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Abstract
Gödel–Rosser’s Incompleteness Theorem is generalized by showing �n+1-incompleteness of any �n+1-definable extension
of Peano Arithmetic which is either�n-sound or n-consistent. The optimality of this result is proved by presenting a complete,
�n+1-definable,�n−1-sound, and (n−1)-consistent theory for any n>0. Though the proof of the incompleteness theorem for
�n+1-definable theories using the�n-soundness assumption is constructive, it is shown that there is no constructive proof for
the Incompleteness Theorem for �n+1-definable theories using the n-consistency assumption, when n>2.
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1 Introduction

By Gödel–Rosser’s Incompleteness Theorem no recursively enumerable (re) and consistent
extension of Robinson’sArithmeticQ can be complete.Anatural question is then if the incompleteness
phenomenon holds for non-re theories. Indeed, there exists a complete and �2-definable extension
of Q (see e.g. [9, p. 860–861]). So, the notion of consistency should also be generalized when one
wishes to consider more general theories (which are not necessarily re). Considering more general
theories should be restricted, though, to definable ones, since e.g. the non-definable (by Tarski’s
Theorem) true arithmetic Th(N) is complete. We consider two hierarchies of consistency notions:
one is �n-soundness and the other is n-consistency.
In this article, along with comparing the above mentioned two hierarchical notions (Proposition 3.2),
we show that no �n+1-definable extension of Q can be complete if it is �n-sound (Theorem 2.5).
For n=0, this is exactly Gödel–Rosser’s Theorem (�1-definable sets are exactly the re sets and�0-
soundness is equivalent to simple consistency for extensions ofQ). Moreover, its proof is constructive:
for a given �n+1-formula which defines a �n-sound extension of Q one can construct a sentence
independent from that theory. We will show the optimality of this result by presenting a �n−1-
sound and �n+1-definable complete extension of Q, for any n�1 (Theorem 2.6). For the notion of
n-consistency, we will show the incompleteness of any�n+1-definable and n-consistent extension of
Q, non-constructively (Theorem 4.3). This result is also optimal, since it can be shown that there exists
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an (n−1)-consistent and �n+1-definable complete extension of Q, for any n�1. Its proof cannot be
constructive, since we will show that, for n>2, there exists no algorithm which for any given�n+1-
formula defining an n-consistent extension of Q outputs an independent sentence (Theorem 4.4). In
conclusion, Gödel–Rosser’s Theorem can be generalized to the incompleteness of �n+1-definable
and�n-sound extensions of Q, constructively; and also to the incompleteness of�n+1-definable and
n-consistent extensions of Q, non-constructively (when n>2).

1.1 Some background and history

Indeed, the ideas behind Theorems 2.3 and 2.5 ‘are not essentially new’, as a referee suggested,
‘but they had not been systematically presented before’. The �1-incompleteness of any consistent
extension of Peano Arithmetic whose set of theorems is�2-definable, was shown in [5, Theorem 2].
This was further generalized in [3, Theorem 2.8] by showing the�n-incompleteness of any consistent
extension of Peano Arithmetic whose set of theorems is �n+1-definable. It was also shown in
[3, Theorem 2.5] that, for any n�2, if the set of theorems of an n-consistent extension of Peano
Arithmetic is�n-definable, then it is neither�n−1-complete nor complete (cf. Theorem 4.3 below).
The �n+1-incompleteness of any consistent and �n+1-definable extension of �n-Th(N), for any
n�1, is mentioned in [6, Exercise 9.12(d)]; it also appears in some other forms in [1, Theorems 2.1,
2.2] and [2, Proposition 4.1(2)]. In Theorem below 2.5, the condition of ‘extending �n-Th(N)’ is
replaced with the weaker condition of ‘being consistent with �n-Th(N)’.

2 Incompleteness of �n-Sound �n+1-Definable Theories

Definition 2.1 (Definablility/soundness/completeness)
Let � be a class of formulas.
A theory T is called definable if a formula AxT (x) defines (the set of Gödel codes of) its axioms
(in N).
A theory is called �-definable when AxT (x)∈�.
A theory T is called �-sound when for any ϕ∈�, if T �ϕ then N |=ϕ.
A theory T is called �-complete when for any ϕ∈�, if N |=ϕ then T �ϕ.

