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AXIOMATIC (AND NON-AXIOMATIC) MATHEMATICS

SAEED SALEHI

Axiomatizing mathematical structures and theories, or postulating them as Russell (1919) put it, is a
goal of mathematical logic. Some axiomatic systems are mere definitions, such as the axioms of Group
Theory; but some are much deeper, such as the axioms of complete ordered fields with which real analysis
starts. Groups abound in the mathematical sciences, while by Dedekind’s theorem (1888) there exists
only one complete ordered field, up to isomorphism. Cayley’s theorem (1854) in abstract algebra implies
that the axioms of group theory completely axiomatize the class of permutation sets that are closed under
composition and inversion.

In this expository article, we survey some old and new results on the first-order axiomatizability of
various mathematical structures. As we will see, axiomatizability of some structures are still unsolved
questions in mathematics, and several results have been open problems in the past. We will also review
identities over addition, multiplication, and exponentiation that hold in the set of positive real numbers;
and will have a look at Tarski’s high school problem (1969) and its solution.

The method of “postulating” what we want has many advantages;
they are the same as the advantages of theft over honest toil.

– Bertrand Russell (1919, Introduction to Mathematical Philosophy)

N Z Q R C

f<g X X X X –
fCg X X X X X
f<;Cg X X X X –
fC;�g x x x X X
f�g X X X X X
f<;�g x x X X –
exp x – – ? x

Table 1. Axiomatizability.
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fCg xC.yCz/D.xCy/Cz, xCyDyCx

f�g x �.y �z/D.x �y/�z, x �yDy �x, x �1Dx

fC;�g x �.yCz/D.x �y/C.x �z/

fexpg .xy/zD.xz/y , x1Dx, 1xD1

f�; expg x.y�z/D.xy/z , .x �y/zDxz �yz

fC;�; expg x.yCz/Dxy �xz , : : :

Table 2. Axioms for identities (over RC).

1. Introduction

A structure consists of a non-empty set D, called domain, together with a language L that consists of some
constant, relation or function symbols which are interpreted over the domain. The abstract definition of a
structure AD hDILi from Model Theory is not needed here. In our (first-order) setting, the quantifiers
(8; 9) range over the elements of the domain in question (which are taken to be number sets N, Z, Q, R,
and C, here). So, subsets of the domain cannot be quantified; thus, the statement “for every nonempty and
bounded subset there is a supremum for it” is not first-order, while “every element has an inverse” is so.

One reason for studying mathematical structures and theories in the setting of first-order logic is that
despite of the fact that this logic is too weak to represent some fundamental properties (such as being
well-ordered or completeness of ordered sets) it has some other nice properties, such as the compactness
and semantic completeness (proved by Gödel 1930).

On the other hand, second-order logic may seem to be a more expressive framework for studying
mathematical theories and structures (in which one can express the properties of being well-ordered and
completeness of ordered sets). But it has its own foundational problems; the same problems that set
theory has with incompleteness and truth (proved by Gödel 1931). In fact, as Quine put it, second-order
logic is “set theory in sheep’s clothing” (this is actually the title of the fourth section of the fifth chapter
of Quine’s Philosophy of Logic, 1986).

So, we have chosen first-order logic as the framework of our study; though, the study could be
undertaken in the framework of second-order logic as well.

In this paper, we survey some old and new results on the first-order axiomatizability of various
mathematical structures (see Table 1). Informally speaking, a structure is axiomatizable when we have
a theory, that is a set of sentences called axioms, and an algorithm that can recognize whether a given
sentence is an axiom or not, in a way that every sentence that is true in the structure is logically derivable
from the theory; see Definition 5.7 below for more formal details. The (non-)axiomatizability of many
structures in Table 1 are known from almost a century ago; for example, the axiomatizability of the
structure hCIC;�i follows from Tarski’s theorem (1936), and the non-axiomatizability of hNIC;�i
follows from Gödel’s theorem (1931). The question of the axiomatizability of e.g. hQI<;�i seemed to
be missing in the literature, which was shown to be axiomatizable in [1] for the first time; Tarski’s result
implies the axiomatizability of hCI �i, but one explicit axiomatization for it was presented in [16] for the
first time.

We will also review identities over C;�; exp that hold in the set of positive real numbers (Table 2).
The identities on Table 2, except the last row which contains three dots, do completely axiomatize the
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identities that hold in the set of positive real numbers (RC) over the indicated operations. Whether all
the identities in the table completely axiomatize the identities in the structure hRCI 1;C;�; expi is the
well-known Tarski’s high-school problem, which has an interesting history.

2. Boolean algebras and propositional logic

Arguably, modern logic starts with Boole’s Investigation of the Laws of Thought (1854); Boole’s axiomatic
system is called “propositional logic” nowadays. It axiomatizes some basic properties of the conjunction
(^), disjunction (_), and negation (:) connectives. The Boolean expressions (or propositional formulas)
are constructed from a fixed infinite set of atoms, say fp0;p1;p2; : : : g, by means of those connectives.
An evaluation is a mapping from atoms to f>;?g interpreted as truth and falsum; the mapping can be
extended to all the propositional formulas by the truth-table rules. Two formulas are called (logically)
equivalent when they have the same value under every evaluation. Let us note that implication (!) is
definable by disjunction and negation as .a! b/� .:a/_b, where � denotes equivalence. Boole’s
axiomatization is in fact nothing but a definition of boolean algebras:

Associativity
a^.b^c/�.a^b/^c, a_.b_c/�.a_b/_c

Commutativity
a^b�b^a, a_b�b_a

Distributivity
a^.b_c/�.a^b/_.a^c/, a_.b^c/�.a_b/^.a_c/

Idempotence
a^a�a, a_a�a

Truth and falsum
a_.:a/�>, a^>�a, a^.:a/�?, a_?�a

de Morgan’s laws
:.a^b/�.:a/_.:b/, :.a_b/�.:a/^.:b/

Many more identities can be deduced (proved) from the above axioms, such as the following:

Example 2.1.
(i) It immediately follows from the axioms that a�a^>�a^.p_:p/�.a^p/_.a^:p/.
(ii) The absorbing properties of truth and falsum, i.e., a_>�> and a^?�? follow from the axioms.

We show the former: a_>�a_.a_:a/�.a_a/_.:a/�a_.:a/�>.
(iii) One can also prove the absorption laws: a^.a_b/�a and a_.a^b/�a. Let us show the latter

by using (ii) above: a_.a^b/�.a^>/_.a^b/�a^.>_b/�a^.b_>/�a^>�a.
(iv) The double negation law ::a�a can be proved as follows: ::a�.::a/^>�.::a/^.a_:a/�

.::a^a/_.::a^:a/�.::a^a/_.?/�.a^::a/_.a^:a/�a^.::a_:a/�a^>�a. }

We show that all the valid laws, according to the truth-table semantics, can be proved from the above
axioms; thus we have a complete axiomatic system for Boolean equivalences.

Theorem 2.2 (completeness).
If a�b is valid according to the truth-table semantics, then it is provable from the axioms.
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A proof can proceed by normalizing the Boolean terms, or propositional formulas. A (propositional)
formula a is said to be in disjunctive normal form (DNF) when it is a disjunction of some formulas each
of which is a conjunction of some atomic or negated atomic formulas (introduced at the beginning of
this section); i.e., aD

WW
ici where each ci is

VV
j`.i;j/ for some atoms or negated-atoms `.i;j/. Let us

recall that, when i ranges over a finite set f0; 1; : : : g, by
WW

ici we mean c0_c1_� � � , and by
VV

j dj we
mean d0^d1 ^� � � . If p is an atom, then .p/ and .:p/ are both DNF; if q is another atom, then the four
formulas .p/_.q/, .p/_.:p^q/, .p^:q/_.q/, and .p^q/_.p^:q/_.:p^q/ are equivalent DNF’s.

