, t € Ta such that a(a) = p(fa(s, t)) for everya € A.

(b) A mapping o: Ta — T4 is a tt-translation of Fra (A) iff there is an A-context p € C 4 such that a(t) = p(t) for
everyt € Ty.

(c) A mapping «: CX — T4 is a ct-translation of Fra (A) iff there exist an A-contextr € C:{ and an A-tree t € Ty
such that a(p) = r(p(t)) for every p € CX.

Proof. That all translations are expressible as claimed, can be proved by induction following the definition of the sets
Tr(Fra(A), 1,J) (i, j € S) of translations of Fa (A). The complete proof presented in the Appendix of [26] involves
numerous cases and also statements about the missing types of translations. Here we just illustrate the idea by some
example cases.

For an elementary It-translation «(§) = e Fal4) (&1, s,1), where s,t € T4, we have a case of alternative (2) in
statement (a) where p = & and s, t € T4 are the given A-trees s and ¢. Indeed, (a) = 17 TA(A) (a,s,t) = fq(s,1) =
E(fa(s, 1)) forevery a € A.

Consider now an It-translation 8(«(§})) obtained as the composition of an lIt-translation « and a tt-translation 8,
and assume that there exist A-contexts p, g € C4 such that «(a) = p(c,) for every a € A, and B(t) = q(t) for every
t € T4. Then g(p) is an A-context such that g(p)(c,) = B(a(a)) for every a € A.

Of course, we should also show that all the mappings obtainable by the constructions mentioned in (a)—(c)
really are translations of the appropriate types. For example, we have to prove that for any p € Cjy4, the mapping
A — Ty, a— p(cy) is an It-translation of Fra (A). This can be done by induction on the £-depth of p. O

S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24 11

By using Lemma 6.2 and the observation that the I- and e-components of (T') are empty, we obtain a description of
the STA-congruence of an A-tree language T that is essentially Wilke’s definition.

Proposition 6.3. The STA-congruence ~* of any A-tree language T C Ty is obtained as follows. For any a, b € A,
s,t €Tqand p,q € cT,

(@ a ~] b iff

(1) (¥p € CA)(p(ca) eT < p(ep) € T), and

(2) (Vp € Ca)(¥s, 1 € TA)(p(fa(s, 1)) € T < p(fp(s,1) € T),
(b)s ~ t iff (YpeCa)(p(s)eT < pt)eT), and
© p~Lq iff VreCHVeTH(r(p)eT < r(g)eT).

Let us now show how syntactic tree algebras are related to the usual syntactic algebras [1,28-30] and the syntactic
semigroups (obtained by a natural modification from the syntactic monoids of [33]). Then we obtain new proofs
for Wilke’s [34] basic results about syntactic tree algebras and recognizable binary tree languages. The following
definitions are restricted directly to binary tree languages.

Definition 6.4. Let T C T4 for some label alphabet A.
(a) The syntactic congruence of T is the relation 07 on T4 defined by
sort & (VpeCa)(p(s)eT < p(t)eT) (5,1t € Ty),

and its syntactic algebra is the X¥4-algebra SA(T) := T4 /6.
(b) The syntactic semigroup congruence of T is the relation o7 on CX defined by the condition that for any p, g € C:{,

porq < (Vi eTA)(Vr e CA)(r(p)) €T < r(q)) €T),

and the syntactic semigroup of T is SS(T) = CX /or, where C X is regarded as a semigroup with respect to the
product p - ¢ = q(p).

The usual definition of a recognizable subset of an algebra [20] can be applied to a binary tree language 7 € Ty
either by regarding T as a subset of the EA—algebra Ta = (Ty, EA) or as a subset of sort tree of the tree algebra
Fra(A) = ((A, Ty, CX), I'). However, as shown by Wilke [34], the two definitions are equivalent. We choose the
first alternative since it is immediately clear that it means recognizability by a finite tree recognizer (cf. [7,20,32,13,
14], for example).

Definition 6.5. Let A be a label alphabet. An A-tree language T C T4 is said to be recognizable, or regular, if there
exist a finite X'4-algebra D and a subset F of D such that T = F @51. Let Recy denote the set of all recognizable
A-tree languages.

The above definition can also be expressed by saying that T € Recy iff T is saturated by a congruence on 74 of
finite index. The following proposition includes the contents of Wilke’s [34] Propositions 2 and 3.

Proposition 6.6. For any binary tree language T < Ta over any label alphabet A, the following conditions are
equivalent:

(1) T € Recy;

(2) SA(T) is a finite 54 -algebra;

(3) SS(T) is a finite semigroup;

(4) STA(T) is a finite tree algebra;

(5) T is recognized by a finite tree algebra.

Proof. That (1)—(3) are equivalent for tree languages quite generally is well known (cf. [13,14,29,31,33], for example).

Proposition 6.3 shows that 07 = %tT and o7 = %CT , and hence (4) implies (1)—(3). The equivalence of (4) and (5)
follows from Lemma 5.6.

That (2) implies (4) follows from the fact that the syntactic congruence 87 determines completely the syntactic
semigroup congruence or. Indeed, by comparing the definitions of the two relations, it is easy to see that for any
p.q € CX, p or g holds iff p(t) 01 q(¢) for every t € T4. This means, in particular, that if SA(T) is finite, then so is
SS(T), and hence also STA(T) is finite as its I-component is always finite. []

12 S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24

The next two lemmas, needed in the variety theory, are also well-known in various other forms, and all of them
can be derived from the general many-sorted theory of [25]. Here Lemma 6.7 follows from Lemma 5.7 when this is
applied to free tree algebras, and Lemma 6.8 follows from Proposition 6.3(b).

Since the tt-translations of a free tree algebra Fra (A) are defined by A-contexts, we define p_1 (T) ={teTy|
p(t) € T} for any binary tree language 7' C T4 and any A-context p € Cq.

Lemma 6.7. Let A and B be label alphabets. For any A-tree languages T, U C Ty,

(a) STA(T®) = STA(T),

(b) STA(TNU),STA(TUU) < STA(T) x STA(U),

(©) STA(p_I (T)) < STA(T) for every p € C4, and

(d) STA(T(p;I) < STA(T) for any homomorphism ¢ : Fya(B) — Fra(A).

Lemma 6.8. Let T C T4 for some label alphabet A.

(a) T € Recy iff the set {p~'(T) | p € C4} is finite.
(b) The ~T -class t/ T of any A-tree t € Ty can be given as

(ip (M I peCap®) ey \J ™' (1) | peCa p) ¢ T},
7. Varieties of binary tree languages

In this section we introduce varieties of binary tree languages. Although the general many-sorted theory of [25]
yielded all the basic properties of syntactic tree algebras, the variety theorems of [25] are not directly applicable here.
Firstly, the free algebras F1a (A) are always generated by sorted sets of the special form (A, ¥, #), not by arbitrary
finite sorted sets. Secondly, we are now concerned just with subsets of sort tree while the varieties in [25] consist
either of many-sorted sets or one-sorted sets of all possible sorts. In fact, the correspondence one could expect between
varieties of binary tree languages and varieties of finite tree algebras fails to hold. The modifications necessary for a
true variety theorem are introduced in the following section.