Definition 2.2 (The arithmetical hierarchy)
The classes of formulas {�n}n∈N and {�n}n∈N are defined in the standard way (see e.g. [6]). Let�n
be the closure of �n under disjunction, conjunction, universal quantifiers and bounded existential
quantifiers. Similarly, �n is the closure of �n under disjunction, conjunction, existential quantifiers
and bounded universal quantifiers.

Let us note that every (�n-)�n-formula is equivalent to a (�n-)�n-formula in Peano Arithmetic
(and in N). Throughout the article,�n-Th(N), respectively,�n-Th(N), denotes the set of all true�n-
sentences, respectively, �n-sentences, which (for n�1) is definable by the�n-formula�n-True(x),
respectively, the �n-formula �n-True(x) (see e.g. [6]).

Theorem 2.3 (�n+1-incompleteness of �n-definable and �n-sound theories)
For any n�1, if T is�n-sound and AxT ∈�n, then there exists a (true)�n+1-sentence γ independent
from T .
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Proof. Since T is �n-sound then the theory T∗=T ∪�n-Th(N) is consistent. Suppose Proof(z,x)
denotes a (�0) proof predicate in (pure) classical logic, stating that z is a (Gödel code of a) proof for
the sentence (with Gödel code) x, and consider the following proof predicate ProofT ∗ (z,x) for T∗:

∃w,u,t�z
[
z=〈w,u,t〉∧�n-True(w)∧ConjAxT (u)∧Proof(t,w∧u→x)

]
where the formula ConjAxT (x) states that‘x is the Gödel code of a formula which is a conjunction of
some axioms of T ’, i.e. x=�

∧�
i=1ϕi� and

∧�
i=1AxT (�ϕi�), and 〈−,−,−〉 is a suitable�0-definable

coding for triples. Let us note that ConjAxT ∈�n when AxT ∈�n (and n�1). By the diagonal lemma,
noting that T∗ ⊇�1-Th(N), there exists a sentence γ such that

T∗ �γ ↔∀z
[
ProofT ∗ (z,�γ �)−→∃z′<zProofT ∗ (z′,�¬γ �)

]
.

Now, by a classical Gödel–Rosser argument one can show that the sentence γ is (�n+1 and true and)
independent from T∗ (and so from T ). �
Let us note that the question as to whether the independent sentence γ can be taken to be �n+1 is
left open here; however, when T contains Peano Arithmetic, γ is (provably) �n+1. For genuinely
generalizing Gödel–Rosser’s Theorem, cf. Tarski’s Theorem on the incompleteness of any definable
and sound theory in [7, Theorem 1, p. 97] (see also [10]), we need the following:

Lemma 2.4 (Craig’s Trick, generalized)
For any n�1, any �n+1-definable (arithmetical) theory is equivalent with a �n-definable theory.

Proof. If AxT (x)=∃x1 ···∃xmθ (x,x1,··· ,xm) with θ∈�n then AxT (x)≡∃yθ ′(x,y) with θ ′(x,y)=
∃x1,··· ,xm�yθ (x,x1,··· ,xm)∈�n. Now, T ′ ={ψ∧(

k=k) |N |=θ ′(�ψ�,k)} is equivalent with T
and is �n-definable by AxT ′ (x)≡∃y,z�x

(
θ ′(y,z)∧[

x= (y∧�z=z�)
])

. Let us recall that any �n-
definable theory is also �n-definable. �
Theorem 2.5 (�n+1-incompleteness of �n+1-definable and �n-sound theories)
For any n�1, if T is�n-sound and AxT ∈�n+1, then there exists a (true)�n+1-sentence independent
from T .