Every propositional formula can be seen to be equivalent to a DNF formula, and this can be proved by
the above axioms: firstly implication (!) does not appear in our formulas; and secondly by the double
negation law, proved in Example 2.1(iv), and de Morgan’s laws, negations (:) can be pushed as far as
possible inside the sub-formulas, so that they appear at most behind atoms. Finally, by distributing all the
conjunctions over disjunctions, if any, an equivalent DNF formula is obtained; and this equivalence is
provable from the above axioms.

Proof of Theorem 2.2. Assume that all the atoms that appear in a and b belong to the set fp0; : : : ;pkg; a

and b are provably equivalent to some DNF formulas, such as e.g. a�
WW

ici and b�
WW

j dj where ci’s
and dj ’s are conjunctions of some atoms or negated atoms. By Example 2.1(i) we can assume that all
the atoms p0; : : : ;pk appear exactly once in each ci and dj .1 By this assumption, we show that each ci

is equal to some dj , and vice versa. Thus, a and b are provably equivalent. For a fixed ci consider the
evaluation that maps an atom to > if it appears positively in ci , and maps it to ? if it appears negatively
in ci . Under that evaluation, ci , and so a, is mapped to >; thus b should be mapped to > too. So, some
dj should be mapped to > under that evaluation; and this is possible only when djDci . �

The completeness of propositional logic with respect to the truth-table semantics follows from Theo-
rem 2.2. For example, the validity of the formula Œ.p!q/!p�!p, Peirce’s Law (1885), can be proved
by first translating a!b to :a_b, and then showing the equivalence

�
:Œ:.:p_q/_p�_p

�
�> by the

above axioms.
We will come back to mathematical identities at the end of the paper (Section 7); before that let us

study the axiomatizability of some mathematical structures.

3. Axiomatizability and quantifier elimination

We saw in the previous section that propositional logic is axiomatizable in the sense that there exists a set
of axioms from which all (logically) valid formulas and only the valid formulas can be derived. This
logic is also decidable in the sense that there exists an algorithm, namely truth-tables, for recognizing
whether a give propositional formula is logically valid or not. A first-order theory is called complete
when it either proves or refutes every sentence over its language. A way of proving the completeness of
a (first-order) theory is reducing it to propositional logic, which is usually done through the process of
quantifier elimination.

Definition 3.1 (effective quantifier elimination, QE).

1If some pk does not appear in some ci , then we can replace ci with .ci^pk/_.ci^:pk/. By the laws of Idempotence and
Truth and Falsum every atom can appear at most once in ci .
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A theory T is said to admit effective quantifier elimination (QE) when there exists an algorithm that for a
given formula '.Ex/ as input, with the shown free variables, outputs a quantifier-free formula �.Ex/ with
exactly the same free variables (Ex) such that T proves 8ExŒ'.Ex/$�.Ex/�. }

A quantifier elimination for a theory T requires, for a given formula '.Ex/, the mere existence of a
T -equivalent quantifier-free formula �.Ex/; without requiring � to be algorithmically obtainable from '.
Quantifier elimination is usually done by the means of the following fundamental lemma, which is proved
also in [4, Theorem 31F], [10, Theorem 4.1], and [19, Lemma III.4.1].

Lemma 3.2 (main lemma of quantifier elimination).
A theory T admits QE if and only if there exists an algorithm that for every given formula of the form
9x
 .x/, where 
 .x/ is a conjunction of some atoms or negated atoms, outputs a quantifier-free formula
� such that the free variables of � are all the free variables of 
 .x/ other than x, and the universal closure
of Œ9x
 .x/$�� is provable in T .

Proof. The “only if” part of the lemma is trivial. For the “if” part, let ' be an arbitrary formula. We
show that it is T -equivalent to a quantifier-free formula with the same free variables (as of ') and that
quantifier-free formula can be found algorithmically. Take one of the innermost quantifiers of '; such
as 8x�.x/ or 9x�.x/ where � is a quantifier-free formula. In the former case, consider :9x:�.x/; so
without loss of generality, we can assume that the quantifier is existential. We saw that every propositional
formula is equivalent to a DNF formula. So, 9x�.x/�9x

WW
i
i.x/�

WW
i9x
i.x/, where each 
i.x/ is a

conjunction of some atomic or negated atomic formulas. By the assumption, the existing algorithm can
find a T -equivalent quantifier-free formula for each 9x
i.x/; thus that algorithm can find a T -equivalent
formula for ' with one less quantifier (than '). So, by an inductive argument one can show the existence of
an algorithm that outputs a quantifier-free formula with the same free variables (as of ') that is moreover
T -equivalent to '. �

Quantifier elimination is applicable for axiomatizing the complete first-order theory of a structure A

when we have a candidate theory T in a way that (i) all the axioms of T are true in A, (ii) T admits
QE, and (iii) T either proves or refutes every atomic sentence. Then, T is a complete theory and so it
completely axiomatizes A. Thus, T proves every sentence that is true in A, and refutes every sentence
that is not true in A.

In the following, we will study the structures in Table 1, the number systems (N;Z;Q;R;C) over the
first-order languages that may contain <, C, �, or exp.

4. Number systems (order and addition)

Let us first study the order relation (<) in number systems. We recall that an order is a binary relation
that is antisymmetric, transitive, and linear (see the axioms A<, T<, L< in Theorem 4.1). The order is
dense in Q and R (see D< in Theorem 4.1) and has no endpoints (see U< and B< in Theorem 4.1). This
is all the first-order theory of order can say in Q and R, since it is a complete theory (first proved by
Cantor 1895). However, the structure hQI<i is very different from the structure hRI<i, since the latter is
complete (every nonempty and bounded subset has a supremum) while the former is not; also by Cantor’s
(1874) result, the former is countable but the latter is not.

Theorem 4.1 (an axiomatization for hRI<i and hQI<i).
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The (finite) theory of dense linear orders without endpoints (with the following axioms) completely
axiomatizes both hRI<i and hQI<i.
.A</ 8x;y .x<y!y–x/

.T</ 8x;y .x<y<z! x<z/

.L</ 8x;y .x<y _xDy _y<x/

.D</ 8x;y .x<y!9w Œx<w<y�/

.U</ 8x9u .x<u/

.B</ 8x9v .v<x/

Proof. Note that the axioms are true in hRI<i and hQI<i; so, it suffices to show that the above
theory admits QE. For that we use Lemma 3.2 and show the equivalence of every formula of the form
9x
VV

i
i.x/ to a quantifier-free formula, where each 
i is an atom or negated atom. The equivalences
:.a<b/$ .aDb/_.b<a/ and :.aDb/$ .a<b/_.b<a/, which are provable in the theory, allow
us to neglect negated atomic formulas. Thus, we need to eliminate the quantifier of the formulas of the
form 9x

�VV
iui<x^

VV
j x<vj ^

VV
kxDwk

�
only — note that xDx is equivalent to >, and x<x to ?.

But that formula is equivalent to
VV

iui<w0^
VV

jw0<vj ^
VV

kw0Dwk , if the conjunction
VV

kxDwk

is non-empty, and to
VV

i;j ui<vj , if it is empty (non-existent) and none of the other conjunctions are
empty; if any of

VV
iui<x or

VV
j x<vj is also empty, then the original formula is equivalent to >. �

The order relation behaves very differently on Z and N, since here it is a discrete order, in the sense
that every element has an immediate successor. Let us denote the successor function x 7!.xC1/ by s; and
let .x6y/ abbreviate .x<y/_.xDy/. For a proof of the following theorem, first proved by Robinson &
Zakon (1960), see e.g. [1, Theorem 2].