A family of recognizable binary tree languages is a mapping)V that assigns to each label alphabet A a set
V(A) € Recy of regular A-tree languages. We write V = {V(A)} with the understanding that A ranges over all
label alphabets. The inclusion relation and various operations on such families are defined in the natural way: if
U ={U(A)} and V = {V(A)} are families of recognizable binary tree languages, then

o U CViffU(A) C V(A) for every label alphabet A,
e U NV isthe family W = {W(A)} such that W(A) = U(A) N V(A) for every label alphabet A, etc.

Definition 7.1. A variety of binary tree languages, a VBTL for short, is a family of recognizable binary tree languages
V = {V(A)} such that for all label alphabets A and B,

(1) V(@A) # 9,

2)if T,U € V(A), then TE, TNU € V(A),

(3) if T € V(A), then p~'(T) € V(A) for every p € Cy4, and

@) if o: Fra(A) — Fra(B) is a homomorphism, then T(p{l € V(A) forevery T € V(B).

Let VBTL denote the class of all VBTLs.
A variety of finite tree algebras, a VFTA for short, is a nonempty class of finite tree algebras closed under
subalgebras, homomorphic images and finite direct products. Let VFTA denote the class of all VFTAs.

In terms of the usual class operators S and H and the operator Py that forms the class of all direct products with
finitely many factors from a given class (cf. [5] or [2], for example), we can define a VFTA as a class K of finite tree
algebras such that S(K), H(K), P;(K) € K.

It is clear that (VBTL, C) and (VFTA, C) are complete lattices. Therefore there is for each family of recognizable
binary tree languages V a least VBTL containing V, the VBTL generated by V. Similarly, for any class K of finite tree
algebras, the VFTA generated by K is the least VFTA containing K as a subclass.

The following fact, easy to prove and well-known from other similar situations, is frequently needed. Note that the
value n = 0 yields the trivial tree algebras.

S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24 13

Lemma 7.2. For any class K of finite tree algebras, the VFTA generated by K consists of the tree algebras M such
that M < My x --- x My, for somen > 0 and My, ..., M, € K.

Following the general pattern of various variety theorems we define two maps that connect the classes VBTL and
VFTA.

Definition 7.3. For any family of recognizable binary tree languages V = {V(A)}, let V* be the VFTA generated by
the class of all syntactic tree algebras STA(T) where T € V(A) for some label alphabet A.

For any class K of finite tree algebras, K’ is the family of recognizable binary tree languages such that K'(A) =
{T € T4 | STA(T) € K} for each label alphabet A.

In the above definition, and in other similar situations, we tacitly assume that K is an abstract class of algebras,
i.e., it contains every algebra isomorphic to any of its members. The following proposition shows how close to a
variety theorem, that would establish an isomorphism between (VBTL, C€) and (VFTA, C), we get with the above
definitions.

Proposition 7.4. Let U and V be families of recognizable binary tree languages, and let K and L be classes of finite
tree algebras.

@) IfU CV, thenU* C V4.

(b) FKCL, then K' CL'.

(c) If V € VBTL, then V* € VFTA.

(d) IfK € VFTA, then K’ € VBTL.

(e) If V € VBTL, then V% = V.

() IfK € VFTA, then K'* C K but the inclusion may be proper.

Proof. Here we show just that the inclusion in (f) may be proper; the rest can be found in the proof of Proposition 8.7
below.

Let us consider the I'-algebra M = ({{a, b}, {t}, {p}), I'), where the operations are defined in the only possible
way, i.e., M) = M®b) = «M(a, t,1) = k™Mb, 1, 1) = ™M (p,t) =t and AM(a, 1) = 2Mb, 1) = pM(a, 1) =
oMb, 1) = oM(p, p) = p. Since the t- and c-components are singletons, it is clear that M satisfies the identities
TA and is therefore a tree algebra. Let K be the VFTA generated by M. The t-component of every member of K is
also a singleton, and therefore K’(A) = {@, T4} for every label alphabet A. This means that K’ is the class of trivial
tree algebras and hence M € K\ K'*. [

8. Reduced tree algebras and a variety theorem

There are natural reasons why a complete correspondence between the classes VBTL and VFTA was not obtained
in the previous section. Firstly, since the algebras Fra (A) are generated by their I-components, so are the syntactic
tree algebras of all binary tree languages. In fact, Wilke [34] anticipated a variety theorem that would involve varieties
of such I-generated finite tree algebras. However, that something more is required, is indicated by the counterexample
used in the proof of Proposition 7.4; the tree algebra M is l-generated. It turns out that we have to focus on tree
algebras that do not have pairs of elements of sort label or context that are in a sense equivalent.

Definition 8.1. For any tree algebra M = (M, I'), let M' denote the subalgebra of M generated by (M;) =
(M, 9, 9). If M = M, then M is said to be l-generated. An l-generated tree algebra M = (M, I') is reduced
if it satisfies the following two additional conditions:

(1) For any a, b € My, if M (a) = LM(b) and KM(a, s, 1) = KM(b, s,t) forall s,t € My, thena = b.

(2) Forany p,q € M., if nM(p, t) = nM(q, t) for every t € My, then p = q.

Any tree algebra M = (M, I') can be reduced as follows. Let ML = N = (N, T, and let M be the sorted
relation on N such that
(1) forany a, b € Ny, a M b itf N (@) = N (b) & (V5,1 € NN (a,5,1) = kN (b, 5,1)),
(2) forany s, 7 € Ny, s M 1 iff s = 7, and
(3) forany p., g € Ne, p M q iff (vt € NoN (p. 1) = 1V (q.1)).

14 S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24
It is easy to see that 6Mis a congruence on NV, and let M" denote the quotient algebra A/ oM.

Lemma 8.2. For any tree algebra M, the tree algebra M, as defined above, is reduced. If M is reduced, then
M= M.

Proof. Let us writte NV = M! and = 6. Since N is l-generated, so is M” = N/6. Assume that for some
a,be N,

&) M@/ = M (b/én), and _
(B) (Vs,t € No(™ (a/6r,s/0c,1/600) = k™ (b/61, 5/, 1/60)).

Condition (A) is equivalent to ™ (a)/6; = M (b)/6;, and hence M (a) = M (b) by the definition of 6;. Similarly,
(Vs,t € Ny) (KM((I, s, 1) = M (b, s, 1)) follows from (B). Together (A) and (B) imply a/6, = b/6; by the definition
of ;. This means that M" satisfies (1) of Definition 8.1. Condition (2) follows similarly from the fact that

vt € Nom™M (p/6e, 11600 = 1™ (q/6c,1/600) = p/0c = q/be,

for all p, g € N¢. Hence, M” is reduced.
If M is reduced, then M! = M, and each component of 6M is the identity relation on the respective set. Hence,
M = MM =M. O

Lemma 8.3. For any tree algebras M = (M, ") and N' = (N, I"), if M < N, then M" < N"".

Proof. The covering relation is transitive as M < N iff M € HS({N\}), and the well-known properties of the class
operators S and H by which HSH S(K) = HS(K) for any class K of algebras (cf. [5], for example). Therefore it
suffices to prove the following special cases of the lemma:

(a) if M C N, then M" < N";
(b) if M <« N, then M" < N7,

If M C N, then also M! € N, and therefore we may assume in (a) that M and N are I-generated. Let 1 := 6M
and let v := 6V N (M x M) be the restriction of 6N to M. Then M /v € N7, and therefore it is enough to show that
v C u because then M" = M /u <~ M/v.

