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Abstract
The problem of�1−separating the hierarchy of bounded arithmetic has been studied in the article. It is shown that the notion of
Herbrand consistency, in its full generality, cannot�1−separate the theory I�0 +∧

j�j from I�0; though it can�1−separate
I�0 +Exp from I�0. Namely, we show the unprovability of the Herbrand consistency of I�0 in the theory I�0 +∧

j�j.
This partially extends a result of L. A. Kołodziejczyk who showed that for a finite fragment S⊆ I�0, the Herbrand consistency
of S+�1 is not provable in I�0 +∧

j�j.
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1 Introduction

One of the consequences of Gödel’s Incompleteness Theorems is the separation of Truth and
Provability, in the sense that there are true sentences which are not provable, in sufficiently strong
theories. Moreover, those true and unprovable sentences could be�1 (see Section 3.2). Thus, Truth is
not�1−conservative over Provable. Gödel’s Second Incompleteness Theorem provides a concrete
candidate for�1−separating a theory T over its subtheory S, and that is the consistency statement of
S; when T proves the consistency of S, then T is not a�1−conservative extension over S, since by the
second incompleteness theorem of Gödel, S cannot prove its own consistency. Indeed, there are lots
of �1−separate examples of theories (see Section 2.2), and there are some difficult open problems
relating to�1−separation or�1−conservativeness of arithmetical theories. One of the well-known
ones was the �1−separation of I�0 +Exp, elementary arithmetic, from I�0, bounded arithmetic.
Here Gödel’s Second Incompleteness Theorem cannot be applied directly, since I�0 +Exp does not
prove the consistency of I�0. For this �1−separation, Paris and Wilkie [8] suggested the notion of
cut-free consistency instead of the usual, Hilbert style, consistency predicate. Here one can show the
provability of the cut-free consistency of I�0 in the theory I�0 +Exp, and it was presumed that I�0
should not derive its own cut-free consistency (see [11, 12] for some historical accounts). But this
generalization of Gödel’s Second Incompleteness Theorem, that of unprovability of the weak notions
of consistency of weak theories in themselves, took a long time to be established. For example, it was
shown that I�0 cannot prove the Herbrand consistency of itself augmented with the axiom of the
totality of the squaring function (∀x∃y[y=x·x]) – see [12]; and then, by a completely different proof,
it is shown in [11] the unprovability of the Herbrand consistency of I�0 in itself, when its standard
axiomatization is taken. Thus, one line of research was opened for investigating the status of Gödel’s
Second Incompleteness Theorem for weak notions of consistencies in weak arithmetics. In another
direction, one can ask whether weak notions of consistencies can�1−separate the hierarchies of weak
arithmetics. One prominent result here is of L. A. Kołodziejczyk [5]; one consequence of which is
that the notion of Herbrand consistency cannot�1−separate the theory I�0 +∧

�j (see Section 2.2)
from I�0 +�1. We conjectured in [11] that by using our techniques and methods one can (partially)
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extend this result by showing the unprovability of the Herbrand consistency of I�0 in I�0 +∧
�j

(Conjecture 39). In this article, we prove the conjecture. The ideas of the arguments are heavily based
on the papers [1] and [5]; one new trick is a more efficient Skolemization which allows us to extract a
Skolem function symbol for squaring (x �→x2) from an induction axiom of I�0. This obstacle could
have been overcome by injecting a function symbol for squaring into the language of arithmetic or
by accepting an axiom like ∀x∃y(y=x ·x), which gives out a Skolem function for squaring. Here we
have avoided those ways, and used the standard language of arithmetic and standard axiomatization
of I�0. The arguments of the paper go rather quickly, nevertheless some explanations and examples
are presented for clarifying them. No familiarity with the papers cited in the references is assumed
for reading this paper; the classic book of Peter Hájek and Pavel Pudlák [4] is more than enough.