Theorem 4.2 (an axiomatization for hZI<i).
The (finitely axiomatized) theory of discrete linear orders without endpoints completely axiomatizes
hZI<; si; this theory consists of the axioms A<; T<; L< (Theorem 4.1) along with
.S</ 8x;y .x<y$s.x/6y/

.P</ 8x9w .s.w/Dx/ �

The following, due to Langford (1927), has been proved in e.g. [4, Theorem 32A].

Theorem 4.3 (an axiomatization for hNI<i).
The (finitely axiomatizable) theory of discrete linear orders with the least element and without the last
element completely axiomatizes hNI 0; <; si; this theory consists of the axioms A<; T<; L< (Theorem 4.1)
together with S< (Theorem 4.2) and
.Z</ 8x .06x/

.P0
</ 8x9w .0<x!s.w/Dx/ �

Let us note that 8x Œx< s.x/� is provable from the axiom S< (Theorem 4.2); and so one can show
that 8x;y Œx<y$s.x/<s.y/� follows from S<, T< and L< (Theorems 4.1,4.2). Therefore, Dedekind–
Peano’s (1888,1889) axioms 8x .s.x/¤0/ and 8x;y .s.x/Ds.y/!xDy/ are provable from the axiom
system fA<; T<; L<; S<; Z<g (Theorems 4.1,4.2,4.3).
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4.1. The addition operation. We now study the addition operation (C) in number systems. The most
obvious properties of addition are associativity and commutativity (see AC and CC in Theorem 4.4). Of
course, in all of our number systems there is an additive unit element (zero 0), and in all but one (the
natural numbers) every element has an additive inverse (the minus element). In C;R, and Q addition is
torsion-free and divisible (see TC and DC in Theorem 4.4); it is hard to find any other property of C in
C;R;Q that does not follow from the above-mentioned properties.

For axiomatizing the structures hCICi, hRICi, and hQICi we add the constant symbol 0 and the
unary function symbol � to the language; needless to say, n ˘x abbreviates the expression xC� � �Cx (n
times) for n2N.

Theorem 4.4 (an axiomatization for hCICi, hRICi, hQICi).
The first-order theory of non-trivial, divisible, torsion-free, and commutative groups (with the following
infinite set of axioms) completely axiomatizes the structures hQI 0;�;Ci, hRI 0;�;Ci, and hCI 0;�;Ci.
.AC/ 8x;y; z .xC.yCz/D.xCy/Cz/

.CC/ 8x;y .xCyDyCx/

.UC/ 8x .xC0Dx/

.IC/ 8x .xC.�x/D0/

.NC/ 9u .u¤0/

.TC/ f8x .n ˘xD0! xD0/gn>0

.DC/ f8x9v .xDn ˘ v/gn>0

Proof. We show that the theory admits QE by using Lemma 3.2. Every atomic formula in the language
f0;�;Cg that contains x can be equivalently written in the form n ˘ xD t for some n2NC and some
x–free term t . By aD b ! k ˘ aD k ˘ b, which is provable from the above axioms, it suffices to
eliminate the quantifier of 9x

�VV
iq ˘ xD ti ^

VV
j q ˘ x¤ sj

�
, which by DC (for nD q) is equivalent

to 9y
�VV

iyD ti ^
VV

j y¤ sj

�
. Now, if the conjunct

VV
iyD ti is nonempty, then this is equivalent toVV

i t0Dti^
VV

j t0¤sj , and if
VV

iyDti is empty, then it is equivalent to >, since by NC there are infinitely
many members (for any u¤0 we have n ˘u¤m ˘u for every n¤m). �

The axiomatization of hZICi illustrates a case that one might need to substantially enrich the language
of the structure to have QE. As an example, 9v .xDvCv/, stating that x is even, is not equivalent to any
quantifier-free formula in hZI 0;�;Ci.2 However, if we add the binary relation symbol�2 of congruence
modulo 2 to the language, then that formula will be equivalent to x�2 0.

The quantifier elimination of the theory of the structure hZI 0; 1; f�ngn>1;�;Ci can be shown by
using a generalized form of the Chinese Remainder Theorem in Number Theory. The Chinese remainder
theorem says that a given system of congruence equations fx�ni

rigi<N has a solution (in Z) if ni and
nj are coprime for every i<j <N . The generalized Chinese remainder theorem says that the system
fx�ni

rigi<N of congruence equations has a solution if and only if for every i<j<N we have ri�di;j
rj ,

where di;j is the greatest common divisor of ni and nj . Since such systems either have no solution or
have infinitely many solutions, then we can state this more general theorem as follows.

2Since the set of even integers is neither finite nor cofinite (i.e., with finite complement), but it can be shown that every set
definable in hZI 0;�;Ci by a quantifier-free formula is either finite or cofinite. To see this it suffices to note that the class of
finite and cofinite subsets of Z is closed under complementation, intersection, and union; and every atomic formula with the only
free variable x is equivalent in hZI 0;�;Ci to mxCnD0 for some m; n2Z.
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Proposition 4.5 (general Chinese remainder theorem).
If ni>1 for every i<N , then for every frigi<N and fsj gj<M ,

9x
�VV

i<N x�ni
ri ^

VV
j<M x¤sj

�
()

VV
i<j<N ri�di;j

rj ;

where di;j is the greatest common divisor of ni and nj . �
For three different proofs of Proposition 4.5, which is a kind of QE by itself, see [16, Propositions 4.5

and 4.1] and [1, Proposition 2] which are due to Ore (1951), Mahler (1958) and Fraenkel (1963),
respectively.

We add the congruence relations �n modulo every natural n> 1, along with the constant 1, to the
language; let i abbreviate 1C� � �C1 (i times) for every i 2N.

Theorem 4.6 (an axiomatization for hZICi).
The theory whose axioms are AC, CC, UC, IC, and TC (Theorem 4.4) with the following axioms
completely axiomatizes the structure hZI 0; 1; f�ngn>1;�;Ci.
.EC/ f8x;y Œx�n y$9u.xDyCn ˘u/�gn>1

.EC/
˚
8x

�WW
i<n.x�n i/

�	
n>1

.E0C/
˚VV

0<i<n.i 6�n 0/
	

n>1

Proof. For showing that the theory admits QE by Lemma 3.2, we note that every atomic formula of x in
f0; 1;�;Cg[f�nj n>1g is equivalent to either m ˘xDt or m ˘x�n t for some m; n2NC and some x–free
term t . By the provable equivalence .a 6�nb/$

WW
0<i<n.a�nbCi/ it suffices to show that the formula (�)

9x
�VV

iqi ˘x�ni
ri ^

VV
j qj ˘x¤sj ^

VV
kqk ˘xD tk

�
is equivalent to a quantifier-free formula. From the

provable equivalences .aDb/$.k ˘aDk ˘b/ and .a�nb/$.k ˘a�knk ˘b/ we can assume that all the qi’s,
qj ’s and qk’s are equal, to say q. Then, (�) is equivalent to 9y

�
y�q0^

VV
iy�ni

ri^
VV

j y¤sj^
VV

kyDtk
�
.

We can assume that the conjunct
VV

kyD tk is empty (see the proofs of Theorems 4.1 and 4.4); now the
result immediately follows from Proposition 4.5 (which is provable from the stated axioms). �

As for N, even f0; 1;�;Cg[f�nj n>1g is not sufficiently rich for QE, since the formula 9v.xCvDy/

is not equivalent in hNI 0; 1; f�ngn>1;�;Ci to a quantifier-free formula (it is equivalent to x6y).3 Here,
QE is possible when we add the order relation to the language.