For any a, b € M),

anb =N@=>N0b) & (¥s,t € NN (a,s, 1) =N b, s, 1))
= M) = M®b) & (V5,1 € MM (a, s, 1) = k™Mb, s, 1))
=awmb,

and hence v} C u. It is obvious that vy = ¢ and the inclusion ve € i is verified similarly as vy € uj. Hence v C pu.
To prove (b), let ¢: N' — M be an epimorphism. Since Njg = M), it is clear that the restriction of ¢ to N’ is
an epimorphism from N7 onto M. We may therefore again assume that M and A themselves are l-generated. Let

wi=60Mandv = 0N We show now that the mapping ¥ : N/v — M u defined by

Vit a/w = ag/p, Y t/ve e 1o/ g, Wet p/ve = pge/ e

(where a € Ny, t € Ny, p € N¢) is an epimorphism from A" onto M".
First we note that i is well-defined. For example, for any a, b € N},

a/vy=b/v =

N = NB) & (s, t € NowN (@, s, 1) = kN b, s, 1) =

N@ege = N (D)o & (V5,1 € NN (a, s, e = kN (b, 5,) =

Mag) = Mber) & (s, t € Ny (Magr, spp, tor) = k™M (bor, sor, ter) =
ap/m = b/,

where the last equality depends on the assumption that ¢ is surjective. Similarly, s /v¢ = ¢ /vy implies s@t/ e = toi/ 1t
forany s, t € N, and p/ve = q /v, implies poc/ e = q@e/1ie for any p, g € Ne.

S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24 15

It is clear that ¢ is surjective. Finally, by routine computations it can be verified that ¥ is a homomorphism. For
example,

N @y = N@ v = N@eg e = Mag) /i = M ap/m) = ME(a/),
foreverya € N. U

The following proposition summarizes the main properties of M” and shows that it is, up to isomorphism, the
greatest reduced tree algebra covered by M.

Proposition 8.4. For any tree algebra M, M" is a reduced tree algebra such that M" < M. Moreover, if N < M
for a reduced tree algebra N, then N' < M",

Proof. We know already that M” is reduced and M" < M follows directly from the definition. If A is a reduced
tree algebra such that N' < M, then N = N" < M" by Lemmas 8.2 and 8.3. [J

Let us now note a couple of important facts about reduced tree algebras and syntactic tree algebras.

Lemma 8.5. The syntactic tree algebra of any binary tree language is reduced. On the other hand, for any finite
reduced tree algebra M, there exist a label alphabet A and regular A-tree languages T, ..., T, C Ta, for some
n > 1, such that STA(T}) < M forevery j =1, ...,n, and M C STA(T}) x --- x STA(T,).

Proof. As a quotient algebra of Fra(A), the syntactic tree algebra STA(T) of a binary tree language T C Ty
is naturally 1-generated. That STA(T) satisfies conditions (1) and (2) of Definition 8.1 can be verified by using
Proposition 6.3.

To prove the second claim of the proposition, take a label alphabet A such that |A| > |Mj]. Since M is l-generated,
there is an epimorphism ¢ : Fra(A) — M. Assume that M¢ = {t1, ..., t,} forsomen > 1, and let T} := tjgot_l for
each j = 1,...,n. By using Lemma 5.7(d) we obtain forevery j = 1,...,n,

STA(T)) = FraA)/Tj = M/{y} = M.

To prove that M < STA(T;) x --- x STA(T,), it suffices to prove that M is isomorphic to a subalgebra of
M/} x -+ x M/{t,}. To do this, we consider the mapping

v o= (Y1, Y, Ye): M — M/} x - x M/}

that maps each element u € M; (i € S) to (u/{t1},...,u/{t,}). It is clear that ¥ is a homomorphism from M to
M/{t1} x --- x M/{t,}. Hence, it remains to be shown that i is injective.

If ayn = by for some a, b € M), then a %l{tj} bforevery j = 1,...,n.In particular, a %1{

M
that (M (a) = Mb). Similarly, a ~* @ p implies kM (a, s, 1) = kM (b, 5, 1), for all s, 1 € My. Since M is
reduced, this means that a = b.

If sy = ty¢ for some s, t € My, then s %is} t yields s = 1.

M
Finally, if py. = g for some p, g € M, then p %én (.0} q implies nM (p,t) = nM(q, t) for every t € M.

Since M is reduced, this means that p = q.
Hence we have shown that Y : M — M/{t;} x --- x M/{t,} is a monomorphism. [

M
“7 @), which implies

Definition 8.6. A variety of finite reduced tree algebras, an rVFTA for short, is a nonempty class of finite reduced tree
algebras R such that ' € R whenever N is a reduced tree algebra and N’ < Mj x --- x M,, for some n > 1 and
My, ..., M, € R.Let rVFTA denote the class of all rVFTAs.

An rVFTA contains, in particular, all reduced subalgebras and all reduced images of its members. Since the
intersection of any collection of rVFTAs is also an rVFTA, we may speak about the rVFTA generated by any given
class of finite reduced tree algebras.

We now move towards establishing an isomorphism between the complete lattices (rVFTA, C) and (VBTL, ©)
thus obtaining the desired variety theorem. The mapping R +— R’ is defined as above but its application is restricted
to classes of finite reduced tree algebras. The mapping V +— V* is modified as follows: if V = {V(A)} is any family of
recognizable binary tree languages, then V“ is the r'VFTA generated by the class of all syntactic tree algebras STA(T)
where T € V(A) for some A.

16 S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24

Proposition 8.7 (The Variety Theorem). Let U and V be families of recognizable binary tree languages, and let P
and R be classes of finite reduced tree algebras.

@) IfU €V, thenU® < V.

(b) IfP C R, then P! C R,

(c) If V € VBTL, then V* € rVFTA.
(d) IfR € rVFTA, then R! € VBTL.
(e) IfV € VBTL, then V4 = V.

() If R € rVFTA, then R"® = R.

Proof. Assertions (a) and (b) are obvious, (c) follows directly from the definition of V¢, and (d) follows from
Lemma 6.7.

As to (e), the inclusion V C V* is also obvious, and the less obvious converse inclusion can be shown by adapting
suitably Eilenberg’s [8] original proof similarly as, for example, in [29] (Proposition 7.3) or in [25] (Proposition 6.3)
where the corresponding fact is proved in the general many-sorted case. For completeness and the reader’s convenience
we present such a proof for the current case, too.

Assume that T € V* for some A. Then STA(T) € V¢ implies that STA(T) < STA(T}) x --- x STA(T,), where
T, e V(A;)) i = 1,...,n) for some n > 1 and label alphabets Ay, ..., A,. Foreachi = 1,...,n, let <pi denote the
syntactic homomorphism Fra (A;) — STA(T;) that maps each element of Fta (4;) to its ~Ti_class. Then there is a
homomorphism

B: Fra(A1) x - x Fra(Ay) — STA(T}) x - -+ x STA(Ty)
such that B’ = ti¢! foreachi = 1, ..., n, where
7' STA(T)) x -+ - x STA(T,,) — STA(T;) and t': Fra(A]) x -+ x Fra(An) — Fra(4))

are the respective projections. By Lemma 5.6 there exist a homomorphism ¢: Fra(A) — STA(T7) x --- x STA(T,)
and a subset H of the product STA(Tj)¢ X --- x STA(T,)¢ such that T = H(p{l. Since B is an epimorphism, there is
a homomorphism v : Fra(A) = Fra(A1) X - -+ x Fra(A,) such that 8 = ¢. Because H is finite, T is the union
of the finitely many sets u(pt_l withu = (uy,...,u,) € H. Since (pni = lpriq)i foreveryi =1, ..., n, each such set
can be expressed as

upy ' = (uilper) ™ 11 =i <n) = Juile) @) 11 <i <n).

