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Abstract. We consider varieties of recognizable subsets of many-sorted finitely

generated free algebras over a given variety, varieties of congruences of such al-

gebras, and varieties of finite many-sorted algebras. A variety theorem that es-

tablishes bijections between the classes of these three types of varieties is proved.

For this, appropriate notions of many-sorted syntactic congruences and algebras

are needed. Also an alternative type of varieties is considered where each subset

consists of elements of just one sort.
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1 Introduction

S. Eilenberg’s [8] famous Variety Theorem establishes a bijective correspon-
dence between varieties of regular languages (∗–varieties) and varieties of finite
monoids, or between varieties of regular languages without the empty word (+–
varieties) and varieties of finite semigroups. The theorem provides a general
framework for the classification of regular languages and it describes the fami-
lies of regular languages that can be characterized by syntactic monoids or by
syntactic semigroups.

The Variety Theorem has been extended or adapted to other kinds of reg-
ular sets in several ways. A useful addition was the correspondence between
varieties of regular languages and varieties of congruences of free monoids or
free semigroups introduced by Thérien [25]. Another notable extension of the
basic theory is Pin’s [18] theory of positive varieties. In [21] Steinby proposes
a theory of varieties of recognizable subsets of free algebras that encompasses
both Eilenberg’s theory and a theory of varieties of regular tree languages as
special cases. The idea of recognizable subsets of arbitrary algebras goes back
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to Mezei and Wright [16]. The similar generalization developed in the more
extensive study [1] by Almeida includes also varieties of congruences. Varieties
of congruences appear also in the theory of varieties of tree languages presented
in [22] and in the theory of generalized varieties of tree languages of [23]. The
theories in [1, 21, 22, 23, 24] are all based on syntactic algebras. As one more
extension along these lines, we should mention Ésik’s theory [10] where the place
of varieties of finite algebras is taken by varieties of finitary theories.

It appears that Maibaum [14] was the first one to consider many-sorted tree
languages. Many-sorted trees are used also by Engelfriet and Schmidt [9] in their
study of the equational semantics of context-free tree languages. Recognizable
subsets of general many-sorted algebras were studied by Courcelle [5, 6].

In this paper we join two of the above lines of research by developing a
theory of varieties of recognizable subsets of free many-sorted algebras. Thus
we actually generalize the theories of [21, 22, 24] and [1] to the many-sorted
case. It should be mentioned that, although not considered here, Wilke’s [26]
tree algebras gave an important impetus to this work; they are 3-sorted algebras
used for characterizing families of (binary) tree languages. These algebras we
studied in [20] (see also [19]). The syntactic preclones recently introduced by
Ésik and Weil [11] also lead to a many-sorted formalism, but it remains to be
studied how our results apply to their theory.

In Section 2 we present some basic definitions and our notation for many-
sorted algebras. Also some more specialized notions relevant to our work are
introduced. The references [13] and [15] may be consulted for general treatments
of the theory of many-sorted algebras. In Section 3 recognizable subsets of many-
sorted algebras are considered. There are actually two types of these subsets:
recognizable sorted subsets, and the “pure” recognizable subsets considered in
[6, 9, 14] in which all elements are of some given sort. We mainly consider the
former type but we will show how the theory applies also to the other kind of
sets.

Syntactic congruences and syntactic algebras of subsets of many-sorted al-
gebras are introduced in Section 4, and it is shown that they enjoy all the same
general properties as their counterparts for monoids [8, 17] or term algebras, or
one-sorted algebras in general [1, 21, 22].

In Section 5 we define our varieties of recognizable sets and varieties of
congruences. For this a finite set of sorts S and variety V of some finite S-sorted
type Ω are fixed. A variety of recognizable V-sets consists then of recognizable
subsets of the finitely generated free algebras over V. Similarly, a variety of V-
congruences consists of congruences of finite index on these algebras. Finally, a
V-variety of finite algebras is defined as a variety of finite algebras contained in
V. In Section 6 we define six mappings that transform varieties of recognizable
V-sets, varieties of V-congruences and V-varieties of finite algebras to each
other. Then we prove our Variety Theorem that essentially says that these
six mappings form three pairs of mutually inverse isomorphisms between the
complete lattices of the three kinds of varieties considered. The proof is very
similar to the corresponding proof presented in [22], but there are naturally
some technical differences and for the reader’s convenience a rather detailed
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proof is presented.
In Section 7 we define varieties of pure recognizable V-sets in which each

recognizable set is a subset of the set of elements of some given sort of a finitely
generated free algebra over V. By establishing a natural correspondence be-
tween the two types of varieties of recognizable V-sets, a Variety Theorem is
derived also for varieties of pure recognizable V-sets.

2 Many-sorted algebras

In this section we review some basic concepts related to many-sorted (or het-
erogeneous) algebras, and at the same time we fix our notation and intro-
duce a few more special notions. For more about many-sorted algebras and
their applications to automata and formal languages, the reader may consult
[12, 2, 14, 13, 5, 6], for example, or the survey [15] that also contains many
further references.

In what follows, S is always a non-empty set of sorts. Families of objects
indexed by S are said to be S-sorted, or just sorted. The sort of an object is
usually shown as a subscript or in parentheses (to avoid multiple subscripts).
For example, an S-sorted set A = 〈As〉s∈S is an S-indexed family of sets, where
for each s ∈ S, As is the set of elements of sort s in A, and we may write As

also as A(s). The basic set-theoretic notions are defined for S-sorted sets in the
natural sortwise manner: for any S-sorted sets A = 〈As〉s∈S and B = 〈Bs〉s∈S ,
A ⊆ B means that As ⊆ Bs for every s ∈ S, A ∪ B = 〈As ∪ Bs〉s∈S etc., and
general sorted unions and intersections are defined similarly. The notation ∅ is
used also for the S-sorted empty set 〈∅〉s∈S .

Sometimes we form a sorted set from a set of a given sort: with any set T
of some sort u ∈ S we associate the S-sorted set 〈T 〉 such that 〈T 〉u = T and
〈T 〉s = ∅ for every s ∈ S − {u}.

A sorted relation θ = 〈θs〉s∈S on A = 〈As〉s∈S is a family of relations such
that for each s ∈ S, θs is a relation on As, and it is a sorted equivalence on A
if θs is an equivalence on As for every s ∈ S. Let EqS(A) denote the set of all
sorted equivalences on A. For any θ = 〈θs〉s∈S ∈ EqS(A), the quotient set is
the S-sorted set A/θ = 〈As/θs〉s∈S , where As/θs = {a/θs | a ∈ As} (s ∈ S). Of
course, EqS(A) forms with respect to the sorted inclusion relation a complete
lattice in which least upper bounds and greatest lower bounds are formed sort-
wise. The least element is the sorted diagonal relation ∆A = 〈∆A(s)〉s∈S and
the greatest element is the sorted universal relation ∇A = 〈∇A(s)〉s∈S , where
∆A(s) = {(a, a) | a ∈ A(s)} and ∇A(s) = A(s)×A(s) for each s ∈ S.

A sorted mapping ϕ : A → B from A = 〈As〉s∈S to B = 〈Bs〉s∈S is an S-
sorted family ϕ = 〈ϕs〉s∈S of mappings ϕs : As → Bs (s ∈ S). The kernel of ϕ is
the sorted equivalence kerϕ = 〈kerϕs〉s∈S on A. For any sorted subset H ⊆ A,
Hϕ denotes the sorted subset 〈Hsϕs〉s∈S of B. Similarly, if H is a sorted subset
of B, then Hϕ−1 denotes the sorted subset 〈Hsϕ

−1
s 〉s∈S of A. The composition

of two S-sorted mappings ϕ : A → B and ψ : B → C is the sorted mapping
ϕψ : A → C such that (ϕψ)s = ϕsψs for each s ∈ S. Here the mappings were
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composed from left to right, as we shall do especially with homomorphisms.
Hence, ϕsψs : a 7→ (aϕs)ψs for all s ∈ S and a ∈ As.

Treating S as an alphabet, S∗ denotes the set of finite strings over S, in-
cluding the empty string e, and S+ is the set of non-empty strings over S. An
S-sorted signature Ω is a set of operation symbols each of which has a type that
is an element of S∗×S. For any (w, s) ∈ S∗×S, let Ωw,s be the set of symbols
of type (w, s) in Ω. If f ∈ Ωw,s, then w is the domain type of f , and s is its
sort. Elements of Ωe,s are constant symbols of sort s. The fact that f ∈ Ωw,s is
expressed also by writing f : w → s. For S finite, a finite S-sorted signature is
called an S-sorted ranked alphabet. Later S will always be finite and Ω will be
an S-sorted ranked alphabet.

