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Abstract

We unify GODEL’s first incompleteness theorem (1931), TARSKI’s undefinability theorem (1933), GODEL-CARNAP’s
diagonal lemma (1934) and ROSSER’s (strengthening of GODEL’s first) incompleteness theorem (1936), whose proofs
resemble much and use almost the same technique.
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1 Introduction

Between 1930 and 1936, at the beginning of the Golden Age of Mathematical Logic, there appeared
four fundamental theorems:

. GODEL'’s first incompleteness theorem in 1931; see [5].

. (GODEL-)TARSKI’s truth-undefinability theorem in 1933; see [4, 8] and [6, f. 25 on p. 363].
. (GODEL-)CARNAP’s diagonal lemma in 1934; see [1] and [6, f. 23 on p. 363].

. (GODEL-)ROSSER’s incompleteness theorem in 1936; see [9] and [6, p. 370].

W N =

N

A main part of the classic proofs of these theorems uses a common trick that constructs some
suitable self-referential sentences.' So, it is natural to conjecture that these theorems are equivalent,
in the sense that there is a sufficiently general framework in which either all these four theorems
hold together, or none holds. This paper is a continuation of [ 11] where some semantic forms of 1-3
were proved to be equivalent. Here, we present some syntactic formulations of 1-4 and prove their
equivalence (in Section 2); we also provide a framework in which none of 14 holds (it is too well
known that they all hold for sufficiently strong theories). Having this equivalence has the advantage
that one can translate a proof for any of 1-4 to get an alternative proof for another. This was done
earlier in [10] where an alternative proof for the semantic diagonal lemma, and a weak syntactic
formulation of it, was provided. Here, we will also answer a question left open there (in Section 4,
the Appendix) and will see one more different proof for the weak syntactic diagonal lemma (in
Section 3).

10ne other basic result around that time (1938) which uses quite a similar technique was KLEENE’s recursion theorem
[7]; we do not consider it here, as we know of no equivalent formulation in the form of Theorem 2.3 below.
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2 A Reunion of GODEL, TARSKI, CARNAP and ROSSER

2 A unification of the four theorems

Let us begin with a definition for the standard notion of GODEL coding and fix our language.

DEFINITION 2.1 (GODEL coding, arithmetical languages, interpretation).
For a first-order language £, a GODEL coding on L is a computable injection from the syntactical
expressions (finite strings) over £ into the set of natural number N.

Let £* = {0,1, <, +, v} be the first-order language that contains the constant symbols 0, 1, the
binary relation symbols <, the binary function symbol + and the unary function symbol v. Let the
language of arithmetic be {0, 1, <, +, x}, where x is a binary function symbol.

The symbols 0,1, <, +, x are interpreted as usual over N, and the interpretation of v, which is a
function v: N— N, depends on a fixed GODEL coding: if "o"' denotes the code of a sentence o, then
V("o )="—=0" (and v(n) can be any arbitrary number when 7 is not the code of any sentence).

For a natural number n € N, let 7 denote the closed term that represents n, which is 0 if =0, is 1
ifn=1,andis1+4---+ 1 (ntimes) if n> 1.

DEFINITION 2.2 (Arithmetical theories).
Let Q denote Robinson’s arithmetic over the language of arithmetic.

Fix a Godel coding n +— T"; for simplicity, let us denote the closed term 777 by Til. Let O~ be
the L£*-theory axiomatized by

(A1): Vx(x<n Vx=nVn<x), forevery neN.

(A2): Vx(x <7t <> \Y/;,_,x=1), for every neN.

(A3): v([igT) = lF—g 1, for every L*-sentence o.

THEOREM 2.3 (GODEL7 =TARSKI7 = CARNAPT =ROSSERT).
For every theory T that extends O, and a fixed coding, the following are equivalent:

1. GODEL7: If U is a consistent extension of 7" such that for some formula ¥ (x), with the only
variable x, we have U F o iff U - W (1) for every sentence o, then U is incomplete.