It follows from Lemma 6.8 that ui(wi)_l € V(T;) foreveryi = 1,...,n,and hence also T € V(A).

The inclusion R C R in (f) follows from the fact that the syntactic tree algebras that generate R’ are also in R.
Indeed, if T € R’(A) for some A, then STA(T) is in R by the definition of R’.

It remains to show that also R € R’® holds for any rVFTA R. Let us consider an M € R. Since M is a finite
reduced tree algebra, there exist by Lemma 8.5 a label alphabet A and recognizable A-tree languages 71, ..., T, C Ty
(n > 1) such that STA(T)) < M (j =1,...,n)and M C STA(T;) x --- x STA(T,). Then STA(T;) € R and so
Tj € R'(A) forevery j =1, ..., n, and hence by the inclusion M C STA(T;) x - - - x STA(T,) we get M € R™“. O

To conclude this section, we shall note that every rVFTA is obtained as the class of reduced members of a VFTA,
but that this fact does not establish a bijection between rVFTA and VFTA because a given rVFTA can be obtained
from several VFTAs.

Proposition 8.8. For any VFTA K, the class K" of all reduced members of K is an rVFTA. On the other hand, for
each rVFTA R, there is a VFTA K such that K = R, but this K is not necessarily unique for a given R.

Proof. It follows easily from the definitions of VFTAs and rVFTAs that K" € rVFTA for any K € VFTA, and also
that if R € rVFTA and K is the VFTA generated by R, then K" = R.

For the last assertion, let R be the rVFTA of all trivial tree algebras. Then R is itself a VFTA such that R” = R. On
the other hand, we have K" = R also for the VFTA K of all finite tree algebras M = (M, I') such that |[My| = 1. O

S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24 17

9. VBTLs and general varieties of tree languages

The varieties of binary tree languages considered here are in some sense less general than the varieties of tree
languages studied in [29], for example, but at the same time they are in some respect more general. Less general they
are because they involve binary trees only and in that there are no separate leaf alphabets. On the other hand, a VBTL
is not restricted to one ranked alphabet but contains tree languages over all alphabets of the form X4, In this respect
VBTLs resemble the general varieties of tree languages (GVTL) of [30] and the similar varieties studied in [18]. We
shall show that each GVTL becomes a VBTL when restricted to the binary ranked alphabets X4 considered here.
Since many known families of regular tree languages are indeed GVTLs, this fact yields several natural examples
of VBTLs. Such examples include the families of nilpotent, definite, reverse definite, generalized definite, locally
testable and non-counting tree languages. For showing the connection between GVTLs and VBTLs we have to recall
the definition of a GVTL.

Let X' and {2 be ranked alphabets. A g-morphism from a Y -algebra D = (D, X)) to an {2-algebra & = (E, {2) is a
pair of mappings «: XY — (2 and ¢: D — E such that

(1) a(f) € 2, forany f € X, and m > 0,
2) cDgz) = oz(c)‘g for every ¢ € X, and
3) fD(dl, e dp)e = a(f)g(dup, ...,dpo) foreverym >0, f € Yy, anddy, ...,d, € D.

It is easy to see (cf. [30]) that a g-morphism («, ¢): 75x(X) — 7 (Y) between term algebras is essentially a
relabelling of trees that replaces each label from X' with its o-image. That leaves labelled with leaf symbols in X
may be replaced by any {2Y -trees, is of no consequence here because in a VBTL all leaf alphabets are empty (and not
shown at all).

A general variety of tree languages (GVTL) is a family of regular tree languages V = {V(X, X)} such that for all
ranked alphabets ' and {2, and all leaf alphabets X and Y,

(G V(X, X) # 4,

(G2) if T,U € V(X, X), then TE, TNU eV, X),

(G3) if T € V(X, X) and p € Cx(X), then p~(T) € V(X, X), and

(G4) if (o, 9): T52(X) — T(Y) is a g-morphism, then To~! € V(X, X) forevery T € V(£2, V).

If we restrict ourselves to the ranked alphabets X4 obtained from label alphabets and assume that the leaf alphabets
are always empty, then the above definition matches exactly the definition of a VBTL except for the last clauses
concerning g-morphisms and homomorphism, respectively. Hence, to determine the relationship between VBTLs and
these restricted GVTLs we have to describe the g-morphisms between the term algebras 74 and the t-components
of homomorphisms between the free tree algebras Fra(A). The following two lemmas follow directly from the
appropriate definitions.

Lemma 9.1. Let A and B be any label alphabets. If («, ¢): Tp — Tp is a g-morphism, then

(1) cap = a(cy) for everya € A, and
2) fals,t)o =a(fy) (s, tp) foranya € Aand s, t € Tg.

The lemma also shows that the mapping ¢: T4 — Tp in a g-morphism («, ¢): Ty — 7p is a relabelling fully
determined by o: X4 — X8,

Lemma 9.2. Let A and B be label alphabets. If ¢ : Fra(A) — Fra(B) is a homomorphism, then

(1) capt = cag, for every a € A, and
(2) fa(s, D)ot = fag(S@r, tey) foralla € Aands,t € Ta.

Hence, homomorphisms between free tree algebras also are just relabellings of binary trees. Moreover, it is clear
that for any homomorphism ¢ : F1a (A) — Fra(B) there is a g-morphism («, V) : T4 — 7T such that r¢¢ = 1 for
every t € Ty; we just define o by setting a(c,) = cay and a(fu) = fay for every a € A, and this is consistent with
the idea that ¢, and f, actually represent the same label a. This means that (G4) in the above definition of a GVTL
implies the corresponding condition in the definition of a VBTL. The following fact is now obvious.

18 S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24

Proposition 9.3. For any GVTL YV = {(V(X, X))}, the family of recognizable binary tree languages V> = {V(A)},
where Vb (A) = V(ZA,) for each label alphabet A, is a VBTL.

The relabellings defined by homomorphisms between free tree algebras are somewhat less general than the g-
morphisms of Lemma 9.1 because of the bindings between the pairs ¢4, f, (a € A): if ¢, maps to ¢p, f, has to map to
[, and conversely. This means that (G4) is strictly stronger than clause (4) in Definition 7.1, even when restricted to
our binary tree languages, and therefore it is conceivable that not every VBTL is obtained as a restriction of a GVTL.
That this is indeed the case is shown by the following example.

Example 9.4. For each label alphabet A, let V(A) be the set of all regular A-tree languages 7 < T4 such that
fa(ca, t) %tT tforalla € A andt € Ty4. It is easy to verify that V = {V(A)} is a VBTL. Assume that V = U> for
some GVTL U = {U(X, X)}. Let A = {a, b} and define the A-contexts p, = fy(cq, &) and pp = fp(cp, &). Let T
be the least A-tree language such that ¢, € T and p,(¢), pp(t) € T foreveryt € T. Then T € V(A) = U(ZA, 7).
Consider the g-morphism («, ¢): 74 — 7p defined by the assignment

a: YA - EA, Ca > Cay Ch > Chy fa > fb, fo = fa,

and the A-tree t = f,(cq,cq). Now t € T(,o’1 but p,(t) ¢ T(p’1 because t¢ = fp(cq, ca) = pp(ca) € T while
Pa®)o = fi(ca, fo(ca,ca)) ¢ T.Hence, Te~! ¢ U(ZA, #), a contradiction, and we have shown that V = U’ for no
GVTL U.