An Ω-algebra A = (A,Ω) consists of an S-sorted set A = 〈As〉s∈S , where
As 6= ∅ for every s ∈ S, and

(1) for any c ∈ Ωe,s with s ∈ S, a constant cA ∈ As of sort s is specified;

(2) for any f ∈ Ωw,s with (w, s) ∈ (S+, S), an operation fA : Aw → As of type

(w, s), domain type w and sort s is defined. Here Aw = As(1)×· · ·×As(m)

assuming that w = s(1) . . . s(m).

Such an algebra A is said to be S-sorted. When we speak about the Ω-algebras
A = (A,Ω), B = (B,Ω) and C = (C,Ω), we usually assume without mentioning
it that A = 〈As〉s∈S , B = 〈Bs〉s∈S and C = 〈Cs〉s∈S .

An Ω-algebra B = (B,Ω) such that B ⊆ A is a subalgebra of A = (A,Ω), if
cB = cA for every constant symbol c ∈ Ωe,s (s ∈ S), and fB = fA|Bw for any
f ∈ Ωw,s with w ∈ S+ and s ∈ S. If B is a subalgebra of A, then B = 〈Bs〉s∈S

is a closed subset of A, that is, cA ∈ Bs whenever c ∈ Ωe,s and s ∈ S, and
fA(b1, . . . , bm) ∈ Bs for f : s(1) . . . s(m)→ s and b1 ∈ Bs(1), . . . , bm ∈ Bs(m).

On the other hand, any closed subset B with Bs 6= ∅ for every s ∈ S, is the
carrier set of a unique subalgebra of A. Hence, subalgebras coincide with the
closed subsets whose all components are non-empty. The set of all closed subsets
of A is denoted by Sub(A), and let Sub+(A) denote the set of closed subsets
with non-empty components. Any subset H = 〈Hs〉s∈S of A is contained in a
unique minimal closed subset [H ] =

⋂
{B | H ⊆ B, B ∈ Sub(A)}, the closed

subset generated by H . If Hs∪Ωe,s 6= ∅ for every s ∈ S, then [H ] is a subalgebra,
but this may be the case even otherwise. If [H ] ∈ Sub+(A), then [H ] is called
the subalgebra generated by H .

A sorted equivalence θ = 〈θs〉s∈S on A is a congruence on A = (A,Ω) if

a1 θs(1) b1, . . . , am θs(m) bm ⇒ fA(a1, . . . , am) θs f
A(b1, . . . , bm),

whenever f : s(1) . . . s(m)→ s and a1, b1 ∈ As(1), . . . , am, bm ∈ As(m). Then the
operations of the quotient algebra A/θ = (A/θ,Ω) are well-defined by setting

(1) cA/θ = cA/θs for every c ∈ Ωe,s, and

(2) fA/θ(a1/θs(1), . . . , am/θs(m)) = fA(a1, . . . , am)/θs for any function sym-
bol f : s(1) . . . s(m) → s and any a1 ∈ As(1), . . . , am ∈ As(m).
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A sorted mapping ϕ : A → B is a homomorphism from A = (A,Ω) to B =
(B,Ω), and we express this by writing ϕ : A → B, if

(1) cAϕs = cB whenever c ∈ Ωe,s for some s ∈ S, and

(2) fA(a1, . . . , am)ϕs = fB(a1ϕs(1), . . . , amϕs(m)) for any function symbol f :
s(1) . . . s(m)→ s and any a1 ∈ As(1), . . . , am ∈ As(m).

A homomorphism ϕ is a monomorphism, an epimorphism or an isomorphism,
if every ϕs (s ∈ S) is injective, surjective or bijective, respectively. If there is
an isomorphism ϕ : A → B, the algebras are isomorphic, A ∼= B in symbols. If
there exists an epimorphism ϕ : A → B, then B is an image of A, and we write
B ← A. The fact that B is isomorphic to a subalgebra of A is expressed writing
B ⊆ A. Furthermore, B is said to divide A, and we write B � A, if B is an
image of a subalgebra of A. Clearly, B � A iff there is an Ω-algebra C for which
there exist a monomorphism ϕ : C → A and an epimorphism ψ : C → B, and
B � A follows both from B ⊆ A and from B ← A.

The natural map corresponding to a sorted equivalence θ = 〈θs〉s∈S on a
sorted set A, is the sorted map θ♮ : A→ A/θ, where θ♮

s : As → As/θs, a 7→ a/θs,
for each s ∈ S. If θ is a congruence on an Ω-algebraA, then θ♮ is an epimorphism
from A onto A/θ, and the Homomorphism Theorem (cf. [3], for example) can
be generalized to many-sorted algebras as follows (cf. [15], for example).

Proposition 2.1 If ϕ : A → B is a homomorphism of Ω-algebras, then kerϕ is

a congruence on A and ψ : A/ kerϕ→ B, a/ kerϕs 7→ aϕs, is a monomorphism

such that (kerϕ)♮ψ = ϕ. If ϕ is an epimorphism, then ψ is an isomorphism. �

Next we introduce the many-sorted version of a notion that has proved very
useful for dealing with congruences.

Let A = (A,Ω) be an Ω-algebra. For any pair s, s′ ∈ S of sorts, an elemen-

tary s, s′-translation is any mapping As → As′ of the form

α(ξs) = fA(a1, . . . aj−1, ξs, aj+1 . . . , am),

where m ≥ 1, f : s(1) . . . s(m) → s′, 1 ≤ j ≤ m, s(j) = s, and ai ∈ As(i) for
every i 6= j. Here and later, ξs is a variable of sort s that does not appear in the
other alphabets considered. Let the set of all elementary s, s′-translations of A
be denoted by ETr(A, s, s′). The S × S-sorted set Tr(A) = 〈Tr(A, s, s′)〉s,s′∈S

of all translations of A is now defined inductively by the following clauses:

(1) ETr(A, s, s′) ⊆ Tr(A, s, s′) for all s, s′ ∈ S,

(2) for each s ∈ S, the identity map 1A(s) : A(s)→ A(s) is in Tr(A, s, s), and

(3) if α(ξs) ∈ Tr(A, s, s′) and β(ξs′ ) ∈ Tr(A, s′, s′′), for some s, s′, s′′ ∈ S,
then β(α(ξs)) ∈ Tr(A, s, s′′).

For any s, s′ ∈ S, the elements of Tr(A, s, s′) are the s, s′-translations of A.
The following lemma is an immediate generalization of the corresponding

fact about one-sorted algebras (see e.g. [3, 4, 7]).
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Lemma 2.2 Let A = (A,Ω) be an Ω-algebra. Every congruence θ = 〈θs〉s∈S on

A is invariant with respect to all translations of A, that is to say, a θs b implies

α(a) θs′ α(b) for all s, s′ ∈ S, a, b ∈ As and α(ξs) ∈ Tr(A, s, s′). On the other

hand, a sorted equivalence θ on A is a congruence if it is invariant with respect

to every elementary translation of A. �

The following lemma is often used (cf. [21, 22] for the one-sorted version).

Lemma 2.3 Let ϕ : A → B be a homomorphism of Ω-algebras from A = (A,Ω)
to B = (B,Ω). For any s, s′ ∈ S and every α(ξs) in Tr(A, s, s′), there exists a

translation αϕ(ξs) ∈ Tr(B, s, s′) such that

α(a)ϕs′ = αϕ(aϕs)

for every a ∈ As. If ϕ is an epimorphism, then for all s, s′ ∈ S and every β(ξs)
in Tr(B, s, s′) there exists an α(ξs) ∈ Tr(A, s, s′) such that β = αϕ. �

Translations of an Ω-algebra A = (A,Ω) and their inverses are applied to
subsets of a given sort and to sorted subsets as follows. Let α(ξs) ∈ Tr(A, s, s′)
for some s, s′ ∈ S. For any u ∈ S and T ⊆ Au, let

• α(T ) = {α(a) | a ∈ T } (⊆ As′) if u = s, and α(T ) = ∅ if u 6= s;

• α−1(T ) = {a ∈ As | α(a) ∈ T } if u = s′, and α−1(T ) = ∅ if u 6= s′.

Furthermore, for any sorted subset L = 〈Ls〉s∈S of A, we set

• α(L) = 〈Ku〉u∈S , where Ks′ = α(Ls), and Ku = ∅ for each u 6= s′, and

• α−1(L) = 〈Ku〉u∈S , where Ks = α−1(Ls′), and Ku = ∅ for each u 6= s.

The direct product A1×· · ·×An of any finite family A1, . . . ,An Ω-algebras,
or the direct product

∏
i∈I Ai of a general family Ai (i ∈ I) of Ω-algebras, are

defined in the natural way.
If ϕ : A → B is a sorted mapping from an S-sorted set A = 〈As〉s∈S to an

S-sorted set B = 〈Bs〉s∈S and θ = 〈θs〉s∈S is a sorted equivalence on B, then
ϕ ◦ θ ◦ ϕ−1 is the sorted equivalence on A defined by the condition

a1 (ϕ ◦ θ ◦ ϕ−1)s a2 ⇔ a1ϕs θs a2ϕs (s ∈ S, a1, a2 ∈ As).