Theorem 4.7 (an axiomatization for hNI<;Ci).
The theory with the axioms A<, T<, L< (Theorem 4.1), S< (Theorem 4.2), Z<, P0

< (Theorem 4.3), AC,
CC, UC (Theorem 4.4), EC, EC (Theorem 4.6) with the following axioms completely axiomatizes the
structure hNI 0; 1; <; f�ngn>1;Ci.
.MC/ 8x;y .x<y!9v ŒxCvDy�/

.OC/ 8x;y; z .x<y!xCz<yCz/ �
3For a proof, let us call a binary relation R�N2 finite-bounded when there is a fixed N 2N such that for every y2N the set

fx2N j .x;y/2Rg is either infinite or finite with size less than N . The order relation 6�N2 is not finite-bounded, but every
binary relation definable by a quantifier-free formula in hNI 0; 1; f�ngn>1;�;Ci can be shown to be finite-bounded. To see this
let us firstly note that the class of finite-bounded binary relations is closed under union. Secondly, every quantifier-free formula
with the only free variables x;y is equivalent to

WW
i

VV
j�i;j .x;y/ for some atomic or negated atomic formulas �i;j . Every

atomic formula is equivalent in hNI 0; 1; f�ngn>1;�;Ci to either kxClyCm�n0 or kxClyCmD0 for some k; l;m; n2Z. By
u 6�n 0$

WW
1<i<nuCNi�n 0 it suffices to consider the negated-atomic formulas of the form kxClyCm¤0 only. Therefore, it is

enough to see that the binary relation on x;y defined by
VV

hkhxClhyCmh�nh
0^
VV

ikixCliyCmiD0^
VV

j kj xClj yCmj¤0

is finite-bounded; indeed, for a fixed y the set of x’s that satisfy this formula is either infinite or finite with size less than 2.
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A proof of Theorem 4.7 can be found in [4, Theorem 32E] where no explicit axiomatization is presented;
though, one can see that the proof goes through with our suggested axioms. For a proof of the following
theorem (due to Presburger 1929) see e.g. [1, Theorem 5]; other proofs can be found in [10, § 4.III] and
[19, §§ III.4.2].

Theorem 4.8 (an axiomatization for hZI<;Ci).
The theory with the axioms A<, T<, L< (Theorem 4.1), S< and P< (Theorem 4.2), AC, CC, UC, IC
(Theorem 4.4), EC (Theorem 4.6), and OC (Theorem 4.7), with s.x/ set to xC1, completely axiomatizes
the structure hZI 0; 1; <; f�ngn>1;�;Ci. �

The following theorem (stating that the order and addition structure of rational and real numbers can
be axiomatized by the theory of non-trivial divisible commutative ordered groups) can be proved by
combining the techniques of the proofs of Theorems 4.1 and 4.4 (cf. [1, Theorem 4]).

Theorem 4.9 (axiomatizing hQI<;Ci and hRI<;Ci).
The theory with the axioms A<, T<, L< (Theorem 4.1), AC, CC, UC, IC, NC, DC (Theorem 4.4), and OC
(Theorem 4.7) completely axiomatizes hQI 0; <;�;Ci and hRI 0; <;�;Ci. �

Let us note that the axioms D<, U<, B< (in Theorem 4.1) and TC (in Theorem 4.4) are provable from
the axiom system presented in Theorem 4.9 just the way that are proved in classical analysis.

5. Number systems (addition and multiplication)

Definition 5.1 (field).
A field is a structure over f0; 1;C;�;�;�1 g that satisfies AC, CC, UC, IC (Theorem 4.4), and the
following axioms:

.Z1/ 0¤1

.A�/ 8x;y; z .x �.y �z/D.x �y/�z/

.C�/ 8x;y .x �yDy �x/

.U�/ 8x .x �1Dx/

.I�/ 8x .x¤0!x �x�1D1/

.D�/ 8x;y; z Œx �.yCz/D.x �y/C.x �z/�

A field has characteristic zero if it moreover satisfies
.C0/ fn¤0gn>0

where, as we recall, n abbreviate 1C� � �C1 (n times). }

The field hCIC;�i is well known to be algebraically closed since it satisfies the Fundamental Theorem
of Algebra, i.e., it has a root for every non-trivial polynomial (with coefficients in C). It can be even said
that it was created for having all the roots of the polynomials (with real or complex coefficients). This is
all one can say about the complex field in the first-order setting, since the theory of algebraically closed
fields of characteristic zero is complete, and so it axiomatizes hCIC;�i. The following result was proved
by Tarski (1936); see e.g. [10, § 4.IV] for a proof.

Theorem 5.2 (an axiomatization for hCIC;�i).
The theory of algebraically closed fields of characteristic zero, with the axioms AC, CC, UC, IC, A�, C�,
U�, I�, D�, C0 (Definition 5.1) along with the following axioms, completely axiomatizes the structure
hCI 0; 1;�;C;�; �1i.



1166 SAEED SALEHI

.FTA C/ f8haiii<n9x .x
nC

P
i<n aix

iD0/gn>1 �

For super-careful readers, let us note that (i) every non-trivial polynomial can be taken to be a monic
by dividing it with the leading (non-zero) coefficient; (ii) the multiplicative inversion (x 7!x�1) is not
really a total function, since it is not defined on zero, but one can make the convention 0�1D0 without
any danger; (iii) and finally, xi abbreviates the algebraic expression x� � � � �x (i times) of course.

For studying the structure hRIC;�i we first note that the order relation is definable in it: u6v()
9x.uCx2Dv/; and hRI<;C;�i is an ordered field. An ordered field satisfies the order axioms A<; T<; L<
(Theorem 4.1), the axioms of fields (in Definition 5.1), OC (Theorem 4.7), and O� (Theorem 5.3 below).

Of course, this is not all one can say about hRI<;C;�i. On the other hand, not much can one say
about it in the first-order framework; only that every polynomial of even degree can be factorized into
some quadratic polynomials (see FTA R in Theorem 5.3). This last statement is indeed equivalent to (a
real version of) the fundamental theorem of algebra. Here are some examples:

x4Ca4D.x2C
p

2 axCa2/.x2�
p

2 axCa2/ for a2R;4

x4�xC3
4
D

�
x2C
p

2 cos 20ı xCcos 20ıC 1

2
p

2 cos 20ı

��
x2�
p

2 cos 20ı xCcos 20ı� 1

2
p

2 cos 20ı

�
;

x4Cax2Ca2D

�
.x2C

p
a xCa/.x2�

p
a xCa/ if a>0;

.x2C
p
�3a x�a/.x2�

p
�3a x�a/ if a<0:

Theorem 5.3 (an axiomatization for hRI<;C;�i).
Theory of real closed ordered fields which is axiomatized by A<; T<; L< (Theorem 4.1), the axioms of
fields (Definition 5.1), and OC (Theorem 4.7) along with the following axioms completely axiomatizes
the structure hRI 0; 1; <;�;C;�; �1i.
.O�/ 8x;y; z .0<z^x<y!x �z<y �z/

.FTA R/ f8haiii<2n9hbj ; cj ij<n8x Œ.x2nC
P

i<2n aix
i/D

Q
j<n.x

2Cbj xCcj /�gn>1 �

For a proof of this result of Tarski (1936) see e.g. [17, Appendix], which is a modified version of the
proof presented in [10, § 4.V]. Let us note a consequence of FTA R:

Proposition 5.4 (FTA R H) S�).
If every quartic monic is equal to the product of two quadratic monics in an ordered field, then every
positive element has a square root in that field.
.S�/ 8x .0<x!9u ŒxDu2�/

Proof. Let a>0; by the assumption, x4Cax2Ca2 is equal to .x2CbxCc/.x2CuxCv/ for some elements
b; c;u; v in the ordered field. So, uD�b and vcDa2; thus (i) c2Ca2D c.b2Ca/ and (ii) ba2D bc2.
If bD0, then (i) implies that c2�acCa2D0, so .2c�a/2C3a2D0, a contradiction. Whence, b¤0;
now, (ii) implies that a2Dc2. So, we have either cDa or cD�a. If cD�a, then by (i) we should have
b2D�3a<0, another contradiction. Therefore, cDa; and so by (i) we have b2Da. Thus, a has a square
root. �

We note that by S� (and the axioms of ordered fields) the high-school equivalence for the existence of
the roots of quadratic polynomials can be proved:

4As the history goes, Leibniz (1702) mistakenly thought that x4Ca4 is not equal to a product of quadratics! This identity is
due to Bernoulli (1719).
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9x.x2CbxCcD0/$9xŒ.2xCb/2Db2�4c�$b2>4c.