Whether there are more natural examples of varieties of binary tree languages that cannot be obtained from a GVTL
remains to be seen.

The relationship between the two theories can be illuminated also by considering the corresponding syntactic
algebras. First we show how the syntactic tree algebra of a binary tree language can be obtained from its syntactic
algebra.

The set Tr* (D) of (non-unit) translations of a X-algebra D = (D, X)) is the least set of unary operations on D that
(1) contains every elementary translation

D— D, x> fPW,....di_1,x,dit1,...,dn) (x € D),

wherem > 0, f € Y,,1 <i <manddy,...,di—1,dit1,...,dy € D are given, and (2) is closed under composition.
Note that Tr* (D) contains the identity map of D only if this is the composition of some elementary translations.

Definition 9.5. Let A be a label alphabet and D = (D, ¥'4) be any Y4-algebra. Let 8p be the equivalence on A
defined by

aspb & P =cP&fP=fP (a,beA).

(l=

Now the I'-algebra D* = ((A/8p, D, Trt (D)), I') is defined by setting foralla € A, d,e € D and p, g € TrH (D),

(1) Pa/sp) = cP) «P'a/sp.d,e) = fPd, e)
3) Aa/bp.d) = fPEd) &) pPa/bp.d) = £P(d.§)
) nP'(p,d) = p(d) ©) oP(p.q) = p(@).

The operations of D*® are well-defined by the definition of §p. Moreover, the following holds.

Lemma 9.6. For any label alphabet A and any %4-algebra D = (D, X4), the I'-algebra D* is a tree algebra.
Furthermore, if D is generated by the empty set, then D* is reduced.

Proof. It is easy to verify that D*® satisfies the identities TA. Suppose D is generated by @. To see that D*® is l-generated,
we apply Definition 9.5:

(a) A/ép generates all of D by (1) and (2), and
(b) all elementary translations of D*® are obtained from A/§p and D by (3) and (4), and all of their compositions are
obtained by (6).

That D* satisfies condition (1) of Definition 8.1 follows from the definition of §p, and condition (2) follows from the
definition of nP°. O

S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24 19

Proposition 9.7. SA(T)® = STA(T) for any binary tree language T.
Proof. Assume that T C T4 for some leaf alphabet A. Let us compare
SA(T)* = ((A/8sar), Ta/0r, TeH (SA(T))), T')
with
STA(T) = Fra(A)/~" = (A/~ . Ta/~{. Ci/~). T).

First of all, we may replace Tr™ (SA(T)) with CX /ot since by Lemma 6.2, for every a € Trt(SA(T)), there is a
p € CX such that «(t/67) = p(t)/0r forevery t € T4, and if p o7 g for some p, g € CX, then p(t)/0r = q(t) /61
forevery t € Ty.

In the proof of Proposition 6.6 we already noted that 7 = %tT and o = %CT . That also ésary = ’VIT holds follows
from the definitions of §s4(7) and SA(T) by repeated use of Proposition 6.3: for any a, b € A,

adsan b o CgA(T) _ CiA(T) & faSA(T) _ beA(T)

& o X cp & (V5.1 € Ta)(fals, 1) ~{ fo(s. 1))
& a %lT b.

To show that the sorted identity map defines an isomorphism between the tree algebras SA(T)*® and STA(T'), we have to

verify that the operations of the two ['-algebras are the same. This can be done by straightforward, though somewhat

tedious, computations directly based on the relevant definitions. As examples, we consider the «- and A-operations.
Foranya € A and s, t € Ty,

KSAD* (a/Ssary, s /07, 1/07) = [T (s /07, 1/0r) = £ (s, 1) /07

= fa(s,)/0r = fa(s,)/~
=M (a5, 1)/ ~]
=iSAD @@/~ s =T 1) ~D).

When considering the operations involving elements of sort context, we identify each translation T4/0r —
Ta/0r, t/07 > p(t)/6r with the ~I -class of any A-context p € C 4 that defines it. For example, 154" = 3574 jg
then seen as follows. Forany a € A and s, 1 € T4,

WAD (a/Ssacry, 1/07) (s /07) = f2 D&, 1/67) (s /67)
= 22D (s 07, 1/67) = fu(s,1)/0r
= fu(s,)/ ~L = 2T @, 1) (s)/~T
=MD @/~ 1) ~{)(s/~{). O

Corollary 9.8. Let A be any label alphabet. For any A-tree languages T and U, if SA(T) = SA(U), then STA(T) =
STA(U).

Although the syntactic tree algebra of any binary tree language is determined by its ordinary syntactic algebra,
there is a subtle point to be observed that explains why not every BVTL is obtained from a GVTL.

In the theory of GVTLs the syntactic invariant used to characterize a tree language T C Ty (X) is its reduced
syntactic algebra RA(T) (cf. [30]). This is obtained from SA(T) by merging equivalent symbols in X4 similarly as
we merged label symbols when M” was constructed from a tree algebra M. However, in the case of a binary tree
language T C T4, the construction of RA(T) may merge two symbols ¢, and ¢, without merging f, and f;, or
conversely, and in such a case a and b are not merged in STA(T).

Example 9.9. Let us consider the A-tree language T = {c,} for A = {a, b}. Clearly, T4 /07 = {T, TB}, and
ch(T) =T, CZA(T) _ TE, f;A(T)(u, V) = beA(T)(Lh V) = TE,

for all u,v € T4/0r. Hence, f, and f;, are merged when RA(T) is constructed but ¢, and ¢, are not. Of course, a
and b are not merged in the 1-component of STA(T).

20 S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24

In the GVTL-theory any two algebras D = (D, X) and £ = (E, {2), possibly over different ranked alphabets, are
in effect equivalent if they are g-isomorphic, D =, £ in symbols; a g-isomorphism is a g-morphism in which both
mappings are bijective.

Remark 9.10. The syntactic tree algebras of two binary tree languages may be non-isomorphic even when their
syntactic algebras (or even reduced syntactic algebras) are g-isomorphic. More precisely: there exist a leaf alphabet A
and two A-tree languages T and U such that SA(T) =, SA(U) and RA(T) =g RA(U), but STA(T) 2 STA(U).

Proof. Let A = {a, b} and let us consider the A-tree languages
T ={ca}U{fals,0) |s,1 € Tayand U = {ca} U {fp(s, 1) | 5,1 € Ta}.

Now T4 /07 = (T, TC} and Tx /6y = {U, UL}, and we may let RA(T) = SA(T) and RA(U) = SA(U) because in
neither case are there any pairs of equivalent symbols. It is easy to verify that the pair of maps

a: XA = XA civs can cp > Chy far> for fo = fas
@: Ta/0r — Ta/0y, T — U, TC > UC,

is a g-isomorphism from RA(T) to RA(U). However, STA(T) 2 STA(U) because STA(T) satisfies the identity
t(a) =~ k(a, s, t) while STA(U) does not. Indeed, for any s, ¢ € Ty,

SO @A) = ca/ ™ = fas. 0/~ = D@y~ s~ 1)),

for both d = a and d = b, while
SN @)~ = ca/ 5] # fals, 0/ =N Ota) s/~ 1/~0). O

Remark 9.10 suggests that by using syntactic tree algebras we can make some distinctions between binary tree
languages that cannot be made by using syntactic algebras or reduced syntactic algebras. However, this depends
again on the bond between a leaf label ¢, and an interior node label f, created by the definition of the syntactic tree
congruence, and it may be hard to find any natural examples where the difference could be utilized.