2. TARSKI7: For every formula 7 (x), with the only free variable x, the theory T is inconsistent
with the set {1 (T47) <> 0o | o is a sentence}.

3. CARNAP7: For every formula A(x), with the only free variable x, there are finitely many
sentences {4;}; such that T = \/,; (A(T4;T) < 4;).

4. ROSSER7: If U is a consistent extension of 7' such that for some formula & (x,y), with the
shown free variables, we have for every sentence o that (i) if U b o then U - © (m, T 57) for
some number m € N, and (ii) if U ¥ o then U - —=©® (1, [[57) for every number n € N, then U
is incomplete. o

Before proving the theorem, let us explain its content a bit.

(1) In GODEL7, the formula ¥ (x) is a kind of provability predicate, in the sense that if U proves o,
then U can verify that it proves o; and conversely, if U proves that o is U-provable, then o is
U-provable in reality (so, here U is assumed to possess some soundness, in the sense that U does
not prove the U-provability of U-unprovable sentences).

(2) In TARSKI7, the formula 7 (x) is a kind of hypothetical truth predicate, and our version of the
theorem is syntactic (TARSKI’s theorem is usually formulated semantically, in the form that the truth
predicate is not arithmetically definable; cf. [11]).

(3) In CARNAPT, the existence of finitely many (partial) fixed points for a given formula A(x) has
been claimed. This is a weak version of the syntactic diagonal lemma (see [10, Theorem 2.5]);
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the strong diagonal lemma states the existence of one fixed point sentence (4 such that O +
A(T47) < A). Let us note that our weak version implies the semantic diagonal lemma (see e.g.
[10, Theorem 2.3] or [11, Definition 2.1]).

(4) In ROSSERT, the formula @ (x,y) is a kind of proof predicate: x codes a U-proof of y. The
assumptions (i) and (ii) indicate that U-proofs are bi-representable in U: if U proves ¢ and m is the
code of its proof, then U verifies this; and if o is not U-provable, then U verifies that no number
can code a U-proof of 0.

PROOF. (1 = 2): If TARSKI7 does not hold, then let 9t be a model of T + {Y'(T57) <> o | o
is a sentence}, and put U = Th(91). Now, for every sentence o, we have U + o iff M F o iff
MET([TgM) ff U F T (ToT). But U is a complete extension of 7’; this contradicts GODEL7.

(2 = 3): For given A(x), let T (x) = —A(x). By the inconsistency of the theory T with the
set {Y'(fo1) < o | o isasentence}, we have T+ — \; (T(WA,-ﬂ) < Ai) for some finitely
many sentences {4;};. By the propositional tautology — /X\;(—pi <> ¢)) = W ,;(pi <> ¢i), we have
T+ \; (AFA4T) < 4;).

(3 = 4): Let U and © satisfy the assumptions, and assume, for the sake of a contradiction, that
U is a complete theory. Let A(x) be the formula ¥y[© (y,x) — 3z < y @ (z,v(x))]. By CARNAPT,
there are finitely many sentences {4;}; such that 7' \{/, (A 4,1 < A,~). Since complete theories
have the disjunction property, then there exists one sentence p such that (x) U = A(TpT) < p. Also,
by the completeness of U we have either (I) U + p, or (I) U F —p.

(D) If U = p, then by (x) and (A3, Definition 2.2) we have

Ut Vy[@@,ﬁpﬂ)—) Elz<y@(z,ﬁ—.pﬂ)].

By the assumption (i), there is some m € N such that U - @ (m, T p ). So, U - Iz <m O (z,T—=p ).
On the other hand, by U ¥ —p and (ii) in the assumption, we have U + —-@,IT=p) for each
neN. Thus, by (A, Definition 2.2), we have U F Vz <m—0(z,T=pT). Whence, U is inconsistent;
a contradiction.