Proof. By Lemma 2.4, every �n+1-definable theory is equivalent to a �n-definable one, and by
Theorem 2.3 for every such �n-sound theory there exists an independent �n+1-sentence. �
Let us note that the above theorem has a constructive proof; i.e. there exists an algorithm, which
given a �n+1-sentence AxT (x) that defines the set of axioms of a �n-sound theory T , outputs an
�n+1-sentence γ T independent of T . Gödel’s original proof for his first Incompleteness Theorem
could work assuming the �1-soundness of a �1-definable extension of Q (whose incompleteness
was to be proved). Rosser’s trick weakened the assumption of �1-soundness to simple consistency,
or equivalently (for extensions of Q) to �0-soundness. Thus, a direct generalization of Gödel’s
incompleteness would be the �n+1-incompleteness of any �n+1-definable and �n+1-sound theory.
Theorem 2.5 above, which shows the �n+1-incompleteness of any �n+1-definable and �n-sound
theory, is more of a Rosserian style. Below we show its optimality:

Theorem 2.6 (Optimality of generalized Gödel–Rosser Theorem)
For any n�1 there exists a theory which is �n+1-definable, �n−1-sound and complete (and
contains Q).

Proof. That there exists a complete �2-definable extension of Q is already known; see e.g. [9].
Here, we generalize this result to Q∪�n−1-Th(N). Let S be Q when n=1 and be Q∪�n−1-Th(N)
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when n>1 (note that �0-Th(N)⊆Q). The theory S can be completed by Lindenbaum’s Lemma as
follows: for an enumeration of all the sentences ψ0,ψ1,ψ2,··· take T0 =S, and let Ti+1 =Ti ∪{ψ i}
if Ti ∪{ψ i} is consistent, and let Ti+1 =Ti ∪{¬ψ i} otherwise (if Ti ∪{ψ i} is inconsistent). Then the
theory T̂ =⋃

j∈N
Tj is a complete extension of S; below we show the �n+1-definability of T̂ . An

enumeration of all the sentences can be defined by a �0-formula stating ‘x is the (Gödel number
of the) u-th sentence’: Sent-List(x,u)=[

Sent(u)∧x=u
]∨[¬Sent(u)∧x=�0=0�

]
, where Sent(u)

is a �0-formula stating that u is (the Gödel code of) a sentence. Now, if the �0-formula Seq(y)
states that y is the Gödel code of a sequence and its length is denoted by �en(y) and for any number
l<�en(y) the l-th member of y is denoted by [y]l , then AxT̂ (x) can be defined by

∃y
[
Seq(y)∧[y]�en(y)−1 =x∧(∀u<�en(y)

[
Sent([y]u)

])∧
∀u<�en(y)∀z�y

((
Sent-List(z,u)∧Con(S +〈y�u〉+z)−→[y]u =z

)
∧(

Sent-List(z,u)∧¬Con(S +〈y�u〉+z)−→[y]u =¬z
))]

,

where 〈y�u〉 denotes the initial segment of y with length u, and the formula Con(S+〈y�u〉+z) is
defined below, where q is the Gödel code of the conjunction of all the (finitely many) axioms of
Q and the �0-formula ConjSeq(v,y) states that v is (the Gödel code of) the conjunction of all the
members of the sequence (with Gödel code) y:
for n=1, Con(S+〈y�u〉+z) is ∀v,w

[
ConjSeq(v,〈y�u〉)→¬Proof(w,¬[q∧v∧z])], and

for n>1,Con(S+〈y�u〉+z) is
∀t,v,w

[
ConjSeq(v,〈y�u〉)∧�n−1-True(t)→¬Proof(w,¬[q∧v∧z∧t])].

Since ConjSeq,Proof∈�0 and (for n>1) �n−1-True∈�n−1 then Con∈�n and so AxT̂ ∈�n+1,
which is equivalent to AxT̂ ∈�n+1 (in N). �

3 n-Consistency Versus �m-Soundness

Definition 3.1 (n-Consistency)
A theory T is called ω-consistent when for no formula ψ both (I) T �¬ψ(n) for all n∈N, and
(II) T �∃xψ(x) hold together. It is called n-consistent when for no formula ψ∈�n with ψ=∃xθ (x)
and θ∈�n−1 one has (i) T �¬θ (n) for all n∈N, and (ii) T �ψ .

Proposition 3.2 (n-consistency versus �n-soundness)
(1) If a theory is �n-sound, then it is n-consistent.
(2) If a �n−1-complete theory is n-consistent, then it is �n-sound.