The following facts are again simple generalizations from the one-sorted case.

Lemma 2.4 Let A = (A,Ω) and B = (B,Ω) be Ω-algebras, θ and θ′ be congru-

ences on A, ρ be a congruence on B, and let ϕ : A → B be a homomorphism.

(1) If θ ⊆ θ′, then A/θ′ ← A/θ.

(2) A/θ ∩ θ′ ⊆ A/θ ×A/θ′.

(3) The relation ϕ ◦ ρ ◦ ϕ−1 is a congruence on A, and A/ϕ ◦ ρ ◦ ϕ−1 � B/ρ.
Moreover, if ϕ is an epimorphism, then A/ϕ ◦ ρ ◦ ϕ−1 ∼= B/ρ. �
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The class operators S, H, P and Pf are defined exactly as in the one-sorted
case: for any class K of Ω-algebras, S(K) is the class of algebras isomorphic to
a subalgebra of a member of K, H(K) is the class of all the images of members
of K, P(K) consists of all the algebras isomorphic to the direct product of a
family of algebras in K, and Pf(K) is the class of algebras isomorphic to the
direct product of a finite family of algebras in K.

A class K of Ω-algebras is a variety if S(K),H(K),P(K) ⊆ K. Birkhoff’s
well-known theorem by which a class of algebras is definable by equations iff it
is a variety, holds also for many-sorted algebras (cf. Section 5 of [15]).

A class K of finite Ω-algebras is called a variety of finite Ω-algebras, an Ω-
VFA for short, if S(K),H(K),Pf(K) ⊆ K. It is easy to show that a class K of
finite Ω-algebras is an Ω-VFA iff A ∈ K whenever A � A1 × . . .×An for some
n ≥ 0 and A1, . . . ,An ∈ K. When we deal with varieties of finite Ω-algebras,
both S and Ω are assumed to be finite.

Let X = 〈Xs〉s∈S be an S-sorted alphabet disjoint from Ω. The S-sorted set
TΩ(X) = 〈TΩ(X, s)〉s∈S of Ω-terms with variables in X is defined inductively:

(1) Ωe,s ∪Xs ⊆ TΩ(X, s) for every s ∈ S, and

(2) f(t1, . . . , tm) ∈ TΩ(X, s) for any function symbol f : s1 . . . sm → s (m > 0)
and any terms t1 ∈ TΩ(X, s1), . . ., tm ∈ TΩ(X, sm).

The alphabet X is said to be full for Ω if TΩ(X, s) 6= ∅ for every s ∈ S. Note
that a given TΩ(X, s) may be non-empty even if Xs = Ωe,s = ∅. If X is full for
Ω, then the ΩX-term algebra TΩ(X) = (TΩ(X),Ω) can be defined thus:

(1) cTΩ(X) = c for any s ∈ S and c ∈ Ωe,s, and

(2) fTΩ(X)(t1, . . . , tm) = f(t1, . . . , tm) for any f : s1 . . . sm → s (m > 0) and
any t1 ∈ TΩ(X, s1), . . ., tm ∈ TΩ(X, sm).

Of course, TΩ(X) is generated freely by X over the class of all Ω-algebras, that
is to say, for any Ω-algebra A = (A,Ω), any sorted mapping α : X → A has a
unique extension to a homomorphism αA : TΩ(X)→ A.

More generally, if V is a class of Ω-algebras, an Ω-algebra F is generated

freely over V by a sorted subset G, if F ∈ V, F is generated by G, and for
any A = (A,Ω) in V, any sorted mapping ϕ0 : G → A can be extended to a
homomorphism ϕ : F → A. If such an F exists, it is unique up to isomorphism,
and we denote it by FV(G) = (FV(G),Ω) with FV(G) = 〈FV(G, s)〉s∈S .

Let Ω be an S-sorted ranked alphabet and let X be an S-sorted alphabet
disjoint from Ω. For each s ∈ S, let ξs be again a special symbol of sort s.
The S × S-sorted set CΩ(X) = 〈CΩ(X, s, s′)〉s,s′∈S of ΩX-contexts is defined
inductively by the conditions

(1) ξs ∈ CΩ(X, s, s) for each s ∈ S, and

(2) f(t1, . . . , tj−1, p, tj+1 . . . , tm) ∈ CΩ(X, s, s′) whenever s, s′, s1, . . . , sm ∈ S,
f : s1 . . . sm → s′, 1 ≤ j ≤ m, p ∈ CΩ(X, s, sj), and ti ∈ TΩ(X, si), i 6= j.
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The product p · q = q(p) of p ∈ CΩ(X, s, s′) and q ∈ CΩ(X, s′, s′′) (s, s′, s′′ ∈ S)
is the ΩX-context in CΩ(X, s, s′′) obtained from q when ξs′ is replaced with p.

Let A = (A,Ω) be any Ω-algebra. Every translation of A is represented in
a natural way by an ΩA-context of a matching type:

(1) an elementary translation α(ξs) = fA(a1, . . . aj−1, ξs, aj+1 . . . , am) is rep-
resented by the ΩA-context f(a1, . . . aj−1, ξs, aj+1 . . . , am),

(2) the identity map 1A(s) : A(s)→ A(s) is represented by ξs, and

(3) if α(ξs) ∈ Tr(A, s, s′) and β(ξs′ ) ∈ Tr(A, s′, s′′) are represented by the
contexts p(ξs) ∈ CΩ(A, s, s′) and q(ξs′ ) ∈ CΩ(A, s′, s′′), respectively, then
β(α(ξs)) is represented by q(p(ξs)) ∈ CΩ(A, s, s′′).

3 Recognizable subsets

An equivalence θ on a set A saturates a subset L ⊆ A when L is the union of
some θ-classes, and that θ is said to be of finite index if it has a finite number
of equivalence classes. Mezei and Wright [16] call a subset L of an algebra A
recognizable if it is saturated by a congruence of finite index on A. Clearly, L
is recognizable iff there exist a finite algebra B, a homomorphism ϕ : A → B
and a subset H of B such that L = Hϕ−1. We use this condition, where B
may be viewed as a ‘recognizer’ of L, for defining recognizability in many-sorted
algebras. There are two natural types of recognizable subsets of a sorted algebra:
the recognizable sorted subsets and the recognizable subsets of a given sort.

In what follows, S is always a finite set of sorts and Ω is an S-sorted ranked
alphabet. An S-sorted set A = 〈As〉s∈S is said to be finite if every As (s ∈ S)
is finite, and an Ω-algebra A = (A,Ω) is finite if A = 〈As〉s∈S is finite.

Definition 3.1 A sorted subset L ⊆ A of an Ω-algebra A = (A,Ω) is recogniz-

able if there exist a finite Ω-algebra B = (B,Ω), a homomorphism ϕ : A → B
and a sorted subset H of B such that L = Hϕ−1. Then we say also that B
recognizes L. Let Rec(A) denote the set of all recognizable subsets of A.

For any s ∈ S, a subset T of As is said to be recognizable in A if if there
exist a finite Ω-algebra B = (B,Ω), a homomorphism ϕ : A → B and a subset
H of Bs such that T = Hϕ−1

s . Let Rec(A, s) denote the set of all such subsets
of As. We call such sets also pure recognizable sets.

The recognizable tree languages of sort s ∈ S considered by Maibaum [14]
are the pure recognizable subsets of the term algebra TΩ(∅) of sort s, i.e., the
elements of Rec(TΩ(∅), s). Courcelle [5, 6] extends this notion to any S-sorted
algebraA = (〈As〉s∈S ,Ω), without assuming the finiteness of S or Ω, by calling a
subset T ⊆ As recognizable if there exist a “locally finite” Ω-algebra B = (B,Ω),
a homomorphism ϕ : A → B and a subset H of Bs such that T = Hϕ−1

s ; in [5, 6]
an algebra B = (〈Bs〉s∈S ,Ω) is called locally finite if every Bs is finite (s ∈ S).
Since we assume that S is finite, this ‘locally finite’ means here just ‘finite’, and
hence our pure recognizable subsets are exactly Courcelle’s recognizable subsets.
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Although we are primarily concerned with sorted recognizable sets, we will
also note how the theory can be adapted to pure recognizable sets.

A sorted equivalence θ = 〈θs〉s∈S on an S-sorted set A = 〈As〉s∈S is said
to saturate a sorted subset L = 〈Ls〉s∈S of A if every Ls is the union of some
θs-classes (s ∈ S), and θ is of finite index if every θs (s ∈ S) is of finite index.
The following lemma is an obvious generalization of the fact noted above.