2 Herbrand consistency and bounded arithmetic

2.1 Herbrand consistency

For Skolemizing formulas, it is convenient to work with formulas in negation normal form, which
are formulas built up from atomic and negated atomic formulas using ∧,∨,∀ and ∃. For having more
comfort we consider rectified formulas, which have the property that different quantifiers refer to
different variables, and no variable appears both bound and free. Let us note that any formula can be
negation normalized uniquely by converting implication (A→B) to disjunction (¬A∨B) and using
de Morgan’s laws. And renaming the variables can rectify the formula. Thus, any formula can be
rewritten in the rectified negation normal form (RNNF) in a somehow unique way (up to a variable
renaming). For any (not necessarily RNNF) existential formula of the form ∃xA(x), let f∃xA(x) be a
new m−ary function symbol where m is the number of the free variables of ∃xA(x). When m=0 then
f∃xA(x) will obviously be a new constant symbol (cf. [3]). For any RNNF formula ϕ define ϕS by
induction:

• ϕS =ϕ for atomic or negated-atomic ϕ;
• (ϕ◦ψ)S =ϕS◦ψS for ◦∈{∧,∨} and RNNF formulas ϕ,ψ ;
• (∀xϕ)S =∀xϕS;
• (∃xϕ)S =ϕS[f∃xϕ(x)(y)/x] where y are the free variables of ∃xϕ(x) and the formula

ϕS[f∃xϕ(x)(y)/x] results from the formula ϕS by replacing all the occurrences of the variable x
with the term f∃xϕ(x)(y).

Finally, the Skolemized form of a formula ψ is obtained by

(1) negation normalizing and rectifying it to ϕ;
(2) getting ϕS by the above inductive procedure;
(3) removing all the remaining (universal) quantifiers in ϕS.

We denote thus resulted Skolemized form of ψ by ψSk. Note that our way of Skolemizing did not
need prenex normalizing a formula. And it results in a unique (up to a variable renaming) Skolemized
formula.

Example 2.1
Let 0 be a constant symbol, s be a unary function symbol, + and · be two binary function symbols,
and � be a binary predicate symbol. Let A be the sentence ∀x∀y(x�y↔∃z[z+x=y]) which is an
axiom of Robinson’sArithmetic Q (see Example 2.3), and let B=θ (0)∧∀x[θ (x)→θ (x+1)]⇒∀xθ (x),
where θ (x)=∃y(y�x·x∧y=x·x). This is an axiom of the theory I�0 (see Section 2.2). The rectified
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negation normalized forms of these sentences can be obtained as follows:

C =ARNNF =∀x∀y
([x 
�y∨∃u(u+x=y)]∧[∀z(z+x 
=y)∨x�y]), and

D=BRNNF =∀u(u 
�0·0∨u 
=0·0)
∨

∃w
[
(∃z[z�w·w∧z=w·w])∧(∀v[v 
�(sw)·(sw)∨v 
= (sw)·(sw)])]

∨

∀x∃y[y�x·x∧y=x·x].

For simplifying the notation, let h stand for f∃u(u+x=y), c abbreviate the Skolem constant symbol
for the sentence ∃w

[
(∃z[z�w·w∧z=w·w])∧(∀v[v 
�(sw)·(sw)∧v 
= (sw)·(sw)])], and q(ξ ) be the

Skolem function symbol for the formula ∃z[z�ξ ·ξ∧z=ξ ·ξ ]. Then CS and DS are as follows:

CS =∀x∀y
([x 
�y∨(h(x,y)+x=y)]∧[∀z(z+x 
=y)∨x�y]), and

DS =∀u(u 
�0·0∨u 
=0·0)
∨

[
(q(c)�c·c∧q(c)=c·c)∧∀v(v 
�(sc)·(sc)∨v 
= (sc)·(sc))]

∨

∀x(q(x)�x·x∧q(x)=x·x).

Finally the Skolemized forms of A and B are obtained as:

ASk =[x 
�y∨(h(x,y)+x=y)]∧[(z+x 
=y)∨x�y], and

BSk =(u 
�0·0∨u 
=0·0)
∨

[
(q(c)�c·c∧q(c)=c·c)∧(v 
�(sc)·(sc)∨v 
= (sc)·(sc))]

∨

(q(x)�x·x∧q(x)=x·x). �
An Skolem instance of a formula ψ is any formula resulted from substituting the free variables of
ψSk with some terms. So, if x1,...,xn are the free variables of ψSk (thus written as ψSk(x1,...,xn))
then an Skolem instance of ψ is ψSk[t1/x1,··· ,tn/xn] where t1,...,tn are terms (which could be
constructed from the Skolem functions symbols). The Skolemized form of a theory T is by definition
TSk ={ϕSk |ϕ∈T}. A version of Herbrand’s fundamental theorem reads as follows (cf. [3]).