(II) If U F —p, then by () and (A3, Definition 2.2) we have

Uk H[O@.ToHAVz<y =0 T-pT].

By (i) in the assumption, there is some m € N such that U + @ (s, T —p ). So, (A, Definition 2.2)
implies that U - 3y <m @ (»,Tp T). On the other hand, by U ¥ p and (ii), in the assumption, we have
U =@, Tp) for each n e N. Thus, by (A,, Definition 2.2) we have U F Vy <m—0(,TpT); a
contradiction.

(4 = 1): If GODEL7 does not hold for the theory U and formula ¥ (x), let ® (x,y) be the
formula ¥ (y) A (x =x). Now, by the assumption, for every sentence o we have (i) if U I o, then
Ut W ([igT), thus U F ©@m,[i51) for every meN. Also, since U is (assumed to be) complete, then
by the assumption we have (ii) if U ¥ o, then U ¥ W (T 1), so U = =¥ (T1), thus U = —O (1, T 5T)
for every n e N. This contradicts ROSSER7. ]

For the theorem to make sense, we should demonstrate a framework in which none of GODEL7,
TARSKI7, CARNAPT or ROSSERT holds. Let us fix a coding, which is due to ACKERMANN (1937),
cf. [2, Example 7].
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DEFINITION 2.4 (ACKERMANN (1937) coding).

The number 0 is not the code of anything; number 1 is the code of the empty string; and every symbol
is coded by an odd number, in particular 3 is the code of —. Code the finite string (ai,--- ,ar) by
Zi:l 22}‘:1@'"‘1) — Zi:l 2@ +D+ta+]) — pla+l) 4 pla+D+@+]) 4 ... 4 pl@+ D+ t(a+),

Let us note that this coding is computable and injective (cf. Definition 2.1), but not surjective (for
example, 4 is not the code of anything).

LEMMA 2.5 (The code of negation).
If n — [[n7] is ACKERMANN’s coding in Definition 2.4, then for every string n we have [[—nT] =
16(1+[[n D).

PROOF. For 51 = (a1,---,a) we have [[(map,--,a0)]] = 2% + S 24 Zn@+D
= 16(1+TnTD. -

DEFINITION 2.6 (A new framework).

Define the function v*: N — N by v*(n) =33+ 16n when # is even, and v*(n) = 16+ 16n when n
is odd.

Let 991 be the structure (N; 0, 1, <, +, v) where v is interpreted as v* above and put 7* = Th(9T*).
Let U*(x) =7T*(x) =Iy(x=y+y), A*(x) =—¥*(x) and O*(x,y) =¥ * @) A (x=x).

Denote ACKERMANN’s coding in Definition 2.4 by n +— [[n7]. Let n — LnJ be a new coding on
L* (see Definition 2.1) defined as follows: L1 is 2[[n7], when n is an 91*-true L*-sentence; and is
1+2[TnT], otherwise. Let £ denote the closed term LE .

Since 1 — [[n7] (in Definition 2.4) is injective, the new coding n + LnJ (in Definition 2.6) is
injective too. For its computability, we note that 9t* = (N;0,1, <, +, v) is decidable since v* is
{1, +}-definable and (N; 0,1, <, +) is decidable by PRESBURGER’s Theorem (cf. [2, Theorem 3.3]).
Thus, n — LnJ is computable as well (cf. Definition 2.1). We show that v* calculates the negation
of sentences in the new coding’s setting:

LEMMA 2.7 (v* is the negation mapping of sentences in the setting of L-_).
For every L*-sentence o, we have v*(Lo 1) = L—o L.