Lemma 3.2 A sorted subset of an Ω-algebra A is recognizable iff it is saturated

by a congruence on A of finite index. Similarly, a subset T ⊆ Au of some sort

u ∈ S is recognizable iff it is saturated by θu for some congruence θ = 〈θs〉s∈S

on A of finite index. �

Next we present a few closure properties that are well-known for recognizable
subsets of one-sorted algebras.

Proposition 3.3 Let A = (A,Ω) and B = (B,Ω) be any Ω-algebras.

(1) ∅, A ∈ Rec(A).

(2) If K,L ∈ Rec(A), then K ∪ L,K ∩ L,K − L ∈ Rec(A).

(3) If L ∈ Rec(A) and α ∈ Tr(A, s, s′) for some s, s′ ∈ S, then α−1(L) ∈
Rec(A).

(4) If ϕ : A → B is a homomorphism and L ∈ Rec(B), then Lϕ−1 ∈ Rec(A).

Proof. Assertion (1) is trivial, and (2) can be proved as usual by defining the
direct product of any two finite algebras recognizing K and L, respectively.

For (3), we recall first that α−1(L)s = α−1(Ls′) and α−1(L)s′′ = ∅ for every
s′′ 6= s. Assume now that L = Hϕ−1, where ϕ : A → C is a homomorphism to
a finite Ω-algebra C = (C,Ω), and H ⊆ C. By Lemma 2.3 there is a translation
αϕ ∈ Tr(C, s, s′) such that α(a)ϕs′ = αϕ(aϕs) for every a ∈ Ls. Now it is easy
to see that α−1(L) = Gϕ−1 for the sorted subset G of C defined in such a way
that Gs = α−1

ϕ (Hs′ ) and Gs′′ = ∅ for every s′′ 6= s.
To prove (4), assume that L = Hψ−1, where ψ : B → C is a homomorphism

to a finite algebra Ω-algebra C = (C,Ω) and H ⊆ C. Then Lϕ−1 = H(ϕψ)−1 ∈
Rec(A) as claimed. �

Let us clarify here the relationship between the two notions of recognizable
subsets, recognizable sorted subsets and pure recognizable subsets.

The following fact can be derived directly from Definition 3.1.

Lemma 3.4 Let A = (A,Ω) be an S-sorted algebra. For any s ∈ S and T ⊆ As,

T ∈ Rec(A, s) iff 〈T 〉 ∈ Rec(A). �

The forward direction of the following proposition is again a direct conse-
quence of Definition 3.1, and the converse part follows from Lemma 3.4 and
Proposition 3.3(2).

Proposition 3.5 A sorted subset L = 〈Ls〉s∈S of an S-sorted algebra A =
(A,Ω) is recognizable iff Ls ∈ Rec(A, s) for every s ∈ S. �
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4 Syntactic congruences and algebras

We shall now present a theory of syntactic congruences and syntactic algebras for
S-sorted algebras similar to those known for semigroups, monoids (cf. [8, 17, 18])
or general one-sorted algebras (cf. [1, 21, 22]).

Definition 4.1 The syntactic congruence ≈L = 〈≈L
s 〉s∈S of a sorted subset L

of an Ω-algebra A = (A,Ω) is defined by

a ≈L
s b ⇔ (∀s′ ∈ S)(∀α ∈ Tr(A, s, s′))(α(a) ∈ Ls′ ↔ α(b) ∈ Ls′)

for every s ∈ S and a, b ∈ As.

The following basic property of syntactic congruences can be verified exactly
as in the one-sorted case.

Lemma 4.2 The syntactic congruence ≈L of any sorted subset L of an Ω-algebra

A = (A,Ω) is the greatest congruence on A that saturates L. �

Of course, we have also the following Nerode–Myhill type theorem.

Proposition 4.3 For any sorted subset L of an Ω-algebra A = (A,Ω), the

following are equivalent:

(1) L ∈ Rec(A);

(2) L is saturated by a congruence on A of finite index;

(3) ≈L is of finite index.

Proof. If there exist a finite Ω-algebra B = (B,Ω), a homomorphism ϕ : A → B
and a sorted subset H of B such that L = Hϕ−1, then kerϕ is a congruence
on A of finite index saturating L. On the other hand, if L is saturated by a
congruence θ ∈ Con(A) of finite index, then L is recognized by the finite Ω-
algebra A/θ. Hence, (1) and (2) are equivalent. Conditions (2) and (3) are
equivalent by Lemma 4.2. �

Also the following facts can be proved similarly as their counterparts in the
one-sorted theory. In the proposition, K and L are always sorted subsets.

Proposition 4.4 Let A = (A,Ω) and B = (B,Ω) be Ω-algebras.

(1) ≈A−L = ≈L, for every L ⊆ A.

(2) ≈K ∩ ≈L ⊆ ≈K∩L, for every K,L ⊆ A.

(3) ≈L ⊆ ≈α−1(L), for every L ⊆ A and any translation α(ξs) ∈ Tr(A, s, s′).

(4) If ϕ : A → B is a homomorphism, then ϕ◦ ≈L ◦ϕ−1 ⊆ ≈Lϕ−1

for every

L ⊆ B. If ϕ is an epimorphism, then ϕ◦ ≈L ◦ϕ−1 = ≈Lϕ−1

. 2
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For any sorted subset L of an Ω-algebra A = (A,Ω), let A/L = 〈As/L〉s∈S ,
where As/L = As/≈L

s for each sort s ∈ S. Moreover, for any s ∈ S and any
a ∈ As, let a/L be a shorthand for a/≈L

s .

Definition 4.5 The syntactic algebra A/L = (A/L,Ω) of a sorted subset L of
an Ω-algebra A = (A,Ω) is the quotient algebra A/≈L, and the corresponding
canonical homomorphism ϕL = 〈ϕL

s 〉s∈S , where for each s ∈ S,

ϕL
s : As → As/L, a 7→ a/L, (a ∈ As),

is called the syntactic homomorphism of L.

It is clear that any sorted subset L of an Ω-algebra A = (A,Ω) is recognized
by its syntactic algebra. Indeed, L = LϕL(ϕL)−1 for the syntactic homomor-
phism ϕL : A → A/L. It follows from Lemma 4.2 that A/L is in the following
sense the least algebra recognizing L.

Lemma 4.6 A sorted subset L of an Ω-algebra A is recognizable iff the syntactic

algebra A/L is finite. An Ω-algebra B recognizes L iff A/L � B. �

Proposition 4.7 Let A = (A,Ω) and B = (B,Ω) be any Ω-algebras.

(1) A/(A− L) = A/L, for any L ⊆ A.

(2) A/K ∩ L � A/K ×A/L, for any K,L ⊆ A.

(3) A/α−1(L) � A/L, for any L ⊆ A, s, s′ ∈ S and α(ξs) ∈ Tr(A, s, s′).

(4) A/Lϕ−1 � B/L, for any homomorphism ϕ : A → B and any L ⊆ B.

Moreover, if ϕ is an epimorphism, then A/Lϕ−1 ∼= B/L.

Proof. Assertions (1) and (3) follow immediately by the corresponding parts of
Proposition 4.4 and Lemma 2.4. For (2) it suffices to note that

A/K ∩ L← A/(≈K ∩ ≈L) ⊆ A/K ×A/L

by Proposition 4.4(2) and Lemma 2.4.
To prove (4), let us first assume that ϕ is an epimorphism and show that

ψs : As/Lϕ
−1 → Bs/L, a/Lϕ

−1 7→ aϕs/L, (s ∈ S, a ∈ As)

defines an isomorphism ψ = 〈ψs〉s∈S between A/Lϕ−1 and B/L. First we verify
that ψ is well-defined and injective: for each s ∈ S and any a, a′ ∈ As,

(a/L)ψs = (a′/L)ψs ⇔ aϕs ≈
L
s a

′ϕs

⇔ (∀s′)(∀β)[β(aϕs) ∈ Ls′ ↔ β(a′ϕs) ∈ Ls′ ]

⇔ (∀s′)(∀α)[αϕ(aϕs) ∈ Ls′ ↔ αϕ(a′ϕs) ∈ Ls′ ]

⇔ (∀s′)(∀α)[α(a)ϕs′ ∈ Ls′ ↔ α(a′)ϕs′ ∈ Ls′ ]

⇔ (∀s′)(∀α)[α(a) ∈ Ls′ϕ−1
s′ ↔ α(a′) ∈ Ls′ϕ−1

s′ ]

⇔ a/Lϕ−1 = a′/Lϕ−1,
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where s′ ranges over S, α over Tr(A, s, s′) and β over Tr(B, s, s′).
Consider now a homomorphism ϕ : A → B that is not necessarily onto, and

let C = (〈Asϕsϕ
L
s 〉s∈S ,Ω) be the subalgebra of B/L obtained as the image of

B under the homomorphism ϕϕL : A → B/L. Then η : A → C, a 7→ aϕϕL, is
an epimorphism, and hence A/Lϕ−1ηη−1 ∼= C/Lϕ−1η. However, this implies
A/Lϕ−1 � B/L since Lϕ−1ηη−1 = Lϕ−1 and C is a subalgebra of B/L. �

Lemma 4.8 If ϕ : A → B is a homomorphism of Ω-algebras and L ⊆ B, then

for every s ∈ S,

ϕs◦ ≈
L
s ◦ϕ

−1
s ⊆

⋂
{≈β−1(L)ϕ−1

s | β ∈ Tr(B, s, s′), s′ ∈ S},

and if ϕ is an epimorphism, equality holds.