It can be easily seen that FTA C (in Theorem 5.2) is equivalent to the statement that every monic is
equal to the product of some linear polynomials:

FTA C �� f8haiii<n9hbj ij<n8x Œ.xnC
P

i<n aix
i/D

Q
j<n.xCbj /�gn>1,

which resembles FTA R (in Theorem 5.3). Let us note some other consequences of FTA R (from [17]):

Proposition 5.5 (FTA R H) RCFC IVT).
If every even-degree monic can be factorized into some quadratic monics in an ordered field, then every
odd-degree polynomial has a root and the polynomial intermediate value theorem holds.

Proof. Suppose that the polynomial p.x/ is of degree m and p.u/p.v/<0 holds for some u<v. Put

q.x/D
1

p.u/
.1Cx2/m p

�
uC

v�u

1Cx2

�
I

then q.x/Dx2mCr.x2/ for some polynomial r.x/ with degree less than m. So, q.x/ can be factorized
to say

Q
j<m.x

2Cbj xCcj /. Now we have
Q

j<m cjDq.0/D p.v/
p.u/

<0 and so cj<0 for some j ; then we
have b2

j >4cj and so the quadratic x2Cbj xCcjD0 has a root, such as t . Now, wDuC v�u
1Ct2 is a root of

p.x/D0 that satisfies u<w<v. By a classical real analytic argument, if the intermediate value theorem
holds for polynomials in an ordered field, then every odd-degree polynomial has a root in that field. �

So, the fundamental theorem of algebra is really fundamental since it can prove some basic theorems
in algebra, and it is a kind of fundamental theorem for the mathematical analysis of polynomials as well;
see [17] for more details.

So far, we have discussed two applications of number theory and algebra to mathematical logic:

1. the (generalized) Chinese remainder theorem, and

2. the fundamental theorem of algebra.

1. Proposition 4.5 was used in proving that the axiomatic system suggested for the additive structure
of integer numbers hZICi has QE and so it is a complete theory (Theorem 4.6). It is worth noting that
Gödel (1931, Lemma 1) also had used the (non-generalized) Chinese remainder theorem in his proof of
the first incompleteness theorem for the coding technicalities.
2. The truly fundamental theorem of elementary algebra and elementary analysis was used for axiomatizing
the additive and multiplicative structures of complex and real numbers, hCIC;�i and hRIC;�i, noting
that order (<) is definable in hRIC;�i (Theorems 5.2 and 5.3).

Now, we present two applications of mathematical logic in other areas of mathematics (especially
algebraic geometry):

I. the Tarski–Seidenberg principle, and

II. Hilbert’s 17th problem.

I. Theorem 5.3, like many other theorems of QE, is proved by using Lemma 3.2. Let us see how the
proof can proceed: first, we note that all the atomic formulas of x over the language f0; 1;�;C;�; �1; <g

are equivalent to p.x/D 0 or p.x/> 0 for a polynomial p. Second, negation can be eliminated (see
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the proof of Theorem 4.1), so QE over this language is equivalent to each statement of “existence of
a solution for a system of polynomial equations and inequalities is equivalent to a system of some
equations and inequalities between the coefficients of those polynomials”. As an example, the sentence
9x.ax2CbxCcD0/ is known to be equivalent to

.a2>0^ b2>4ac/_ .aD0^ b2>0/_ .aD0^ bD0^ cD0/.
The quoted statement above is called the Tarski–Seidenberg principle in real algebraic geometry (see
[2, §1.4]), which is exactly what the translation of Lemma 3.2 would be in the proof of Theorem 5.3
(cf. [12]).
II. Hilbert’s celebrated 17th problem (1900) asked (see e.g. [18]): Given a multivariate polynomial
that takes only non-negative values over the reals, can it be represented as a sum of squares of rational
functions? Let us note a couple of examples:

x4�xC 3
4
D
�
x2�

1
2

�2
C
�
x� 1

2

�2
C
�

1
2

�2
;

.x2
Cy2/2Œx4y2

Cx2y4
C1�3x2y2�D .x2

�y2/2CŒx2y.x2
Cy2
�2/�2CŒxy2.x2

Cy2
�2/�2CŒxy.x2

Cy2
�2/�2:

A consequence of the Tarski–Seidenberg principle is the Artin–Lang homomorphism theorem [2, Theo-
rem 4.1.2], which gives a positive answer to the problem; see [2, Theorem 6.1.1]. Let us note that by the
fundamental theorem of algebra every non-negative polynomial of one variable can be written as a sum
of the squares of some polynomials;5 but there are non-negative polynomials of two variables that cannot
be written as such. One example (see [18]) is Motzkin (1969)’s polynomial x4y2Cx2y4C1�3x2y2; of
course it is the sum of the squares of some rational functions (see the second example above).

5.1. Addition and multiplication on natural, integer, and rational numbers. The next structures that
we study over the language fC;�g are Q, Z, and N. Here the story becomes dramatically different. To
start with, let us note that the axiomatic systems presented for the ordered structures hNI<i, hZI<i,
hQI<i, and hRI<i were all finite (Theorems 4.1,4.2,4.3). Other axiomatic systems were not finite, but
were presented in a way that one can recognize whether a given sentence is an axiom of that system or
not, in the sense that a properly designed algorithm can recognize them. In the other words, the axiomatic
theories for the studied structures were decidable by an algorithm.

To make precise the forthcoming definition, let us make the convention that all our first-order individual
variables are #; # 0; # 00; # 000; : : : , made up from # and 0. Let us fix the following finite set of symbols as
an alphabet:

ADf:;^;_;8; 9; .; /; #; 0; 0; 1; <;D;C;�;�; expg.
Every formula over the first-order language f0; 1; <;C;�;�; expg is a string (i.e., a finite sequence) of
the elements of A. There exists an algorithm that decides (outputs yes or no) if a given such string as
input is a well-founded formula or not.

Definition 5.6 (decidability).
A set B of strings of symbols from A is decidable when there exists an algorithm such that for a given
string as input outputs yes if it belongs to B and outputs no otherwise. }

Let us note that we have not fixed a rigorous definition for the informal notion of algorithm in the
above definition; it could be a recursive function or a Turing machine. By the Church–Turing thesis

5The sum of squares for a polynomial may not be unique; for example, .x2C2axC2a2/2D.x2C2ax/2C.2axC2a2/2.
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(1936) all such formally rigorous and equivalent definitions do define the informal notion of algorithm;
so we do not need to fix a formalization. “Axiomatizable” usually means axiomatizable by a decidable
set of axioms; though more often the decidability of the axiom set is not explicitly mentioned.

Definition 5.7 (axiomatizability).
A theory or a structure is axiomatizable when there exists a decidable set of sentences that completely
axiomatizes it. }

All the theories and structures that we have studied so far are axiomatizable by a decidable set of
sentences. Actually, a structure is axiomatizable by a decidable set of sentences if and only if it has a
decidable theory; see e.g. [4, Corollary 26I]. For a proof, we note that decidability implies axiomatizability,
since one only needs to algorithmically list all the sentences and pick the ones that hold true; thus a
decidable set of axioms is obtained. Conversely, if A is axiomatizable, then for a given sentence  run
this algorithm for consecutive n’s starting from nD1:

list all the theorems that are proved from the first n axioms in n steps or less
(if n exceeds the number of axioms, then use all the finitely many axioms);
if  or : appears in the list, then output yes or no accordingly.