To complete the picture, we introduce a partial converse of the construction of Definition 9.5.

Definition 9.11. Let M = (M, I') be a tree algebra such that M is a finite set. Treating M) as a label alphabet and
denoting it by A, we let M° = (My, £4) be the X“-algebra such that for any a € A,

(1) M = M(a), and
Q) M (u,v) = kcM(a, u, v) forall u, v € M.

As a general example, we note that Fra (A)° = 74 for any label alphabet A.

Consider now any leaf alphabet A and any A-tree language T, and set A := A/ ’«VJIT and a := a/ RBIT for every
a € A. Since %tT = 607 and %CT = o7, we may then write STA(T) = ((A, Ta/O7, CX/(TT), I'). By easy computations,
one may verify that for every a € A,

@))] chA(T)O = ¢q/0r = cLS,A(T), and

@) LD 5107, 1/01) = fuls, 0)/6r = £33 (567, 1/67) forall s, 1 € Ta.

Hence,a: A — A, a > a, and the identity map ¢: /07 +— t/07 of Ty /0r, define a g-morphism («, ¢): SA(T) —
STA(T)®. Since « is surjective and ¢ the identity map, this means that STA(T)° is very similar to SA(T), the only
possible difference being that some identical operations of SA(T) may be replaced by one operation in STA(T)°. On
the other hand, RA(T) is easily seen to be obtained from STA(T)° by possibly further merging some equally realized
operators ¢z and cj, or fz and fj, for which a %lT b does not hold. Any characterization of T in terms of SA(T), or
RA(T), is therefore likely to yield a characterization in terms of STA(T). This is illustrated by some examples in the
following section.

S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24 21

10. Equational descriptions of VBTLs

Although basically the same families of binary tree languages can be characterized in terms of syntactic tree
algebras as by syntactic algebras, or reduced syntactic algebras, in many cases the language of tree algebras appears
to be very convenient for defining the class of tree algebras corresponding to a given VBTL. In [34] Wilke gave
an effective characterization of frontier testable, or reverse definite, binary tree languages in terms of syntactic tree
algebras and also presented equational definitions of the corresponding class of finite tree algebras. We shall present
some further examples of equational descriptions of tree algebras for some well-known families of tree languages.
However, first we consider certain special I'-terms and identities involving such terms.

Letp,q,r,p1,p2,---,91,92,--. and s, t, 81, 82, ..., t, t, ... be variables of sort context and tree, respectively.
It is a major advantage of the language of tree algebras that it admits such variables. For any k > 0, let

® pi---p1(Y) :=nPk, n(Pk—1,-.., 11,0 ...)), and
[] pk ‘p] = U(pkao—(pkfla -"7U(p27 p])"‘))‘

For k = 0, these expressions stand for t and &, respectively.

Let ¢ be a valuation of the variables in a given tree algebra M = (M, I'). If ¢(p1) = p1, ..., C(px) = pr (€ M)
and ¢ (t) =t (€ My), thenpg - - - pi (t)M(g“) denotes the value nM Pk -+ » nM (p1,t)...)of theterm pg - - - p1(t) in M
for the valuation ¢. Similarly, let pg - - - p{\/l (¢) denote oM (py, ..., o™ (p2, p1) .. .). In terms of these conventions,
we can say that an identity

Pr---p1(8) X Qi ---q1 (V)
holds in a tree algebra M, or is satisfied by M, if

pr-- P OME@) =g - q©M©)

for all valuations ¢ of the variables in M.
For any label alphabet A, in Fra (A) variables of sort context and variables of sort tree range over the set C X of
non-unit A-contexts and the set 74 of A-trees, respectively.

Lemma 10.1. Let A be a label alphabet, t € Ty and q € CX, and let us consider any terms py, - - - p1(s) and qx - - - q1,
where h > Q0 and k > 1. Then

(a) hg(t) = h iff there exists a valuation ¢ of the variables in Fta (A) such that py, - - - p1 (s)]:TA(A)(g“) =t, and

(b) ds(q) = k iff there exists a valuation ¢ of the variables in Fra (A) such that qy - - ~qf:TA(A)(§) =gq.

In other words,

@) hg(t) = hifft = pp(... p1(s)...)=s-p1-...- pyforsome py,...,pp eCXands € Ty, and
(b)) de(q) = kiffg = qi(...q2(q1)...) =q1-q2 - ... qi for some qu, ..., qx € C.

Consider any label alphabet A and any X 4-algebra D = (D, £4), and let ¢p be the unique homomorphism from
Ta to D. Each A-context p € C4 defines a unary operation pD: D — D as follows:

(1) €P: d v+ disthe identity map 1p: D — D, and
2)if p = fu(g,s) or p = fu(s,q), for some a € A, g € C4 and s € T4, then for every d € D,
pP(d) = fP(qP @), spp) or pP(d) = £P(sep, P (d)), respectively.

It is clear that each pD is a translation of D, and if ¢p is surjective, then every translation of D is obtained this
way. It is also clear that if p = g(r) for some g, r € Cy, then pP is the composition of qD and P, that is to say,
pD(d) = qD(rD(d)) for every d € D.

The following lemma results from the above discussion.

Lemma 10.2. Let A be any leaf alphabet and let M = (M, I') be a tree algebra such that My = A. Then the
following hold for all h, k > 0.

(a) M satisfies pp, -+ p1(8) = qk - - - q1 (t) iﬁ‘pMo(u) = qMo(v) holds for all u,v € My and all p, g € Cy4 such that
de(p) = h and dz (q) > k.

22 S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24

(b) M satisfies pg---p1(s) = pr---p1(t) iﬁ”pMo (n) = pMo(v) holds for all u € My and all p € Cy4 such that
de(p) > k.
(¢) M satisfies pp - -p1 ~ qi - - - q1 iff p™M° = g™ holds for all p, q € C4 such that de(p) > hand ds(q) > k.

Recall that an algebra D (of any kind) is said to ultimately satisfy (cf. [8]) a sequence of identities u; ~ v, up &
V2, U3 X v3, ... if there is an n > 1 such that D satisfies u; ~ vy for every k > n.

The term function tP. DX - D induced by aterm t € Tx(X) in a given X -algebra D = (D, X)) is defined as
follows. For any assignment oo : X — D of values to the variables,

(1) cD(a) =P for every ¢ € Xy,
) xP(a) = a(x) for every x € X, and
3) P = fPaP@),....tP @) ift = f(t1, ..., tw).