PROOF. The sentence o is either M*-true or M*-false. If M* E o, then Lo = 2[[o ] and —o is
not M*-true. So, Lo 1 is even, and by Lemma 2.5 we have v*(Lo 1) =33+ 16L0.=334+32[[c =
142-16(1+[oT) = 1+2[—0o T = 1—ou. If M* ¥ o, then Lo = 1+2[[oT] and —o is M*-true.
So, Lo is odd, thus by Lemma 2.5 we have v*(Lo 1) =164+ 16L01=324+32[[c|=2-16(1+[[o )
=2[[—ol=L—0.. U

Let us note that if the expression 7 is not a sentence, then Lemma 2.7 does not hold; in that case
v*(Lna)+1=1—n_. Now, we have all the ingredients for constructing a case in which none of the
equivalent statements GODEL7, TARSKI7, CARNAP7 and ROSSER7 can hold (cf. [11, Remark 2.6]).

THEOREM 2.8 (—GODEL7*, “TARSKI7*, "CARNAP7+, "ROSSER7*).

The complete theory 7* contains O, and neither GODEL 7+, nor TARSKI7+, nor CARNAP7+, nor
ROSSER7+ holds for U = T* and, respectively, the formulas ¥*(x), T*(x), A*(x) and ®*(x,y), in
Definition 2.6.
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PROOF. The complete theory 7™ is decidable by PRESBURGER’s theorem and the {1, +}-definability
of v*. Thus, the mapping n > Ln_ is a (computable injective) coding. Trivially, the axioms (A1, Az,
Definition 2.2) hold in 9t*, and Lemma 2.7 implies that (A3, Definition 2.2) holds too. Thus, 7*
contains Q. We now show that none of GODEL 7+, TARSKIz+, CARNAP7+ or ROSSERT+ holds for
U*(x), T*(x), A*(x), and O*(x, ).

—GODEL7+: For every sentence o, T* F o iff M* E o iff Lo is even iff M* E w*( o)) iff
T* = w*( o).

—TARSKI7+: For every sentence o, we have 7* = T*(10))) <> 0 by =“GODEL7+.

—CARNAP7=: For any finitely many sentences {4;};, we have T* F /\\; (—'A*(UA[JJ) <~ A,-) by
—TARSKI7s; 50 T* = = \{/; (A*(14i) < 4;), thus T* ¥ Y/, (A*(14i)) < 4;) by the consistency
of T*.

—ROSSER7+: We saw that (i) if 7* - o, then T* - ¥*(10y), so T* - &*(m,| o)) for every meN.
Also note that (ii) if 7* ¥ o, then Lo 1 is odd, so T* = —¥*( o)), thus T* - —O@* (%, o)) for every
neN. O

3 TARSKI’s theorem and the weak syntactic diagonal lemma, 4 la CHAITIN

CHAITIN’s proof for the first incompleteness theorem appeared in [3]. There are several versions
of it now; one was presented in [12, Theorem 3.3]. The proof was adapted for ROSSER’s theorem
in [12, Theorem 3.9]. Here, we prove TARSKI’s undefinability theorem and the (weak syntactic)
diagonal lemma of CARNAP by the same method.

PROPOSITION 3.1 (GODEL-TARSKI’s truth-undefinability theorem).
For every formula 7 (x), the theory Q is inconsistent with the set {7 (T7) <> 0o | o is a sentence}.

PROOF. Assume not; fix a model 9 of O + {Y'(Ts1) < o | o isasentence}. Suppose that
(pg; , <pr, (og ,- -+ is an effective enumeration of all the Y-computable (i.e., computable with oracle 7°)
unary functions. Define the T-KOLMOGOROV-CHAITIN complexity of n € N to be #1(n) =
min{i | go,.T(O) =n}, the minimum index of the 7"-computable function that outputs » on input 0. By
KLEENE’s Recursion theorem [7] there exists some ¢ € N such that go{ (x)=minz T ((#TE) >,
where (7 (x) > y) is the arithmetical formula which says that “the T-KOLMOGOROV-CHAITIN
complexity of x is greater than y””.> By the Pigeonhole principle (a version of which is provable in Q,
see [12, Lemma 3.8]) there exists some element u < ¢+ 1 in 91 such that 9 £ (# T(@) > ¢);
note that {@] (0),@7 (0),---,¢J (0)} has at most ¢+ 1 members, and {0,1,--- ,c+ 1} has c+2
members. For the least u € M with M E (£ T@) > ¢) we have M E T ((#T@) > ©)7) and
M E Vz<tu=T((HTE)>e)); s0 M E () (0) =), thus M F (¢ T(u) <), a contradiction. [