Theorem 2.2 (Gödel - Herbrand - Skolem)
Any theory T is equiconsistent with its Skolemized theory TSk. That is, T is consistent if and only
if every finite set of Skolem instances of T is (propositionally) satisfiable.

Our means of propositional satisfiability is by evaluations, which are defined to be any function p
whose domains are the set of all atomic formulas constructed from a given set of terms	 and whose
ranges are the set {0,1} such that

(1) p[t=t]=1 for all t∈	; and for any terms t,s∈	,
(2) if p[t=s]=1 then p[ϕ(t)]=p[ϕ(s)] for any atomic formula ϕ(x).

The relation �p on 	 is defined by t �p s ⇐⇒ p[t =s]=1 for t,s∈	. One can see that the relation
�p is an equivalence relation, and moreover is a congruence relation as well. That is, for any set of
terms ti and si (for i=1,...,n) and any n-ary function symbol f , if p[t1 =s1]=···p[tn =sn]=1 then
p[f (t1,...,tn)= f (s1,...,sn)]=1.
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The �p−class of a term t is denoted by t/p; and the set of all such p−classes for each
t∈	 is denoted by 	/p. For simplicity, we write p |=ϕ instead of p[ϕ]=1; thus p 
|=ϕ stands
for p[ϕ]=0. This definition of satisfying can be generalized to other open (RNNF) formulas
as usual.

If all terms appearing in an Skolem instance of ϕ belong to the set 	, that formula is called an
Skolem instance ofϕ available in	.An evaluation defined on	 is called aϕ−evaluation if it satisfies
all the Skolem instances of ϕ which are available in 	. Similarly, for a theory T , a T−evaluation
on 	 is an evaluation on 	 which satisfies every Skolem instance of every formula of T which
is available in 	. By Herbrand’s Theorem, a theory T is consistent if and only if for every set of
terms 	 (constructed from the Skolem terms of axioms of T ) there exists a T−evaluation on 	. We
will use this reading of Herbrand’s Theorem for defining the notion of Herbrand consistency. Thus,
Herbrand Provability of a formula ϕ in a theory T is equivalent to the existence of a set of terms on
which there cannot exist any (T ∪{¬ϕ})−evaluation.

Example 2.3
Let Q denote Robinson’s Arithmetic over the language of arithmetic 〈0,s,+,·,�〉, where 0 is a
constant symbol, s is a unary function symbol, +,· are binary function symbols and � is a binary
predicate symbol, whose axioms are as follows:

A1 : ∀x(sx 
=0) A2 : ∀x∀y(sx=sy→x=y)

A3 : ∀x(x 
=0→∃y[x=sy]) A4 : ∀x∀y(x�y↔∃z[z+x=y])
A5 : ∀x(x+0=x) A6 : ∀x∀y(x+sy=s(x+y))

A7 : ∀x(x ·0=0) A8 : ∀x∀y(x ·sy=x ·y+x)

Let ϕ=∀x(x�0→x=0). We can show Q�ϕ; this will be proved below by Herbrand provability.
Suppose Q has been Skolemized as below:

ASk
1 : sx 
=0 ASk

2 : sx 
=sy∨x=y

ASk
3 : x=0∨x=spx ASk

4 : [x 
�y∨h(x,y)+x=y]∧[z+x 
=y∨x�y]
ASk

5 : x+0=x ASk
6 : x+sy=s(x+y)

ASk
7 : x ·0=0 ASk

8 : x ·sy=x ·y+x

Here p abbreviates f∃y(x=sy) and h stands for f∃z(z+x=y). Suppose that ¬ϕ has been Skolemized as
(c�0∧c 
=0) where c is the Skolem constant symbol for ∃x(x�0∧x 
=0). Put

	={0,c,h(c,0),h(c,0)+c,spc,s(h(c,0)+pc),h(c,0)+spc}.
We show that there cannot exist a (Q+¬ϕ)−evaluation on	. Assume (for the sake of contradiction)
that p is such an evaluation. Then by A3 we have p |=c=spc. On the other hand, by A4 we have
p |=h(c,0)+c=0, and so p |=h(c,0)+spc=0. Then by A6 we get p |=s(h(c,0)+pc)=0 which is a
contradiction with A1. �
Let us note that finding a suitable set of terms	 for which there cannot exist a (T +¬ψ)−evaluation
on 	 is as complicated as finding a proof of T �ψ (even more complicated, see Section 3.1). The
following is another example for illustrating the concepts of Skolem instances and evaluations, which
will be used later.
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Example 2.4
Let B be as in the Example 2.1, in the language 〈0,s,+,·,�〉. Thus,

B=θ (0)∧∀x[θ (x)→θ (sx)]→∀xθ (x) where θ (x)=∃y(y�x·x∧y=x·x).