Proof. Let ρ denote the intersection appearing in the claimed equality. Parts
(3) and (4) of 4.4 yield for every β ∈ Tr(B, s, s′),

ϕs◦ ≈
L
s ◦ϕ

−1
s ⊆ ϕs◦ ≈

β−1(L)
s ◦ϕ−1

s ⊆ ≈β−1(L)ϕ−1

s .

Hence ϕs◦ ≈L
s ◦ϕ

−1
s ⊆ ρ. Assume now that ϕ is surjective. The converse

inclusion is then obtained by the following chain of implications, where a, a′ ∈
As, s′ and s′′ range over S, β and γ are translations of B, and (∀β)s,s′ is a
shorthand for (∀β ∈ Tr(B, s, s′)) etc.:

a ρ a′ ⇒ (∀s′)(∀β)s,s′ [a ≈β−1(L)ϕ−1

s a′]

⇒ (∀s′)(∀β)s,s′ [aϕs ≈
β−1(L)
s a′ϕs]

⇒ (∀s′, s′′)(∀β)s,s′ (∀γ)s,s′′ [γ(aϕs) ∈ β
−1(L)s′′ ↔ γ(a′ϕs) ∈ β

−1(L)s′′ ]

⇒ (∀s′)(∀β)s,s′ (∀γ)s,s[γ(aϕs) ∈ β
−1(Ls′)↔ γ(a′ϕs) ∈ β

−1(Ls′)]

⇒ (∀s′)(∀β)s,s′ (∀γ)s,s[β(γ(aϕs)) ∈ Ls′ ↔ β(γ(a′ϕs)) ∈ Ls′ ]

⇒ (∀s′)(∀β)s,s′ [β(aϕs) ∈ Ls′ ↔ β(a′ϕs) ∈ Ls′ ]

⇒ aϕs ≈
L
s a

′ϕs

⇒ a ϕs◦ ≈
L
s ◦ϕ

−1
s a′.

Here we used also the fact that β−1(L)s′′ = ∅ for every s′′ 6= s. �

Let us now present the natural generalizations of some basic facts known for
monoids [8, 17] and algebras in general in the one-sorted case [21, 22].

Lemma 4.9 Let L = 〈Ls〉s∈S be a sorted subset of an Ω-algebra A = (A,Ω).
For any s ∈ S and a ∈ As,

a/L =
⋂
{α−1(Ls′) | α(as) ∈ Ls′} −

⋃
{α−1(Ls′) | α(as) /∈ Ls′},

where s′ ranges over S and α over Tr(A, s, s′). �
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Lemma 4.10 Any congruence θ on an algebra A = (A,Ω) is the intersection of

some syntactic congruences. In particular, θ =
⋂
{≈〈a/θ〉| s ∈ S, a ∈ As}. �

Let us call an Ω-algebra A syntactic, if A ∼= B/L for some Ω-algebra B and
some sorted subset L of B. A sorted subset D of an Ω-algebra A is disjunctive

if ≈D = ∆A.

Proposition 4.11 An Ω-algebra A is syntactic iff it has a disjunctive subset.

�

Subdirect products of Ω-algebras are defined (cf. [15], Section 4.1, or [13],
p. 159) exactly as for one-sorted algebras, and by generalizing in an obvious
way a well-known theorem of Birkhoff (cf. [3], for example), we may say that
an Ω-algebra A = (A,Ω) is subdirectly irreducible if the intersection of all non-
trivial congruences on A is the diagonal relation ∆A. By applying Lemma 4.10
to the diagonal relation we get the following result.

Corollary 4.12 Every subdirectly irreducible Ω-algebra is syntactic. �

Since it is clear that also varieties of many-sorted algebras are generated
by their subdirectly irreducible members, Corollary 4.12 implies the following
important fact. However, let us note that the result follows also directly from
Lemma 4.10: we have A ⊆

∏
{A/ ≈{a}| a ∈ A} for any finite A = (A,Ω) since

∆A =
⋂
{≈{a}| a ∈ A}.

Lemma 4.13 Every Ω-VFA is generated by syntactic algebras. Hence, if K is

an Ω-VFA and A any finite Ω-algebra, then A ∈ K iff A � A1 × · · · × An for

some n ≥ 0 and some syntactic algebras A1, . . . ,An ∈ K. �

5 Varieties of recognizable V-sets and V-congru-

ences

Let S and Ω be again a finite set of sorts and an S-sorted ranked alphabet,
respectively. We shall consider varieties of recognizable subsets of finitely gen-
erated free algebras over a given variety V of Ω-algebras. If V is the class of all
Ω-algebras, we are actually dealing with varieties of many-sorted tree languages.
In what follows, we call finite S-sorted alphabets full for Ω simply full alphabets,
and X = 〈Xs〉s∈S and Y = 〈Ys〉s∈S are always such full alphabets.

The free algebra FV(X) = (FV(X),Ω) exists for every full alphabet X , and
we call the recognizable subsets of FV(X) recognizable V-sets. The syntactic
algebra FV(X)/L of a sorted subset L of FV(X) is denoted simply by SA(L).
It is clear that SA(L) ∈ V.

We shall also need the following fact that can proved similarly as its one-
sorted counterpart [8, 21, 22].
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Lemma 5.1 Let A be a finite algebra in V and let X be a full alphabet such that

for some generating set G = 〈Gs〉s∈S of A, |Gs| ≤ |Xs| for every s ∈ S. Then

A is syntactic iff A ∼= SA(L) for some L ∈ Rec(FV(X)). �

A family of recognizable V-sets is a mapping R that assigns to each full
alphabet X a set R(X) ⊆ Rec(FV(X)) of recognizable V-sets. We write then
R = {R(X)}X with the understanding that X ranges over all full alphabets.
The inclusion relation and the basic set-operations are defined for families of
recognizable V-sets by the natural componentwise conditions. For example, if
R1 and R2 are any families of recognizable V-sets, then R1 ⊆ R2 iff R1(X) ⊆
R2(X) for every X .

For any X and L ⊆ FV(X), let L denote the complement FV(X)− L.

Definition 5.2 A family of recognizable V-sets R = {R(X)}X is a variety of

recognizable V-sets, a V-VRS for short, if for all full alphabets X and Y ,

(1) R(X) 6= ∅,

(2) K,L ∈ R(X) implies K ∩ L,L ∈ R(X),

(3) if L ∈ R(X), then α−1(L) ∈ R(X) for every α ∈ Tr(FV(X)), and

(4) if L ∈ R(Y ), then Lϕ−1 ∈ R(X) for every ϕ : FV(X)→ FV(Y ).

Let VRS(V) denote the class of all varieties of recognizable V-sets.

It is clear that the intersection of any family of varieties of recognizable V-
sets is again a V-VRS, and hence (VRS(V),⊆) is a complete (in fact, algebraic)
lattice.

If L = 〈Ls〉s∈S is a sorted subset of any algebra A = (A,Ω) and s ∈ S is any
sort, then 〈Ls〉 = 1−1

A(s)(L). Applied to the algebras FV(X), this observation
yields the following fact.

Lemma 5.3 Let R = {R(X)}X be a V-VRS. If L = 〈Ls〉s∈S ∈ R(X) for some

X, then 〈Ls〉 ∈ R(X) for every s ∈ S. �

From Lemma 5.3 and Lemma 4.9 we get directly the following fact.

Lemma 5.4 If R = {R(X)}X is a V-VRS and L ∈ R(X) for some X, then

〈a/L〉 belongs to R(X) for any s ∈ S and any a ∈ FV(X, s). �

For any full alphabet X , let FCon(FV(X)) denote the set of all congruences
on FV(X) of finite index. These congruences are called V-congruences, and
a family of V-congruences is a map Γ that assigns to each X a set Γ(X) ⊆
FCon(FV(X)). We represent such a family in the form Γ = {Γ(X)}X .