As the first example we consider the GVTL Nil = {Nil(X', X)} where for each pair X and X, Nil(X, X) is the set
of all finite X' X -tree languages and their complements in T's;(X). In [12] a finite algebra D = (D, X') was defined to
be nilpotent if there is an element dy € D and a number k > 0 such that for any leaf alphabet X, and any ¢ € T5;(X)
such that hg(¢) > k, tD(oz) = dy for every assignment «: X — D. In other words, if D is viewed as a deterministic
bottom-up tree automaton, it reaches the root of any tree of height > k in state dy for any assignment « of initial states
to the leaf symbols. If D is nilpotent, the minimal value of k is called its degree of nilpotency. In [29] it was noted that
for any fixed X, the class Nilx; of all nilpotent X'-algebras is the variety of finite X-algebras that corresponds to the
family Nily = {Nil(X, X)}, where X' is now fixed and X ranges over all leaf alphabets. This fact is easily extended
to a correspondence between the GVTL Nil and the generalized variety of finite algebras (GVFA; cf. [30], p. 13) Nil
of all nilpotent algebras. This means that for any ' and X, a } X-tree language T is in Nil(X, X) iff SA(T) € Nily;,
or equivalently, iff RA(T") € Nil.

Let A be any leaf alphabet. It is easy to see that a finite X 4-algebra D = (D, £4) is nilpotent if there exist a
k > 0 and an element dy € D such that pD (d) = dy for every d € D whenever p € CX is an A-context with
dg(p) = k. This means by Lemma 10.2(a) that for a finite tree algebra M = (M, I') such that M; = A, the algebra
M° = (My, 54) (defined in the previous section) is nilpotent iff M satisfies the identity py - - - p1(s) ~ qi - - - q1 ()
for some k > 0. Furthermore, it is clear that the syntactic algebra SA(T) of any regular A-tree language T is nilpotent
iff STA(T)® is nilpotent. By collecting together the above observations, we obtain the following description of the
VBTL Nil®.

Proposition 10.3. If T is any regular A-tree language for some label alphabet A, then T € Nilb(A) iff STA(T)
ultimately satisfies the sequence of identities

p1(s) = qi(D), p2-p1(s) ® q2 - q1 (), p3-p2-P1() Q3 - Q2 - q1 (D), (N)

A couple of remarks are in order here. One can write for any given label alphabet A a sequence of ¥ 4-equations that
ultimately defines the class of nilpotent 54-algebras. For example, if A = {a, b}, the class of nilpotent X4 -algebras
is ultimately defined by a sequence

X1 R x2, fa(x1,x2) = fp(x3,x4), fa(fa(x1,X2), x3) = fa(xa, fa(xs, X6)),

SJa(fa(x1, x2), x3) & fa(x4, fp(x5,%6)), ...,

that for each k > 0, contains a set of identities defining the class of X 4-algebras of degree of nilpotency < k. However,
this sequence is more complicated than the sequence (Nil) and it also depends on A. On the other hand, it has to be
noted that a description of a VBTL like the above proposition does not yield automatically a decision method; we still
need some bound for the degree of nilpotency of a nilpotent algebra in terms of its size, for example.

As our next example we consider definite tree languages. A tree language is definite if there is a bound k > 0 such
that the membership of a tree in the language can be decided by looking at its root-segment of height k. Definite tree
languages were first studied by Heuter [15,16], their variety properties were noted in [29,30], and in [9] Esik describes
the corresponding algebras and studies their structure. The following formal definitions are from [15,16] as modified
in [29].

Let X' be any ranked alphabet, X any leaf alphabet and & > 0. For any X X-tree ¢, let root(¢) denote the label of
the root of . The k-root 1 (t) of a X X-tree ¢ is now defined as follows:

S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24 23

(1) ro(¢) = € (the empty root segment) for every ¢t € Tx(X).

(2) r1(¢t) = root(t) for every t € Tx;(X).

(3) Let £ > 2. If hg(¢#) < k, then ry(t) = . If hg(t) > k and r = f(t1,...,ty), then rz(t) =
fe—1(t1), .o tk—1(tm))-

A tree language T C Tx(X) is k-definite (k > 0) if for all 5,7 € Tx(X), if rp(s) = 1 (¢), thens € T iffr € T.
A tree language is definite if it is k-definite for some k > 0. Let Defr (X, X) and Def (X, X) denote the sets of all
k-definite and all definite)’ X -tree languages, respectively. For any k > 0, Defy := {Defir (X, X)} is a GVTL, and so
is the union Def := {Def (X', X)} of these families (cf. [30]).

A Y-algebra D = (D, X)) is said to be k-definite (k > 0) if for every X and any s, t € Tx(X), if rp(s) = 1x(¢),
then s (a) = 1P («) for every a: X — D. An algebra is definite if it is k-definite for some k > 0.

In [9] it was shown that a tree language is (k-)definite iff its syntactic algebra is (k-)definite. To turn this fact into
an equational tree algebra characterization, we need one more observation: for any k > 0, X, X and 5,1 € Tx(X),
r(s) = r(2) holds iff s = pg(...p1(s’)...) and t = pp(...p1(")...) for some pi,..., pr € C}(X) and
st e Tx(X).

By applying the above definitions and facts to the alphabets Y4 and binary tree languages, we get by
Lemma 10.2(b) the following result.

Proposition 10.4. Let T be a regular A-tree language for some label alphabet A. Then T € Def®(A) iff STA(T)
ultimately satisfies the sequence of identities

p1(s) ~ p1(t), p2 - p1(s) = p2 - p1(V), p3-p2-p1(s) ® p3 -p2 - p1(D), (D)

Again we can note that one could apply the equational descriptions of definite algebras given by Esik [9] to
obtain, for each A, a sequence that ultimately defines the class of definite X4-algebras, but such a sequence is more
complicated than (D) and it depends on A. As shown by Heuter [15,16], and by Esik [9], it is decidable whether a
given finite algebra is definite or not, but this does not follow from the equational descriptions alone.

As a further, somewhat different, example, we consider the aperiodic tree languages introduced by Thomas [33].
A Y X-tree language T is aperiodic, or non-counting, if there is an n > 0 such that for all p,g € C E(X) and
teTx(X),t-pt-qeTifftr-p"™'.q e T.If Ap(¥, X) denotes the set of all aperiodic X X-tree languages, then
Ap = {Ap(X, X)}is a GVTL (cf. [30]). In [33] it is shown that a tree language T is aperiodic iff its syntactic monoid
SM(T) is aperiodic, i.e., all of its subgroups are trivial. A semigroup M is known to be aperiodic iff there exists an
n > 0 such that x" 1 = x" for every x € M (cf. [8] or [22], for example).

The c-component C:{ / %cT of the syntactic tree algebra of a binary tree language T < T4 forms a semigroup
with respect to the product p/T - q/T := p - q/T. This semigroup is isomorphic to the syntactic semigroup SS(T'),
and differs from the syntactic monoid SM(T') only in that it does not necessarily have a unit element. Hence, T
is aperiodic iff Cj\' / ~I' is an aperiodic semigroup. By Lemma 10.2(c) we may now turn Thomas’ result into the

C
following equational characterization, where p” stands for the n-fold productp -p---p (n > 1).

Proposition 10.5. If T is a regular A-tree language for some label alphabet A, then T € Ap?(A) iff STA(T) ultimately
satisfies the sequence of identities

p’~p, p’~p, ptap ... (A)
11. Concluding remarks

We have developed the theory of tree algebras and tree algebra representations of binary trees in a systematic
algebraic way, and explored the relationships between this formalism and some other approaches to the classification
of regular tree languages. The new results include also a Variety Theorem. Of course, many questions remain to be
studied. For example, one could try to extend the formalism in such a way that the restriction to binary trees could
be lifted. Alternatively, one could borrow some ideas from the tree algebra theory to other formalisms to increase
their expressive power. One would also like to see further effective characterizations of natural families of binary tree
languages in terms of syntactic tree algebras. However, in view of our results, it seems that they would, in most cases,
be virtually equivalent to characterizations in terms of ordinary syntactic algebras.