We saw that the Skolemized form of B is

BSk =(u 
�0·0∨u 
=0·0)
∨

[
(q(c)�c·c∧q(c)=c·c)∧(v 
�(sc)·(sc)∨v 
= (sc)·(sc))]

∨

(q(x)�x·x∧q(x)=x·x),

where q(ξ ) is the Skolem function symbol for the formula ∃z[z�ξ ·ξ∧z=ξ ·ξ ] and c is the Skolem
constant of ∃w

[
(∃z[z�w·w∧z=w·w])∧(∀v[v 
�(sw)·(sw)∧v 
= (sw)·(sw)])]. Define the set of terms

ϒ by ϒ={0,0+0,02,c,c2,c2 +0,sc,qc,(sc)2,(sc)2 +0} and suppose p is an (Q+B)−evaluation on
the set of terms ϒ∪{t,t2,q(t)}. The notation �2 is a shorthand for � ·�. Then p must satisfy the
following Skolem instance of B which is available in the set ϒ∪{t,t2,q(t)}:

(1) (0 
�02 ∨0 
=02)
∨

((
qc�c2 ∧qc=c2)∧(

(sc)2 
� (sc)2 ∨(sc)2 
= (sc)2))∨
(
q(t)� t2 ∧q(t)= t2).

Now since p |=0·0=0+0=0 then, by Q’s axioms, p |=0�02 ∧0=02, and so p cannot satisfy the
first disjunct of (1). Similarly, since p |= (sc)2 +0= (sc)2 then p |= (sc)2 � (sc)2, thus p cannot satisfy
the second disjunct of (1) either, because p |= (sc)2 = (sc)2. Whence, p must satisfy the third disjunct
of (1), then necessarily p |=q(t)= t2 must hold. �

2.2 Bounded arithmetic hierarchy

First-order Peano arithmetic (PA) is the theory in the language 〈0,s,+,·,�〉 axiomatized by
Robinson’sArithmetic Q (Example 2.3) plus induction schemaψ(0)∧∀x[ψ(x)→ψ(s(x))]⇒∀xψ(x)
for any formula ψ(x). This theory is believed to encompass a large body of arithmetical truth in
mathematics; the most recent conjecture (due to H. Friedman) is that a proof of Fermat’s Last Theorem
can be carried out inside PA ([2]), and indeed Andrew Wiles’s proof of the theorem has been claimed
to be formalized in it ([6]). To see a simpler example, we note that primality can be expressed in
the language of arithmetic by the following formula: Prime(x)≡∀y,z(y ·z=x→y=1∨z=1). Then
Euclid’s theorem on the infinitude of the primes can be written as ∀x∃y[y>x∧Prime(y)]. It can be
shown that Euclid’s proof can be formalized completely in PA. One would wish to see how much
strength of PA is necessary for proving the infinitude of the primes. An important subtheory of
Peano’s Arithmetic is introduced by R. Parikh ([7]) as follows. A formula is called bounded if its
every quantifier is bounded, i.e. is either of the form ∀x�t(...) or ∃x�t(...) where t is a term; they
are read as ∀x(x�t → ...) and ∃x(x�t∧ ...), respectively. The class of bounded formulas is denoted
by �0. It is easy to see that bounded formulas are decidable. The theory I�0, also called bounded
arithmetic, is axiomatized by Q plus the induction schema for bounded formulas. An important
property of this arithmetic is that whenever I�0 �∀x∃y θ (x) for a bounded formula θ , then there
exists a term (polynomial) t(x) such that I�0 �∀x∃y�t(x) θ (x) (see e.g. [4]). An open problem in the

http://logcom.oxfordjournals.org/


[15:41 12/5/2012 exr005.tex] LogCom: Journal of Logic and Computation Page: 550 545–560