Definition 5.5 A family of V-congruences Γ = {Γ(X)}X is said to be a variety

of V-congruences, a V-VFC for short, if for all X and Y ,
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(1) Γ(X) 6= ∅,

(2) if θ, θ′ ∈ Γ(X), then θ ∩ θ′ ∈ Γ(X),

(3) if θ ∈ Γ(X) and θ ⊆ θ′, then θ′ ∈ Γ(X), and

(4) if θ ∈ Γ(Y ) and ϕ : FV(X)→ FV(Y ), then ϕ ◦ θ ◦ ϕ−1 ∈ Γ(X).

Let VFC(V) denote the class of all varieties of V-congruences.

In other words, a variety of V-congruences is a family of filters of the lattices
FCon(FV(X)) closed under inverse homomorphisms. It is again easy to see that
(VFC(V),⊆) is an algebraic lattice.

6 The Variety Theorem

Let S, Ω and V be as in the previous section. By a variety of finite V-algebras,
a V-VFA for short, we mean a variety of finite Ω-algebras contained in V.
Let VFA(V) be the class of all V-VFAs. We shall prove a Variety Theorem
that establishes a triple of bijective correspondences between all varieties of
recognizable V-sets, all varieties of finite V-algebras, and all varieties of V-
congruences. The proof is similar to those of various other Variety Theorems,
and in particular to the one of [22]. However, for the convenience of the reader,
the following presentation is self-contained.

Let us now introduce the six mappings that will yield the Variety Theorem
in the form of three pairs of mutually inverse isomorphisms between the three
complete lattices (VFA(V),⊆), (VRS(V),⊆) and (VFC(V),⊆).

Definition 6.1 For any V-VFA K, any V-VRS R, and any V-VFC Γ, let

(1) K
r be the family of recognizable V-sets such that for each X ,

K
r(X) = {L ⊆ FV(X) | SA(L) ∈ K},

(2) K
c be the family of V-congruences such that for each X ,

K
c(X) = {θ ∈ FCon(FV(X)) | FV(X)/θ ∈ K},

(3) Ra be the V-VFA generated by the syntactic algebras SA(L) with L ∈
R(X) for some X ,

(4) Rc be the family of V-congruences such that for each X , Rc(X) is the
filter in the lattice FCon(FV(X)) generated by the syntactic congruences
≈L of all sets L ∈ R(X),

(5) Γa be the V-VFA generated by all algebras FV(X)/θ such that θ ∈ R(X)
for some X , and let
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(6) Γr be the family of recognizable V-sets such that for each X ,

Γr(X) = {L ⊆ FV(X) | ≈L∈ Γ(X)}.

Lemma 6.2 For any K ∈ VFA(V), R ∈ VRS(V) and Γ ∈ VFC(V),

(1) Ra,Γa ∈ VFA(V),

(2) K
r,Γr ∈ VRS(V), and

(3) K
c,Rc ∈ VFC(V).

Moreover, all of the mappings K 7→ K
r, K 7→ K

c, R 7→ Ra, R 7→ Ra, Γ 7→ Γa

and Γ 7→ Γr are inclusion-preserving.

Proof. By definition, Ra and Γa are V-VFAs. That K
r and Γr are V-VRSs,

follows from Propositions 4.7 and 4.4. Finally, Lemmas 2.4 and 4.8, and Propo-
sition 4.4 imply that K

c and Rc are in VFC(V). �

We shall show that the six mappings introduced above form three pairs
of mutually inverse isomorphisms between the complete lattices (VFA(V),⊆),
(VRS(V),⊆) and (VFC(V),⊆). Since we already know that all of the maps are
isotone, it suffices to show that they are pairwise inverses of each other.

Proposition 6.3 The lattices (VFA(V),⊆) and (VRS(V),⊆) are isomorphic

as

(1) K
ra = K for every K ∈ VFA(V), and

(2) Rar = R for every R ∈ VRS(V).

Proof. It suffices to prove (1) and (2).
Since K

ra is generated by syntactic algebras belonging to K, the inclusion
K

ra ⊆ K is obvious. For the converse inclusion, let us consider any syntactic
algebra A ∈ K. By Lemma 5.1 there exists an X such that A ∼= SA(L) for
some L ∈ Rec(FV(X)). Then L ∈ K

r(X) and hence A ∈ K
ra. This implies

K ⊆K
ra because, by Lemma 4.13, K is generated by syntactic algebras.

The inclusion R ⊆ Rar is obvious: if L ∈ R(X) for any X , then SA(L) ∈ Ra

and hence L ∈ Rar(X). Assume then that L ∈ Rar(X) for some X . Then
SA(L) ∈ Ra implies that SA(L) � SA(L1)× · · ·× SA(Lk) for some k ≥ 1, some
full alphabets Xi = 〈Xi(s)〉s∈S and sets Li ∈ R(Xi) (i = 1, . . . , k). For each i =
1, . . . , k, let ϕi denote the syntactic homomorphisms ϕLi : FV(Xi) → SA(Ti).
Then there is a homomorphism

η : FV(X1)× · · · × FV(Xk) −→ SA(L1)× · · · × SA(Lk)

such that for every i = 1, . . . , k, ηπi = τiϕi, where

πi : SA(L1)× · · · × SA(Lk) −→ SA(Li),
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and
τi : FV(X1)× · · · × FV(Xk) −→ FV(Xi)

are projection functions. By Lemma 4.6 there exist a homomorphism ϕ : FV(X)
→ SA(L1)×· · ·×SA(Lk) and a subset H of the product SA(L1)×· · ·×SA(Lk)
such that L = Hϕ−1. Since η is an epimorphism, there is a homomorphism
ψ : FV(X) → FV(X1) × · · · × FV(Xk) such that ψη = ϕ. Because H is finite,
L =

⋃
u∈H uϕ−1 is the union of finitely many sets uϕ−1 with u = (u1, . . . , uk) ∈

SA(L1)× · · · × SA(Lk). For each such u ∈ H ,

uϕ−1 =
⋂
{ui(ϕπi)

−1 | 1 ≤ i ≤ k} =
⋂
{uiϕ

−1
i (ψτi)

−1 | 1 ≤ i ≤ k}.

By Lemma 5.4, uiϕ
−1
i ∈ R(Xi) for each i = 1, . . . , k, and thus L ∈ R(X). �

Lemma 6.4 For any V-VFC Γ and any finite algebra A ∈ V, A ∈ Γa iff there

exist an X and an epimorphism ϕ : FV(X)→ A such that kerϕ ∈ Γ(X).

Proof. If A ∈ Γa, then A � FV(X1)/θ1 × · · · × FV(Xk)/θk for some k ≥ 1,
some full alphabets X1, · · · , Xk and congruences θ1 ∈ Γ(X1), · · · , θk ∈ Γ(Xk).
This means that for some algebra B there exist an epimorphism η : B → A
and a monomorphism ϕ : B → FV(X1)/θ1 × · · · × FV(Xk)/θk. The algebras
FV(Xi)/θi are finite members of V and hence there is for some X an epi-
morphism ψ : FV(X) → B. The condition (a1, · · · , ak)χ = (a1/θ1, · · · , ak/θk)
defines an epimorphism

χ : FV(X1)× · · · × FV(Xk) −→ FV(X1)/θ1 × · · · × FV(Xk)/θk.

For each i = 1, . . . , k, let πi : FV(X1) × · · · × FV(Xk) → FV(Xi) be the ith

projection, and let ω : FV(X)→ FV(X1)×· · ·×FV(Xk) be the homomorphism
such that ωχ = ψϕ. Then ψη : FV(X)→ A is an epimorphism, and

kerψη ⊇ kerψϕ = kerωχ =
⋂
{ωπi ◦ θi ◦ (ωπi)

−1 | 1 ≤ i ≤ k}

shows that kerψη ∈ Γ(X).
The converse implication is immediately clear by the definition of Γa. �

Proposition 6.5 The lattices (VFA(V),⊆) and (VFC(V),⊆) are isomorphic

as

(1) K
ca = K for every V-VFA K, and

(2) Γac = Γ for every V-VFC Γ.

Proof. By Lemma 6.4, A ∈ K
ca holds iff for someX there exists an epimorphism

ϕ : FV(X)→ A such that kerϕ ∈ K
c. By Proposition 2.1 this is equivalent to

FV(X)/ kerϕ ∼= A, which is the case exactly when A ∈ K. Thus (1) follows.
To prove (2), consider any X and any θ ∈ FCon(FV(X)). If θ ∈ Γac(X),

then by Lemma 6.4, there exist a finite set Y and an epimorphism ψ : FV(Y )→
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FV(X)/θ such that kerψ ∈ Γ(Y ). Since ψ is surjective, there is for any s ∈
S and every x ∈ Xs an element txs ∈ FV(Y )s such that txsψs = x/θs. If
ϕ : FV(X) → FV(Y ) is the homomorphism such that xϕ = txs for all s ∈ S
and x ∈ Xs, then ϕψ = θ♮, where θ♮ : FV(X) → FV(X)/θ is the canonical
epimorphism. Hence θ = kerϕψ = ϕ ◦ (kerψ) ◦ ϕ−1 ∈ Γ(X). The converse
inclusion is obvious: if θ ∈ Γ(X), then FV(X)/θ ∈ Γa implies θ ∈ Γac. �

Propositions 6.3 and 6.5 already show that (VRS(V),⊆) and (VFC(V),⊆)
are isomorphic lattices, but the following composition laws imply also that the
mappings R 7→ Rc and Γ 7→ Γr form a pair of mutually inverse isomorphisms
between them.