24 S. Salehi, M. Steinby / Theoretical Computer Science 377 (2007) 1-24
Acknowledgements
The authors want to thank the two referees for their helpful remarks.

References

[1] J. Almeida, On pseudovarieties, varieties of languages, pseudoidentities and related topics, Algebra Universalis 27 (1990) 333-350.

[2] J. Almeida, Finite Semigroups and Universal Algebra, World Scientific, Singapore, 1994.

[3] J. Avenhaus, Reduktionssysteme, Springer, Berlin, 1995.

[4] T.Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press, Cambridge, 1998.

[5] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer, New York, 1981.

[6] N. Dershowitz, J.-P. Jouannaud, Rewrite systems, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science, vol. B, Elsevier
Science Publisher B.V., Amsterdam, 1990, pp. 243-320.

[7] J. Doner, Tree acceptors and some of their applications, J. Comput. System Sci. 4 (1970) 406-451.

[8] S. Eilenberg, Automata, Languages and Machines, vol. B, Academic Press, New York, 1976.

[9] Z. Esik, Definite tree automata and their cascade composition, Publ. Math. Debrecen 48 (3—4) (1996) 243-261.

[10] Z. Esik, A variety theorem for trees and theories, in: Automata and formal languages VIII (Salgétarjén, 1996), Publ. Math. Debrecen 54
(Suppl.) (1999) 711-762.

[11] Z. Esik, P. Weil, On logically defined recognizable tree languages, in: PX. Pandya, J. Radhakrishnan (Eds.), Foundations of Software
Technology and Theoretical Computer Science (Proc. Conf. FSTTCS’03, Bombay 2003), in: Lect. Notes in Comput. Sci, vol. 2914, Springer-
Verlag, Heidelberg, 2003, pp. 195-207.

[12] F. Gécseg, B. Imreh, On a special class of tree automata, in: Automata, Languages and Programming Systems (Proc. Conf., Salgétarjan,
Hungary, 1988), Department of Mathematics, K. Marx University of Economics, Budapest, 1988, pp. 141-152.

[13] F. Gécseg, M. Steinby, Tree Automata, Akadémiai Kiadd, Budapest, 1984.

[14] F. Gécseg, M. Steinby, Tree languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, vol. 3, Springer-Verlag, Berlin,
1997, pp. 1-69.

[15] U. Heuter, Definite tree languages, Bull. EATCS 35 (1988) 137-144.

[16] U. Heuter, Generalized definite tree languages, in: Mathematical Foundations of Computer Science (Proc. Symp. MFCS’89), in: A. Kreczmar,
G. Mirkowska (Eds.), Lect. Notes in Comput. Sci., vol. 379, Springer-Verlag, Berlin, 1989, pp. 270-280.

[17] G.Huet, D.C. Oppen, Equations and rewrite rules, in: R.V. Book (Ed.), Formal Language Theory, Perspectives and Open Problems, Academic
Press, New York, 1980, pp. 349-405.

[18] E. Jurvanen, A. Potthoff, W. Thomas, Tree languages recognizable by regular frontier check, in: G. Rozenberg, A. Salomaa (Eds.),
Developments in Language Theory, World Scientific, Singapore, 1994, pp. 3-17.

[19] K. Meinke, J.V. Tucker, Universal algebra, in: S. Abramsky, D. Gabbay, T.S. Maibaum (Eds.), Handbook of Logic in Computer Science, vol.
1, Clarendon Press, Oxford, 1992, pp. 189-411.

[20] J. Mezei, J.B. Wright, Algebraic automata and context-free sets, Inform. Control 11 (1967) 3-29.

[21] M. Nivat, A. Podelski, Tree monoids and recognizability of sets of finite trees, in: H. Ait-Kaci, M. Nivat (Eds.), Resolution of Equations in
Algebraic Structures, vol. 1, Academic Press, Boston, MA, 1989, pp. 351-367.

[22] J.E. Pin, Varieties of Formal Languages, North Oxford Academic Publishers, Oxford, 1986.

[23] S. Salehi, Varieties of tree languages definable by syntactic monoids, Acta Cybernet. 17 (2005) 21-41.

[24] S. Salehi, Varieties of Tree Languages, TUCS Dissertations 64, Turku Centre for Computer Science, Turku, 2005.

[25] S. Salehi, M. Steinby, Varieties of many-sorted recognizable sets, TUCS Technical Reports 629, September 2004. URL:
http://www.tucs.fi/publications/insight.php?id=tSaSt04a.

[26] S. Salehi, M. Steinby, Tree algebras and varieties of tree languages, TUCS Technical Reports 761, March 2006. URL:
http://www.tucs.fi/publications/insight.php?id=tSaSt06a.

[27] K. Salomaa, Syntactic monoids of regular forests (in Finnish), M.Sc. Thesis, Department of Mathematics, University of Turku, Turku, 1983.

[28] M. Steinby, Syntactic algebras and varieties of recognizable sets, in: M.C. Gaudel, J.P. Jouannaud (Eds.), Les Arbres en Algebre et en
Programmation (Proc. 4th CAAP, Lille 1979), University of Lille, Lille, 1979, pp. 226-240.

[29] M. Steinby, A theory of tree language varieties, in: M. Nivat, A. Podelski (Eds.), Tree Automata and Languages, North-Holland, Amsterdam,
1992, pp. 57-81.

[30] M. Steinby, General varieties of tree languages, Theoret. Comput. Sci. 205 (1998) 1-43.

[31] M. Steinby, Algebraic characterizations of regular tree languages, in: V.B. Kudryavtsev, I.G. Rosenberg (Eds.), Structural Theory of Automata,
Semigroups, and Universal Algebra, in: NATO Science Series, II. Mathematics, Physics and Chemistry, vol. 207, Springer, Dordrecht, 2005,
pp. 381-432.

[32] J.W. Thatcher, J.B. Wright, Generalized finite automata theory with an application to a decision problem of second-order logic, Math. Systems
Theory 2 (1968) 57-81.

[33] W. Thomas, Logical aspects in the study of tree languages, in: B. Courcelle (Ed.), The 9th Colloquium on Trees in Algebra and Programming
(Proc. 9th CAAP, Bordeaux 1984), Cambridge University Press, London, 1984, pp. 31-49.

[34] T. Wilke, An algebraic characterization of frontier testable tree languages, Theoret. Comput. Sci. 154 (1996) 85-106.

http://www.tucs.fi/publications/insight.php%3Fid%3DtSaSt04a
http://www.tucs.fi/publications/insight.php%3Fid%3DtSaSt06a

	Tree algebras and varieties of tree languages
	Introduction
	Algebras, terms, trees and contexts
	Tree algebras
	Normal form representations
	Syntactic Gamma-algebras
	Syntactic tree algebras
	Varieties of binary tree languages
	Reduced tree algebras and a variety theorem
	VBTLs and general varieties of tree languages
	Equational descriptions of VBTLs
	Concluding remarks
	Acknowledgements
	References