550 Herbrand consistency

theory of weak arithmetics is that whether or not the infinitude of the primes can be proved inside
I�0. However, it is known that much of elementary number theory cannot be proved inside I�0; the
theory is too weak to even recognize the totality of the exponentiation function. The exponentiation
function exp is defined by exp(x)=2x; the formula Exp expresses its totality: (∀x∃y[y=exp(x)]).
We note that the formula ‘y=exp(x)’ can be written by a bounded formula in two free variables
x,y in the language of arithmetic (see [4]). The theory I�0 cannot prove Exp but is able to prove
some basic properties of the exp function (see again [4]). The theory I�0 +Exp, sometimes called
Elementary Arithmetic, is able to formalize much of number theory. It can surely prove the infinitude
of the primes. Note that in Euclid’s proof, for getting a prime number greater than x one can use
x!+1, which should have a prime factor greater than x (no number non-greater than x can divide
it). And it can be seen that x!<expexp(x). Between I�0 and I�0 +Exp, a hierarchy of theories is
considered in the literature, which has close connections with computational complexity. They are
sometimes called weak arithmetics, and sometimes bounded arithmetics. The hierarchy is defined
below. The converse of exp is denoted by log which is formally defined as logx=min{y |x�exp(y)};
thus exp(logx−1)<x�exp(logx). The superscripts above the function symbols indicate the iteration
of the functions; e.g. exp2(x)=expexp(x) and log3x= logloglogx. Define the function ωm to be
ωm(x)=expm

(
(logm x)·(logm x)

)
. It is customary to define this function by induction: ω0(x)=x2 and

ωn+1(x)=exp(ωn(logx)). Let �m express the totality of ωm (i.e. �m ≡∀x∃y[y=ωm(x)]). It can be
more convenient to consider the function ω−1(x)=2x as well (cf. [5]). The hierarchy between I�0
and I�0 +Exp is {I�0 +�m}m�1. For example, the theory I�0 +�1 can prove the infinitude of the
primes (the proof is not easy at all, see [9]). We first review some basic properties of theωn functions:
ω1 dominates all the polynomials and ωm+1 dominates all the (finite) iterations of ωm. Let us note
that ωN

0 (x)=xexp(N) and ωN
m(x)=expm([logm x]exp(N)), also ωN

j+1(x)=exp(ωN
j (logx)), for N�1.

Lemma 2.5
For any natural m�0 and N>2, and any x>expm+2(N), we have ωN

m(x)<ωm+1(x).

Proof. For m=0 we note that 2N ·logx< (logx)2 for any x>exp2(N). Thus exp(2N logx)<
exp((logx)2), which implies that ωN

0 (x)<ω1(x).
For m�1 we can use an inductive argument. For any x>expm+2(N) we have logx>expm+1(N),

so by the induction hypothesis ωN
m−1(logx)<ωm(logx). Then exp[ωN

m−1(logx)]<exp[ωm(logx)],
and so ωN

m(x)<ωm+1(x). �
The following lemma will be used later in the article.

Lemma 2.6
For any m�−1,N�1 and x>expm+2(4N +4), there exists some y (�x) such that

ωN
m(y)<x�ωm+1(y).

Proof. We first show the lemma for m=−1: for any x>exp(4N +4), there exists a least y such that
y2�x; so (y−1)2<x. Also from y2>24N+4 we have y>22N+2. Whence we have x�y2 =ω0(y), and
also ωN−1(y)=2N ·y<√

y ·y�(y−1)2<x. Let us note that
√

y ·y�(y−1)2 holds for any y�4 and we

have y>22N+2>4.
For m=0, we use the above argument for logx, noting that logx>exp(4N +4) holds by the

assumption x>exp2(4N +4). There must exist some z such that 2N ·z<logx�z2. Let y=exp(z), so
z= logy. Thus, from 2N logy<logx�(logy)2 it follows that ωN

0 (y)=yexp(N)�exp[exp(N)·(logy)]�
exp(logx−1)<x�exp(logx)�exp([logy]2)=ω1(y).
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For m�1, we use induction on m with a straightforward argument. For x>expm+3(4N +4),
we have logx>expm+2(4N +4), and so by the induction hypothesis there exists some z such that
ωN

m(z)<logx�ωm+1(z). Put y=exp(z), so we have ωN
m(logy)<logx�ωm+1(logy). Thus, we finally

get ωN
m+1(y)=exp(ωN

m(logy))�exp(logx−1)<x�exp(logx)�exp(ωm+1(logy))=ωm+2(y). �
Whence the hierarchy {I�0}∪{I�0 +�m}m�1 ∪{I�0 +∧

�j,I�0 +Exp} is proper:

(2) I�0 � ···I�0 +�n � I�0 +�n+1 � ···� I�0 +
∧
�j � I�0 +Exp.