Proposition 6.6 For any V-VFA K, V-VRS R, and V-VFC Γ,

(1) K
cr = K

r,

(2) Rac = Rc, and

(3) Γra = Γa.

Proof. For (1) it suffices to note that

L ∈ K
r(X) ⇔ SA(L) ∈ K ⇔ ≈L∈ K

c(X) ⇔ L ∈ K
cr(X),

for any X and L ⊆ FV(X).
To prove (2), let us consider any X and FCon(FV(X)). If θ ∈ Rc(X), then

≈L1 ∩ · · · ∩ ≈Lk ⊆ θ for some k ≥ 1 and L1, · · · , Lk ∈ R(X). This implies
that FV(X)/θ ∈ Ra since FV(X)/θ � SA(L1) × · · · × SA(Lk), and therefore
θ ∈ Rac.

If θ ∈ Rac(X), then FV(X)/θ � SA(L1)× · · · ×SA(Lk) for some full alpha-
bets X1, · · · , Xk and sorted sets L1 ∈ R(X1), · · · , Lk ∈ R(Xk) (k ≥ 1). Hence,
there is an Ω-algebra B such that there exist an epimorphism ψ : B → FV(X)/θ
and a monomorphism η : B → SA(L1)×· · ·×SA(Lk). We may also assume that
there is an epimorphism ϕ : FV(X)→ B such that ϕψ = θ♮ (if not, we replace
B with a suitable subalgebra). For each i = 1, . . . k, let πi be the ith projection
from FV(X1)× · · · × FV(Xk) onto FV(Xi), and let

π : FV(X1)× · · · × FV(Xk) −→ SA(L1)× · · · × SA(Lk)

be the homomorphism such that (t1, . . . , tk) 7→ (t1/L1, . . . , tk/Lk) for all s ∈ S
and t1 ∈ FV(X1, s), . . . tk ∈ FV(Xk, s). Since π clearly is surjective, we may
define a homomorphism γ : FV(X)→ FV(X1) × · · · × FV(Xk) for which γπ =
ϕη. Then

θ = kerϕψ ⊇ kerϕη = ker γπ =
⋂
{γπi◦ ≈

Li ◦(γπi)
−1 | 1 ≤ i ≤ k},

and hence θ ∈ Rc(X).
To prove (3), consider any finite algebra A = (A,Ω). Now, A belongs to

Γa iff A � FV(X1)/θ1 × · · · × FV(Xk)/θk, for some full alphabets X1, · · · , Xk
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and some θ1 ∈ Γ(X1), · · · , θk ∈ Γ(Xk) (k ≥ 1). Since any Γ(X) is generated
by syntactic congruences by Lemma 4.10, we can assume that each θi is the
syntactic congruence of some Li ⊆ FV(Xi), and then Li ∈ Γr(Xi), and so
A ∈ Γa iff A ∈ Γra. �

Proposition 6.7 The lattices (VRS(V),⊆) and (VFC(V),⊆) are isomorphic

as

(1) Rcr = R for every R ∈ VRS(V), and

(2) Γrc = Γ for every Γ ∈ VFC(V).

Proof. By using the previous propositions we can see that Rcr = Racr = Rar =
R for every R ∈ VRS(V). Similarly, Γrc = Γrac = Γac = Γ for every Γ ∈
VFC(V). �

Let us note that Proposition 6.7 could be obtained also directly in a similar
way as the analogous facts are proved in [1]. For example, Rcr = R can be seen
as follows.

The inclusion R ⊆ Rcr follows directly from the definitions of the two op-
erators. On the other hand, if L ∈ Rcr(X), then ≈L1 ∩ . . .∩ ≈Lk ⊆ ≈L for
some L1, . . . , Lk in R(X). This means that each ≈L-class, and hence also L, is
a Boolean combination of ≈Li-classes (1 ≤ i ≤ k), and since each such class is
in R(X) by Lemma 5.4, this implies L ∈ R(X).

We may sum up the results of this section as follows.

Theorem 6.8 (Variety Theorem) The mappings

VFA(V)→ VRS(V) K 7→ K
r VRS(V)→ VFA(V) R 7→ Ra

VFA(V)→ VFC(V), K 7→ K
c VFC(V)→ VFA(V), Γ 7→ Γa

VRS(V)→ VFC(V), R 7→ Rc VFC(V)→ VRS(V), Γ 7→ Γr

form three pairs of isomorphisms that are inverses of each other between the

complete lattices (VFA(V),⊆), (VRS(V),⊆), and (VFC(V),⊆). Moreover,

K
cr = K

r, K
rc = K

c, Rca = Ra, Rac = Rc, Γra = Γa, and Γar = Γr,

for any K ∈ VFA(V), R ∈ VRS(V), and Γ ∈ VFC(V).

Proof. That the given mappings form isomorphisms of the claimed kind follows
from Propositions 6.3, 6.5, and 6.7. Moreover, Proposition 6.6 contains half
of the composition laws, and together with Propositions 6.3, 6.5 and 6.7 it
implies also the rest of them. For example, by Propositions 6.6 and 6.3, we get
K

rc = (Kr)ac = (Kra)c = K
c for any K ∈ VFA(V). �
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7 Varieties of pure recognizable sets

In this section we shall show how the above variety theory can be translated
into a theory of varieties of pure recognizable sets.

Let V be again a given variety of Ω-algebras. For any full alphabet X and
any sort s ∈ S, the members of Rec(FV(X), s) are called pure recognizable VX-

sets of sort s, or simply pure recognizable V-sets. A family of pure recognizable

V-sets is a mapping P that assigns to each X and each s ∈ S a set P(X, s) ⊆
Rec(FV(X), s) of pure recognizable VX-sets of sort s, and we write it as P =
{P(X, s)}X,s.

Definition 7.1 A variety of pure recognizable V-sets, a V-VPRS for short, is
a family of pure recognizable V-sets P = {P(X, s)}X,s such that for all full
alphabets X and Y and all sorts s, s′ ∈ S,

(1) P(X, s) 6= ∅,

(2) T, U ∈ P(X, s) implies T ∩ U, T ∈ P(X, s),

(3) if T ∈ P(X, s′) and α ∈ Tr(FV(X), s, s′), then α−1(T ) ∈ P(X, s), and

(4) if T ∈ P(Y, s) and ϕ : FV(X) → FV(Y ) is any homomorphism, then
Tϕ−1

s ∈ P(X, s).

Let VPRS(V) denote the class of all varieties of pure recognizable V-sets.

Of course, (VPRS(V),⊆) is a complete lattice. We shall now show that
there is a natural correspondence between varieties of pure recognizable V-sets
and varieties of recognizable V-sets.

Definition 7.2 With any family P = {P(X, s)}X,s of pure recognizable V-
sets we associate the family of recognizable V-sets Pr = {Pr(X)}X such that
for each X ,

Pr(X) = {L ⊆ FV(X) | (∀s ∈ S)Ls ∈ P(X, s)}.

With any family R = {R(X)}X of recognizable V-sets we associate the indexed
family Rp = {Rp(X)}X,s of pure recognizable V-sets such that for any X and
s ∈ S,

Rp(X, s) = {Ls | L ∈ R(X)}.

Let us first note a few basic facts about these mappings. The notation 〈T 〉
was introduced in Section 2.

Lemma 7.3 Let P = {P(X, s)}X,s be a V-VPRS and R = {R(X)}X be a

V-VRS. For any X, s ∈ S and T ⊆ FV(X, s),

(1) T ∈ P(X, s) iff 〈T 〉 ∈ Pr(X), and

(2) T ∈ Rp(X, s) iff 〈T 〉 ∈ R(X).
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Proof. If T ∈ P(X, s), then 〈T 〉 ∈ Pr(X) since 〈T 〉s = T ∈ P(X, s) and 〈T 〉u =
∅ ∈ P(X,u) for every u ∈ S, u 6= s. On the other hand, if 〈T 〉 ∈ Pr(X), then
T = 〈T 〉s ∈ P(X, s), and hence (1) holds.