The algorithm will surely terminate (for some n) since the axiomatic system completely axiomatizes A.
Now, the shocking result of Gödel’s incompleteness theorem (1931) is that the structure hNIC;�i

is not axiomatizable. As the history goes, Presburger (1929) proved the axiomatizability of hNICi and
Skolem (1930) announced the axiomatizability of hNI �i (see [19]); so hNIC;�i was expected to be
axiomatizable, that would give evidence for Hilbert’s program.

Theorem 5.8 (non-axiomatizability of hNIC;�i).
The full first-order theory of the structure hNIC;�i is not axiomatizable by any decidable set of sentences.
�

Of course, there does exist an undecidable set of sentences that completely axiomatizes hNIC;�i; that
is the so-called true arithmetic, the set of all the sentences that are true in N.

The non-axiomatizability of hZIC;�i is inherited from hNIC;�i since the set N is definable in
hZIC;�i by Lagrange’s (1770) four square theorem (see e.g. [19, Theorem II.3.8]). Let N .x/ be the
formula 9u; v; w; z.u2Cv2Cw2Cz2Dx/; then for every m2Z we have: m2N if and only if N .m/ is true
in Z. For every formula ' over fC;�g, let 'N result from ' by changing every 8x‚ to 8x ŒN .x/!‚�

and 9x‚ to 9x ŒN .x/^‚�; that is relativizing all the bounded variables to N . Now, for every sentence  
over fC;�g we have:  is true in hNIC;�i if and only if  N is true in hZIC;�i. So, it follows that the
structure hZIC;�i is not axiomatizable by any decidable set of sentences T , since otherwise hNIC;�i
would be axiomatizable by the decidable set of sentences T 0Df j T proves  N g.

For another definition of N in hZIC;�i see [15] where it is proved that Z is definable in hQIC;�i as
well (see also [14]).

Corollary 5.9 (on hZIC;�i and hQIC;�i).
The structures hZIC;�i and hQIC;�i are not axiomatizable. �
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6. Number systems (multiplication and exponentiation)

We saw that by Tarski’s result hCIC;�i is axiomatizable; then its theory is decidable, and so is the
theory of hCI �i. Thus, hCI �i is axiomatizable by a decidable set of sentences; but what is that axiomatic
system? This question was answered in [16, Theorem 2.2] by providing an explicit axiomatization for the
multiplicative structure of complex numbers:

Theorem 6.1 (an axiomatization for hCI �i).
The (multiplicative) structure hCI 0; 1; f!ngn>1;�;

�1i is axiomatizable by A�, C�, U�, I� (Theorem 5.3)
along with the following axioms:
.Z�/ 8x .x �0D0D0�1/

.D�/ f8x9v .xDvn/gn>0

.R�/
˚
8x ŒxnD1$

WW
i<nxD.!n/

i �
	

n>1

.R�/
˚VV

i<j<n.!n/
i¤.!n/

j
	

n>1

where the constant symbol !n is interpreted as cos 2�
n
Ci sin 2�

n
for every n>1; thus we have !2D�1,

!3D
1
2
.�1Ci

p
3/, !4D i, etc. �

The same question can be asked about the real numbers: we know hRI �i is decidable by Tarski’s
result that hRIC;�i is axiomatizable; but what is an explicit axiomatization for hRI �i? For its answer
we need to add the positivity predicate, denoted P.x/, to the language. The following result is proved in
[16, Theorem 3.3].

Theorem 6.2 (an axiomatization for hRI �i).
The structure hRI 0; 1;�1;P;�; �1i is axiomatizable by A�, C�, U�, I�, Z� (Theorem 6.1) along with
the following axioms:
.N�/ 9u .u¤0^u¤1^u¤�1/

.D�o / f8x9v .xDv2nC1/gn>0

.Re
�/ f8x .x2nD1$xD1_xD�1/gn>1

.P/ 8x .P.x/$9y¤0ŒxDy2�/

.P�/ 8x;y¤0.P.xy/ ! ŒP.x/$P.y/�/

.P��/ 8x¤0Œ:P.x/$P.Œ�1�x/� �

Let us note that the multiplicative structure of positive real numbers hRCI �i is a non-trivial, divisible,
torsion-free, and commutative group, since it is isomorphic to hRICi via the mapping x 7! ln.x/.

For axiomatizing the multiplicative structure of rational numbers hQI �i, we first axiomatize hQCI �i
noting that one can obtain an axiomatization for hQI �i by adding the constants 0;�1 and the predicate
P.x/ to the language and adding Z�, N�, P, P�, and P�� (Theorem 6.2) to the axioms. The following is
proved in [16, Theorem 4.11]:

Theorem 6.3 (an axiomatization for hQCI �i).
The structure hQCI 1;�; �1i is axiomatizable by A�, C�, U�, I� (Definition 5.1) along with the following
axioms:
.T�/ f8x .xnD1!xD1/gn>1

.M�/
˚
8hxiii<k9v8y

VV
i<k.v

nxi¤ymi /
	

n;k

where n; k2N, and no mi 2N divides n. �
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The axioms M� in Theorem 6.3 state that for every sequence x0; : : : ;xk�1 of positive rational numbers
and every sequence m0; : : : ;mk�1 of natural numbers none of which divides the natural number n, there
exists a positive rational number v such that for every i<k none of vnxi’s is an mi-power of a positive
rational number. To see that this holds in QC it suffices to take v to be a prime number that does not
divide the numerators or denominators of any of xi’s. This does not hold if some mi divides n since xi

could be an mi-th power; it does not hold in RC either, since every positive real number has an mi-th
root.

Remark 6.4.
The multiplicative structures that we should study next are Z and N. Here too, as we saw, it suffices to
study hNCI �i first, and then for hNI �i we need to add 0 and the axiom Z�, and for hZI �i we need to
add �1;P and the axioms P� and P�� . Since studying the axioms of hNCI �i will not be needed later,
and they are too many to be listed in the main body of the paper, and explaining them will take much
time and will distract the flow of the paper, we apologetically postpone it to the Appendix. }

6.1. Order, multiplication, and exponentiation. Let us move on to the language f<;�g over which R

and Q are axiomatizable, while Z and N are not. The following is proved in [1, Theorem 6].

Theorem 6.5 (an axiomatization for hRI<;�i).
The theory with the axioms A<, T<, L< (Theorem 4.1), D�o , O� (Theorem 5.3), S� (Proposition 5.4), A�,
C�, U�, I�, Z� (Theorem 6.1), Re

� (Theorem 6.2) along with the following, completely axiomatizes the
structure hRI 0; 1;�1; <;�; �1i.
.N</ 9u .�1<0<1<u/

.O��/ 8x;y; z .z<0^x<y!y �z<x �z/ �
The axiomatizability of the structure hQI<;�i seemed to be missing (or ignored) in the literature.

Since hQI<;C;�i is not decidable (Corollary 5.9), one could not immediately infer the decidability
of hQI<;�i. Also, C is not definable in hQI<;�i, this follows from Theorem 6.6 below, and so
Corollary 5.9 cannot imply its undecidability. The decidability of hQI<;�i was proved, and an explicit
axiomatization was provided for it, for the first time in [1, Theorem 7]:

Theorem 6.6 (an axiomatization for hQI<;�i).
The theory with A<, T<, L< (Theorem 4.1), O� (Theorem 5.3), A�, C�, U�, I�, Z� (Theorem 6.1), Re

�

(Theorem 6.2), M� (Theorem 6.3), N< (Theorem 6.5), along with the following completely axiomatizes
the structure hQI 0; 1;�1; <;�; �1i.
.D�</ f8x;y9v .0<x<y!x<vn<y/gn>0 �
The axioms D�< in Theorem 6.6 state that QC is dense in the set of its positive radicals.