The part (2 = 3) in the proof of Theorem 2.3 immediately yields the weak syntactic diagonal
lemma from the above proof. However, this CHAITIN style argument can prove the weak lemma
directly.

PROPOSITION 3.2 (Weak syntactic GODEL-CARNAP’s diagonal lemma).
For every formula A(x), there are finitely many sentences {4;}; such that O - \{/; (A(WA,-ﬂ) <—>Ai).

2Notice that this very proof implies that the unary function z+—> .# 7 (z) is not T-computable; though, for every constant
ceN, the function x> minz: 7 ("(# T(E) >¢)") is clearly 7" -computable.
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PROOF. Put 7" (x) = —A(x); with the notation of the proof of Proposition 3.1, let 4; = (.7 1 (i) > t)
fori<e+1.IEQF W icers (A@T47) <> 4;), then O + Micert (T ([T41) <> 4;) is consistent, and so
has a model, say, 9. Now, continue the proof of Proposition 3.1 (after the footnote 2) for reaching
to a contradiction. d

4 Appendix: constructivity of an alternative proof of the diagonal lemma

For m,n e N, let §(m, n) say that the formula with code m has exactly one free variable and defines
the number #; that is, if ¢ (x) is the formula with code m that has exactly one free variable x, then the
statement Vx[¢(x) <> x =#] holds. It was proved in [10,Theorem 2.3] that for every formula A (x)
there are some m,n € N such that N £ A("&(m, ﬁ)_‘) <> §(m, n). The proof was not constructive, it
only showed the mere existence of some m, n € N with the above property; it did not determine which
m, n. By a suggestion of a referee of [10], for a restricted class of A formulas, such m, n can be found
constructively; but it was left open if there exists a constructive way of finding such m, n for every
formula A(x). Here, we show that there is such a way, but with a very different method. Actually,
the following proof is more similar to the classical one (rather than to the proof of Theorem 2.3
in [10]).

THEOREM 4.1 (Strong syntactic GODEL-CARNAP’s diagonal lemma).
For every given formula A(x) one can effectively find two natural numbers m,n € N such that
O+ 8(m,n) < A8, m)7).

PROOF. There is a formula o (x, y) that strongly represents the diagonal function in Q. That is to say
that for every formula a () we have Q - Vx[o (@, x) <> x =« (2)1], where a = "a; the sentence a(a)
is called the diagonal of . Let ¢ (x,y) = [0 (y,x) > A(x)] < (x=y) and T (y) = Vx[{(x,y) < x=Y];
put n = T Also, let k(x) = ¢(x,7) and put m = "k’'. We show that §(m,n) < A(T8(m, m)1) is
provable in Q. Note that §(m, n) = Vx[k (x) <>x=n] = Vx[{(x,n) <> x=n] = 7(n) = the diagonal
of 7. Thus,

Ot é&mn) <«— Vx[{(x,n)<x=7] by what was shown above,
«~—> Vx ([0’ 7,x) = A(X)] <—>x=ﬁ) <—>x=ﬁ] by the definition of ¢,
«—> Vx([o(#@,x) > AX)] < [x=n<x=0]) by the associativity of <>,
<« Vx[o (@, x)— A(x)] by logic,
<« Vax=r@1— Ax)] by n="7"and the property of o,
«—  Vx[x=M§@m, 7)1 — A(x)] by 8(m, n) = t(7) shown above,
«—>  A(f§(m,m7) by logic.
O
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