Proof. (1) Assume T �∃xψ(x) for some �n-sound theory T and some �n−1-formula ψ . By
�n-soundness, N |=∃xψ(x), so N |=ψ(m) for some m∈N. Now, ψ(m)∈�n−1-Th(N), thus
T ��¬ψ(m) by the �n-soundness of T (again).

(2) Assume T �∃xψ(x) for some �n−1-complete and n-consistent theory T and ψ ∈�n−1. By
n-consistency, there exists some m∈N such that T ��¬ψ(m). By �n−1-completeness we have
N �|=¬ψ(m); and so N |=ψ(m), whence N |=∃xψ(x). �

Remark 3.3 ((n+1)-consistency versus �n-soundness)
For n=0,1,2 the notions of�n-soundness and n-consistency are equivalent for�1-complete theories
(see [4, Theorems 5, 25, 30]). But for n≥3 the n-consistency does not necessarily imply the
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�n-soundness. Even the notion of ω-consistency does not imply the �3-soundness (see [4,
Theorem 19] proved by Kreisel in 1955; cf. [7, Theorem 5, p. 101]). Also, for any n, there
exists a �n-sound theory which is not (n+1)-consistent: Pick any ϕ∈�n+1-Th(N) such that
U =�n-Th(N)∪{¬ϕ} is consistent (see e.g. [6, Exercise 9.12(d)]). It is clear that U is �n-sound,
and U is not (n+1)-consistent, for otherwise U would be �n+1-sound by Proposition 3.2(2).

4 Incompleteness of n-Consistent �n+1-Definable Theories

Definition 4.1 (Deciding formulas)
We say that a theory T decides a formula ψ when either T �ψ or T �¬ψ . For a class � formulas, a
theory T is called �-deciding when it can decide every sentence in �.

The following lemma generalizes [4, Theorem 20] which states that the true arithmetic Th(N) is
the only ω-consistent extension of Peano Arithmetic (indeed Q) that is complete.

Lemma 4.2 (�n-completeness of n-consistent and �n-deciding theories)
Any n-consistent and �n-deciding extension of Q is �n-complete.

Proof. By induction on n. For n=0 there is nothing to prove. If the theorem holds for n then we
prove it for n+1 as follows. If T is (n+1)-consistent and �n+1-deciding, but not �n+1-complete,
there must exist some ψ∈�n+1-Th(N) such that T ��ψ . Write ψ=∀zη(z) for some η∈�n; then
N |=η(m) for any m∈N. By the induction hypothesis, T is �n-complete and so �n-complete; thus
T �η(m) for all m∈N. On the other hand since T is�n+1-deciding and T ��ψ we must have T �¬ψ ,
thus T �∃z¬η(z). This contradicts the (n+1)-consistency of T . �
Another generalization of Gödel–Rosser’s Incompleteness Theorem is the following, cf. Mostowski’s
Theorem on the incompleteness of any definable and ω-consistent theory in [7, Theorem 3, p. 97]:

Theorem 4.3 (�n+1-incompleteness of �n+1-definable and n-consistent theories)
If the n-consistent theory T contains Q and AxT ∈�n+1, then there exists a �n+1-sentence γ
independent from T .

Proof. Towards a contradiction, assume that T is �n+1-deciding. So, T is also �n+1-
deciding. Hence, by Lemma 4.2, T is �n-complete and so �n-sound. But this contradicts
Theorem 2.5. �
Let us note that the above theorem, with a non-constructive proof, also generalizes Theorem 2.5,
since n-consistency is weaker than�n-soundness for n>2 (cf. Proposition 3.2). And, just like before,
the theorem is optimal too: The complete�n−1-sound and�n+1-definable theory constructed in the
proof of Theorem 2.6 is also (n−1)-consistent by Proposition 3.2.

Our final result contains a bit of a surprise: even though the proof of Theorem 4.3 is not constructive,
no one can present a constructive proof for it.