To prove (2), assume first that T ∈ Rp(X, s). Then T = Ls for some
L ∈ R(X). If 1s denotes the identity translation FV(X, s) → FV(X, s), then
〈T 〉 = 1−1

s (L) ∈ R(X). On the other hand, if 〈T 〉 ∈ R(X), then T = 〈T 〉s ∈
Rp(X, s) by definition. �

Lemma 7.4 The mappings P 7→ Pr and R 7→ Rp preserve inclusions. More-

over,

(1) if P ∈ VPRS(V), then Pr ∈ VRS(V), and

(2) if R ∈ VRS(V), then Rp ∈ VPRS(V).

Proof. The first claim is completely obvious. Now, let P ∈ VPRS(V). That Pr

satisfies the conditions of Definition 5.2 follows easily from the assumption that
P satisfies the corresponding conditions of Definition 7.1. For example,

K,L ∈ Pr(X)⇒ (∀s ∈ S) Ks, Ls ∈ P(X, s)

⇒ (∀s ∈ S) Ks ∩ Ls ∈ P(X, s)

⇒ (∀s ∈ S) (K ∩ L)s ∈ P(X, s)

⇒ K ∩ L ∈ Pr(X),

for anyX and K,L ⊆ FV(X). Similarly, if L ∈ Pr(X) and α ∈ Tr(FV(X), s, s′)
for some X and s, s′ ∈ S, then Ls′ ∈ P(X, s′) implies α−1(L)s = α−1(Ls′) ∈
P(X, s), and hence α−1(L) ∈ Pr(X) as α−1(L)u = ∅ ∈ P(X,u) for every
u ∈ S \ {s}.

Assertion (2) has a similar proof. �

Proposition 7.5 The lattices (VPRS(V),⊆) and (VRS(V),⊆) are isomorphic

since

(1) Prp = P for every P ∈ VPRS(V), and

(2) Rpr = R for every R ∈ VRS(V).

Proof. In view of Lemma 7.4 it suffices to prove (1) and (2), and these claims
follow directly from Definition 7.2. For example, let P ∈ VPRS(V) and consider
any X and s ∈ S. If T ∈ P(X, s), then 〈T 〉 ∈ Pr(X) by Lemma 7.3, and hence
T = 〈T 〉s belongs to Prp. Conversely: if T ∈ Prp, then there is an L ∈ Pr(X)
such that T = Ls. But L ∈ Pr(X) means that Lu ∈ P(X,u) for every u ∈ S,
and therefore, in particular, T = Ls ∈ P(X, s). Assertion (2) can be verified
similarly. �

Proposition 7.5 already implies that (VPRS(V),⊆) is isomorphic also to
both the lattices (VFA(V),⊆) and (VFC(V),⊆) via (VRS(V),⊆), but we shall
also exhibit direct isomorphisms. However, let us first consider generally syn-
tactic congruences and algebras of subsets of a given sort.
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Courcelle [6] defines the syntactic congruence of a subset T ⊆ Au of sort
u ∈ S of an Ω-algebra A = (A,Ω) as the sorted equivalence ∼T = 〈∼T

s 〉s∈S on
A such that for each s ∈ S and any a, b ∈ A,

a ∼T
s b ⇔ (∀α ∈ Tr(A, s, u))(α(a) ∈ T ↔ α(b) ∈ T ).

It is easy to see that ∼T is the greatest congruence θ on A such that θu saturates
T . Let us call such congruences pure syntactic congruences.

The following lemma is quite obvious.

Lemma 7.6 Let A = (A,Ω) be an Ω-algebra. Then ∼T = ≈〈T 〉 for any subset

T ⊆ Au of any given sort u ∈ S. On the other hand,

≈L =
⋂
{∼Ls | s ∈ S},

for any sorted subset L = 〈Ls〉s∈S of A. �

Hence, any pure syntactic congruence is a syntactic congruence in our sense,
while every syntactic congruence is the intersection of finitely many pure syn-
tactic congruences.

The syntactic algebra of a subset T ⊆ Au of any sort u ∈ S of an Ω-algebra
A = (A,Ω), is defined in [6] as the quotient algebra A/ ∼T . Let us call an
algebra pure syntactic if it is isomorphic to such a syntactic algebra.

Proposition 7.7 Any pure syntactic Ω-algebra is syntactic, and any syntactic

Ω-algebra is a subdirect product of a finite family of pure syntactic Ω-algebras.

Furthermore, every subdirectly irreducible Ω-algebra is pure syntactic.

Proof. The first two assertions are immediate consequences of Lemma 7.6. If
A = (A,Ω) is subdirectly irreducible, then

⋂
{∼{a} | a ∈ As, s ∈ S} = ∆A

implies that ∼{a} = ∆A for at least some s ∈ S and a ∈ As, and hence
A ∼= A/∼{a} is pure syntactic. �

Corollary 7.8 Every V-VFA is generated by pure syntactic algebras. �

Let us return to pure recognizable V-sets. The syntactic algebra FV(X)/∼T

of a subset T ⊆ FV(X, s) of sort some s ∈ S of FV(X) is denoted simply
PSA(T ). Note that PSA(T ) = SA(〈T 〉) by the first assertion of Lemma 7.6.

For any V-VPRS P , let Pa be the V-VFA generated by the pure syntactic
algebras PSA(T ), where T ∈ P(X, s) for some X and s ∈ S.

Lemma 7.9

(1) Pa = Pra for any V-VPRS P, and

(2) Ra = Rpa for any V-VRS R.
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Proof. To prove (1) it suffices to show that the syntactic algebras generating
Pa are in Pra, and conversely. For any X , s ∈ S and T ∈ P(X, s), we have
PSA(T ) = SA(〈T 〉) ∈ Pra since 〈T 〉 ∈ Pr. Conversely, if L ∈ Pr(X) for some
X , then SA(L) is by Proposition 7.7 a subdirect product of the pure syntactic
algebras PSA(Ls) (s ∈ S). Because Ls ∈ P(X, s), and therefore PSA(Ls) ∈ P

a,
for every s ∈ S, this means that SA(L) ∈ Pa. Assertion (2) has an equally
straightforward proof. �

Now it is clear that P 7→ Pa defines an isomorphism from (VPRS(V),⊆) to
(VFA(V),⊆). In fact, it is the composition of the two isomorphisms P 7→ Pr

and R 7→ Ra. Its converse can be defined explicitly as follows: for any V-VFA
K, let K

p be the family of pure recognizable V-sets such that for any X , s ∈ S
and T ⊆ FV(X, s), T ∈ K

p(X, s) iff PSA(T ) ∈ K.
Corresponding to Lemma 7.9 the following facts hold.

Lemma 7.10 For any V-VFA K, (1) K
p = K

rp, and (2) K
r = K

pr.

Proof. To prove (1) we note that for any X , s ∈ S and T ⊆ FV(X, s),

T ∈ K
p(X, s) ⇔ PSA(T ) ∈ K ⇔ SA(〈T 〉) ∈ K ⇔ 〈T 〉 ∈ K

r ⇔ T ∈ K
rp.

Now (2) follows since K
pr = K

rpr = K
r by Proposition 7.5. �

Next we consider pure recognizable V-sets and V-congruences. Proposition
7.5 and the Variety Theorem yield the isomorphisms VPRS(V)→ VFC(V),P 7→
Prc and VFC(V) → VPRS(V),Γ 7→ Γcp, via VRS(V), but we can also define
them directly as follows.

For any V-VPRS P , let Pc be the family of V-congruences such that for
each X , Pc(X) is the filter of FCon(FV(X)) generated by the pure syntactic
congruences ∼T , where T ∈ P(X, s) for some s ∈ S. Conversely, for any V-
VFC Γ, let Γp be the family of pure recognizable V-sets such that for any X
and s ∈ S,

Γp(X, s) = {T ⊆ FV(X, s) | ∼T∈ Γ(X)}.

Lemma 7.11

(1) Pc = Prc for any V-VPRS P, and

(2) Rc = Rpc for any V-VRS R.

Proof. To prove (1), we show that for any X , the generators of Pc(X) are in
Prc(X), and the generators of Prc(X) are in Pc(X).

For any s ∈ S and T ∈ P(X, s), 〈T 〉 ∈ Pr(X) and ∼T = ≈〈T 〉∈ Prc. On
the other hand, if L ∈ Pr(X), then Ls ∈ P(X, s) for each s ∈ S, and hence
≈L∈ Pc(X) by Lemma 7.6. Assertion (2) can be verified similarly. �

Lemma 7.12 For any V-VFC Γ, (1) Γp = Γrp, and (2) Γr = Γpr.
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Proof. To prove (1), it suffices to note that for any X , s ∈ S and T ⊆ FV(X, s),
T ∈ Γp(X, s) ⇔ ∼T∈ Γ(X) ⇔ ≈〈T 〉∈ Γ(X) ⇔ 〈T 〉 ∈ Γr(X) ⇔ T ∈ Γrp(X),
where Lemma 7.3 is used in the last step.

Assertion (2) follows from (1) and Proposition 7.5: Γpr = Γrpr = Γr. �
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