Theorem 6.7 (non-axiomatizability of hNI<;�i, hZI<;�i).
The full first-order theory of hNI<;�i and hZI<;�i are not axiomatizable by any decidable set of
sentences.

Proof. Firstly, let us note that the successor operation and the constant zero are definable in both of
these structures by vDs.u/()u<v^:9w.u<w<v/ and .uD0/()u�s.u/Du, respectively. So,
the addition operation (C) is definable in the structure hNI<;�i by Tarski–Robinson’s identity [15]:
.uCvDw/()ŒuDvDwD0�_Œw¤0^ s.wu/s.wv/Ds.w2s.uv//�. Thus, by Theorem 5.8, the structure
hNI<;�i is not axiomatizable; neither is hZI<;�i since N is definable in it by the formula 06v. �



1172 SAEED SALEHI

The exponential function is not total in Z or Q, even when the base is positive: 2�1 62Z and 2
1
2 62Q. As

for N we take exp.x;y/Dxy with the convention that 00D1; and of course 0xD0 for every x>0. For
R and C we consider x 7!ex for the Napier–Euler number e in the place of exp.x/, since if x is negative,
then the value of xy may not exist in R, such as .�4/

1
4 , and even if it exists in C it may not be unique (for

example, .�4/
1
4 could be 1C i, 1� i, �1C i, or �1� i); indeed, one can take any positive real number

(other than 1) for e (noting that for example, 1
1
4 could be 1, �1, i, or �i). We also add C and � to the

language; so, by the real exponential field we mean hRIC;�; exi and by the complex exponential field
we mean hCIC;�; exi.

Theorem 6.8 (non-axiomatizability of hNI expi).
The first-order theory of hNI expi is not axiomatizable.

Proof. Since one can define � and C in hNI expi (see [4, Exercise 1, page 223]) by .u�vDw/()
8x ŒxwD.xu/v � and .uCvDw/()8x ŒxwD.xu/�.xv/�. So, the result follows from Theorem 5.8. �
Theorem 6.9 (non-axiomatizability of hCIC;�; exi).
The complex exponential field is not axiomatizable.

Proof. Indeed, the formula 8x;y .exyD�x2D1!exy�vD1/ defines Z in hCIC;�; exi, see e.g. [12],
since 8x .x2D�1$xD˙ i/ holds in C, and for every y we have e˙ iyD1 if and only if yDk� for
some k2Z. The result follows from Corollary 5.9. �

One of the most exciting questions in axiomatizability theory is the question of the axiomatizability of
hRIC;�; exi, the real exponential field (due to Tarski 1951) which is still open. An interesting instance
of interaction between seemingly different areas of mathematics (number theory and logic) is the result
of Macintyre and Wilkie [11] which states that hRIC;�; exi is axiomatizable if and only if the weak
Schanuel conjecture is true. So, if a theoretical computer scientist or a mathematical logician shows
that hRIC;�; exi is (non-)axiomatizable, then the weak Schanuel conjecture is solved in the field of
computational number theory, and if a number theorist solves that problem, then we know whether
hRIC;�; exi is axiomatizable or not. If the conjecture is true, then we have an axiomatization for
hRIC;�; exi which is “quite complicated and ugly” according to Marker [12].

7. Identities (overC;�; exp in RC)

First-order sentences can be restricted in at least two ways: one can consider the sentences of the form (a)
9Ex �.Ex/ where �.Ex/ is an equation (between two terms on Ex and possibly some other parameters); or (b)
8Ex �.Ex/ where �.Ex/ is as above.

The formula in (a) is a statement that a diophantine equation is solvable; these formulas are closely
related to Hilbert’s 10th problem (1900). Since they are discussed elsewhere (see e.g. [14]), here we
discuss the formulas in (b), which are called identities.

For a proof of the parts (i) and (ii) of the following theorem see e.g. [8]; and for a proof of part (iii),
which is due to Martin [13], see e.g. [9, Corollary 3.7].

Theorem 7.1 (identities with a single operation).
(i) The identities of hRCICi are axiomatized by
.AC/ xC.yCz/D.xCy/Cz
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.CC/ xCyDyCx

(ii) The identities of hRCI 1;�i are axiomatized by
.A�/ x �.y �z/D.x �y/�z

.C�/ x �yDy �x

.U�/ x �1Dx

(iii) The identities of hRCI 1; expi are axiomatized by
.C^/ .xy/zD.xz/y

.Z^/ 1xD1

.U^/ x1Dx �

Let us note that 0 6 2RC and so the identity .UC/ xC0Dx is not expressible here; and since we do
not have � in our language, the identity .IC/ xC.�x/D0 is not expressible either. The part (I) of the
following theorem appears in [8]; for the part (II), which appeared in [13] first, see e.g. [9, Corollary 3.9].

Theorem 7.2 (identities with two operations).
(I) The identities of hRCI 1;C;�i are axiomatized by AC, CC, A�, C�, U� (Theorem 7.1) along with the
following identity:
.D�/ x �.yCz/D.x �y/C.x �z/

(II) The identities of hRCI 1;�; expi are axiomatized by A�, C�, U�, Z^, U^ (Theorem 7.1) along with
the following identities:
.D�^/ x.y�z/D.xy/z

.D^� / .x �y/
zDxz �yz �

Let us note that the axiom C^ (Theorem 7.1.iii) is provable from C� (Theorem 7.1.ii) and D�^ (Theo-
rem 7.2.II).

The axioms in Theorem 7.2.I (for fC;�g) suffice for proving many of the high-school identities,
such as

� the binomial identity: .xCy/nD
P

i6n

�
n
i

�
xiyn�i for n2N, and

� .xCyC1/nD
P
.iCj6n/

�
n

iCj

��
iCj

i

�
xiyj for n2N,

and the more difficult one:

.W˛
ˇ
/: .P˛CQ˛/ˇ.RˇCSˇ/˛D.PˇCQˇ/˛.R˛CS˛/ˇ for ˛; ˇ2N,

where P .x/DxC1, Q.x/Dx2CxC1, R.x/Dx3C1, and S.x/Dx4Cx2C1 are polynomials on the
variable x.

We show that the identities of Table 2 derive Wilkie’s (1981) identity W˛
ˇ

when at least one of ˛ or ˇ
is a natural number (and the other one could be a variable). So, let us assume that ˛2N; we note that
PSDQRDx5Cx4Cx3Cx2CxC1. We have:

.P˛CQ˛/ˇ.RˇCSˇ/˛D.P˛CQ˛/ˇ
P

i6˛

�
˛
i

�
RˇiSˇ.˛�i/DP

i6˛

�
˛
i

�
Œ.P˛CQ˛/RiS˛�i �ˇDP

i6˛

�
˛
i

��
Œ.PR/i.PS/˛�i �CŒ.QR/i.QS/˛�i �

�ˇ
D
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i6˛

�
˛
i

��
Œ.PR/i.QR/˛�i �CŒ.PS/i.QS/˛�i �

�ˇ
DP

i6˛

�
˛
i

��
R˛ ŒP iQ˛�i �CS˛ ŒP iQ˛�i �

�ˇ
DP

i6˛

�
˛
i

��
ŒR˛CS˛ �ŒP iQ˛�i �

�ˇ
D

.R˛CS˛/ˇ
P

i6˛

�
˛
i

�
.Pˇ/i.Qˇ/˛�iD.PˇCQˇ/˛.R˛CS˛/ˇ.

Indeed, Wilkie’s identity W˛
ˇ

is true even when both ˛; ˇ are variables: since for T .x/Dx2�xC1

we have RDPT and S DQT , thus T ˛ˇ can be factored out from both sides of W˛
ˇ

. Note that the
positive-valued polynomial T is not expressible in the language f1;C;�; expg.