Theorem 4.4 (Non-constructivity of n-consistency incompleteness)
Let n�3 be fixed. There is no (partial) recursive function f (even with the oracle ∅(n)) such that when
m is a (Gödel code of a)�n+1-formula which defines an n-consistent extension of Q, then f (m) (halts
and) is a (Gödel code of a) sentence independent from that theory.

Proof. Assume that there is an ∅(n)-(partial)recursive function f such that for any given �n+1-
formula�(x) if the theory T�={α|N |=�(�α�)} is an n-consistent extension of Q then f (���) (halts
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and) is (the Gödel code of) a sentence such that T� �� f (���) and T� ��¬f (���). The ω-consistency
of Q with x can be written by the �3-formula ω-ConQ(x) as

∀χ[∃zProof
(
z,q∧x→∃vχ (v)

)→∃v∀z¬Proof
(
z,q∧x→¬χ (v)

)],
where q is the Gödel code of the conjunction of the finitely many axioms of Q (see the Proofs of
Theorems 2.3, 2.6). By ∅(n)-(partial)recursiveness of f the expressions y=f (x) and f (z)↓ can be
written by �n+1-formulas (see e.g. [8]). By (a parametric version of) the diagonal lemma (recalling
that n�3) there exists some �n+1-formula �(x) such that (Q proves that)

�(x)≡ [
f (���)↓∧ω-ConQ

(
f (���)

)∧ (
x=f (���)∨x=q

)] ∨[
f (���)↓∧¬ω-ConQ

(
f (���)

)∧ (
x=¬f (���)∨x=q

)]∨
(x=q).

Now, if f (���)↑ then �(x)≡ (x=q) and so T�=Q is an n-consistent extension of Q, whence
f (���)↓; contradiction. Thus, f (���)↓. If the theory Q∪{f (���)} is ω-consistent then �(x)≡
(x=f (���)∨x=q) and so T�=Q∪{f (���)} is an n-consistent extension of Q, whence f (���)
should be independent from it; contradiction. So, Q∪{f (���)} is not ω-consistent; then by [4,
Theorem 21] (which states that for any ω-consistent theory S and any sentence X either S∪{X }
or S∪{¬X } is ω-consistent) the theory Q∪{¬f (���)} should be ω-consistent. But in this case we
have �(x)≡ (x=¬f (���)∨x=q) and so T�=Q∪{¬f (���)} is an n-consistent extension of Q,
whence f (���) should be independent from it; contradiction again. Thus, there can be no such
∅(n)-(partial)recursive function. �
Remark 4.5 (Optimality of Theorem 4.4)
There indeed exists some ∅(n+1)-(total)recursive function which can find such an independent
�n+1-sentence: by having an access to the oracle ∅(n+1) for a given AxT ∈�n+1, provability (or
unprovability) in T of a given sentence is decidable. Thus (since by Theorem 4.3 there must
exist some �n+1-sentence independent from the theory T ) by an exhaustive search through all
the �n+1-sentences such an independent sentence can be eventually found.

5 Conclusions

Gödel-Rosser’s theorem, noting that �0-soundness is equivalent to (simple) consistency in theories
that contain Q, can be depicted as follows:

Q⊆T & AxT ∈�1 & T is �0−Sound �⇒ T �∈ �1−Deciding

which was generalized in Theorem 2.5 as:

Q⊆T & AxT ∈�n+1 & T is �n−Sound �⇒ T �∈ �n+1−Deciding

with a constructive proof, and its optimality was shown in Theorem 2.6 as:

Q⊆T & AxT ∈�n+1 & T is �n−1−Sound ��⇒ T �∈ Complete

Another form of Gödel–Rosser’s Theorem is as follows:

Q⊆T & AxT ∈�1 & T is 0−Consistent �⇒ T �∈ �1−Deciding

which was generalized in Theorem 4.3 as:

Q⊆T & AxT ∈�n+1 & T is n−Consistent �⇒ T �∈ �n+1−Deciding
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with a non-constructive proof. This theorem is optimal too:

Q⊆T & AxT ∈�n+1 & T is (n−1)−Consistent ��⇒ T �∈ Complete

and it was shown in Theorem 4.4 that there can be no constructive proof for it (when n>2).
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