Tarski’s high-school problem asked whether the identities of Table 2 could axiomatize all the identities
of the positive cone of the real exponential field, i.e., the structure hRCI 1;C;�; expi. It was posed first by
Doner & Tarski (1969) and was popularized in 1977 by Henkin [8] as a then open problem. Wilkie [20]
showed in 1981 that W˛

ˇ
is not derivable from Tarski’s high-school identities when both ˛ and ˇ are

variables (see also [5]).
Wilkie [20] also proved that the identities of hRCI 1;C;�; expi are axiomatizable by a decidable set of

identities, and Gurevič [6] showed that it is not axiomatizable by any finite set of identities. However,
Tarski’s conjecture holds true for a wide range of identities.

Let us say that a term t over f1;C;�; expg is of level 1 when for every sub-term uv of t either u is
a variable or u contains no variable; for example, xyC.1C1/z . A term t is of level 2 when for every
sub-term uv of t we have that u is of level 1; for example p.x/uC q.x/v is of level 2 when p; q are
polynomials of the variable x, and u; v are variables. Let us note that the term .P .x/˛CQ.x/˛/ˇ , which
appears in W˛

ˇ
, is not of level 2 in general. The following theorem is proved in [7, Proposition 4.4.5]:

Theorem 7.3 (Tarski’s conjecture for terms of level 2).
If .rDs/ is a valid identity of the structure hRCI 1;C;�; expi where r and s are terms of level 2, then
.rDs/ can be proved from the identities of Table 2. �

So, Wilkie’s result [20] (Theorem 7.4 below) is a boundary result, since some terms in W˛
ˇ

are of level
3 (which are the terms with the property that for every sub-term uv of them, u is a term of level 2).

Theorem 7.4 (Tarski’s conjecture, not for higher levels).
The identity W˛

ˇ
holds in hRCI 1;C;�; expi but is not provable from the identities of Table 2 when x; ˛; ˇ

are all variables. �

An axiomatization for the multiplication of positive natural numbers

An axiomatization for hNCI 1;�i was presented in [3], whose proofs are available only in French; an
English exposition of the axioms without any proofs appears in [19, § III.5]. We need the following
notation for presenting the axioms:

yvx()9w.y �wDx/,
P.x/()x¤1^8y .yvx!yD1_yDx/,
R.x;y/()P.x/^xvy ^8z .P.z/^ z¤x!z 6vy/, and
V .x;y; z/()R.x; z/^ zvy ^8w .R.x; w/^wvy!wvz/;

which state, respectively, that “y divides x”, “x is a prime”, “y is a power of the prime x”, and “z is the
largest power of the prime x that divides y”. Here are Cégielski’s axioms [3]:
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.A�/ 8x;y; z .x �.y �z/D.x �y/�z/

.C�/ 8x;y .x �yDy �x/

.U�/ 8x .x �1Dx/

.C�/ 8x;y; z .x �yDx �z!yDz/

.U�/ 8x;y .x �yD1!xDyD1/

.D�/ f8x;y .xnDyn!xDy/gn>1

.E�/ f8x9u; v .xDunv^8y; zŒxDynz!vvz�/gn>1

.P�/ 8x9v .P.v/^v 6vx/

.R�/ 8u;x;y .R.u;x/^R.u;y/!xvy_yvx/

.V9/ 8u;x ŒP.u/!9vV .u;x; v/�

.Vv/ 8x;y .8u; v; wŒP.u/^V .u;x; v/^V .u;y; w/!vvw��!xvy/

.T�/ 8x;y9z8u .P.u/�! Œu 6vx!V .u; z; 1/�^ Œuvx!8vfV .u; z; v/$V .u;y; v/g�/

.V�/ 8x;y .8u; v; wŒP.u/^V .u;x; v/^V .u;y; w/!V .u;x �y; v �w/�/

.S�/ f8x;y9z8u .P.u/ �! Œuvx �y^9v;wfV .u;x; v/^V .u;y; wnv/g!V .u; z;u/�^

Œ:.uvx �y^9v;wfV .u;x; v/^V .u;y; wnv/g/!V .u; z; 1/�/gn>0

By A�, U�, C�, and U� the relation v is antisymmetric: if av bv a, then aD b. For every prime
u and every x there exists some v, by V9, such that V .u;x; v/. That v is unique by R�; so let us
denote it by V.u;x/. So, if u ranges over the primes, then xD

Q
uvx V.u;x/. Thus, V� is equivalent to

V.u;xy/DV.u;x/V.u;y/; and the number z in T� is
Q

uvx V.u;y/. The axiom S� states the existence
of
Q
Œuvxy;V.u;x/vnV.u;y/� u, where avn b is by definition 9w.awn D b/. Finally, we note that the

following sentences are provable from the axioms:

.VD/ 8x;y .8uŒP.u/!V.u;x/DV.u;y/��!xDy/

.I�/ 8x9w8u .P.u/! Œu 6vx!V.u; w/D1�^ Œuvx!V.u; w/DuV.u;x/�/

.P�
9
/ 8x .x¤1!9uŒP.u/^uvx�/

In fact, VD follows from Vv, and I� follows from S� by putting wDxz where z is stated to exist
by S� for xD y; nD 1. Indeed, VD is the axiom A11 in [3] (V2 in [19]), and I� is the axiom A15

in [3] (I in [19]) which, as we saw, are redundant. For P�
9

we note that if no prime divides ˛¤1, then
V.u; ˛/D1 for every prime u; so by Vv we have ˛vy for every y, and this contradicts P� (by which
also the infinitude of primes can be proved).
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[19] C. Smoryński, Logical number theory, I: An introduction, Springer, Berlin, 1991.

[20] A. J. Wilkie, “On exponentiation: a solution to Tarski’s high school algebra problem”, preprint. Reprinted in Connections
between model theory and algebraic and analytic geometry, Quaderni di Matematica (Seconda Univ. Napoli), 6, (2000),
pp. 107–129,.

Saeed Salehi: root@saeedsalehi.ir
Department of Mathematics, Statistics, and Computer Science, University of Tabriz, P.O.Box 51666-16471, Tabriz, Iran

and

School of Mathematics, Institute for Research in Fundamental Sciences, P.O.Box 19395-5746, Tehran, Iran

RMJ — prepared by msp for the
Rocky Mountain Mathematics Consortium

http://dx.doi.org/10.2307/2044966
http://dx.doi.org/10.1016/0168-0072(90)90049-8
http://dx.doi.org/10.2307/2154337
http://dx.doi.org/10.2307/2154337
http://dx.doi.org/10.2307/2321009
http://dx.doi.org/10.2307/1999575
http://dx.doi.org/10.2307/1999575
https://www.ams.org/notices/199607/marker.pdf
https://www.ams.org/notices/200803/tx080300344p.pdf
http://dx.doi.org/10.2307/2266510
http://dx.doi.org/10.3233/fi-2018-1665
http://dx.doi.org/10.1007/s41980-019-00252-0
https://www.elibm.org/article/10011470
http://dx.doi.org/10.1007/978-3-642-75462-3
mailto:root@saeedsalehi.ir
http://msp.org
https://rmmc.asu.edu

	1. Introduction
	2. Boolean algebras and propositional logic
	3. Axiomatizability and quantifier elimination
	4. Number systems (order and addition)
	4.1. The addition operation

	5. Number systems (addition and multiplication)
	5.1. Addition and multiplication on natural, integer, and rational numbers

	6. Number systems (multiplication and exponentiation)
	6.1. Order, multiplication, and exponentiation

	7. Identities (over +, ,exp in R+)
	An axiomatization for the multiplication of positive natural numbers
	References