The notation I�0 +∧
�j abbreviates

⋃
n�1(I�0 +�n). The class of
n–formulas and�n–formulas

are defined as follows:
1−formulas are equivalently (in first-order logic) in the form ∃xθ (x), where
θ∈�0, and�1−formulas are equivalently in the form ∀xθ (x), for some θ∈�0. Then
n+1−formulas
are (logically) equivalent to ∃xϕ(x) for someϕ∈�n, and�n+1−formulas are equivalent to ∀xϕ(x) for
some ϕ∈
n. The above hierarchy is not �2−conservative, i.e. there exists a �2−formula (namely
�m+1) which is provable in I�0 +�m+1 but not in I�0 +�m. Though, the (difficult) open problem
here is the �1−conservativity of the hierarchy:

Problem 2.7
Is there a �1−sentence ψ such that I�0 +�m+1 �ψ and I�0 +�m 
�ψ? �
As for the above hierarchy (2) it is (only) known that I�0 +Exp is not �1−conservative over
I�0 +∧

�j (see [4], Corollary 5.34 and the afterward explanation).
Examples of �1−separation abound in mathematics and logic: Zermelo-Frankel Set Theory

ZFC is not �1−conservative over Peano’s Arithmetic PA, because we have ZFC�Con(PA) but,
by Gödel’s Second Incompleteness Theorem, PA 
�Con(PA); where Con(−) is the consistency
predicate. Inside PA the
n−hierarchy is not a�1−conservative hierarchy, since I
n+1 �Con(I
n)
though I
n 
�Con(I
n) (see e.g. [4]). Then below the theory I
1, things get more complicated: for
�1−separating I�0 +Exp over I�0 the candidate Con(I�0) does not work as expected, because
I�0 +Exp 
�Con(I�0) (see [4] Corollary 5.29). For this �1−separation, Paris and Wilkie [8]
suggested the notion of cut-free consistency instead of the usual - Hilbert style - consistency predicate.
Here one can show that I�0 +Exp�CFCon(I�0), and then it was presumed that I�0 
�CFCon(I�0),
where CFCon stands for cut-free consistency. In 2006, L. A. Kołodziejczyk [5] showed that
the notion of Herbrand consistency (and thus, more probably, other cut-free consistencies, like
Tableaux, etc.) will not work for �1−separating the hierarchy above I�0 +�1 either. Namely,
I�0 +∧

�j 
�HCon(I�0 +�1), where HCon(−) is the predicate of Herbrand consistency (see
Section 2.3). Actually the main result of [5] is stronger, in the sense that it proves the existence
of a finite fragment S⊆ I�0 such that I�0 +∧

�j cannot prove HCon(S+�1) (cf. Conjecture 4.1 in
Section 4). In this article, we partially extend this rather negative result one step further, by proving
I�0 +∧

�j 
�HCon(I�0).

2.3 Herbrand consistency in bounded arithmetics

For a theory T , when	 is the set of all terms (constructed from the function symbols of the language
of T and also the Skolem function symbols of the formulas of T ) any T−evaluation on 	 induces
a model of T , which is called a Herbrand Model. Let L be a language and 	 be a set of (ground)
terms (constructed by the Skolem constant symbols and the Skolem function symbols of L).
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Put 	〈0〉 =	, and define inductively

	〈k+1〉 =	〈k〉∪{f (t1,...,tm) | f ∈L& t1,...,tm∈	〈k〉}
∪ {f∃xψ(x)(t1,...,tm) |�ψ��k & t1,...,tm∈	〈k〉}.

Let 	〈∞〉 denote the union
⋃

k∈N
	〈k〉.

Suppose p is an evaluation on 	〈∞〉. Define M(	,p)={t/p | t∈	〈∞〉} and put the L−structure
on it by

(1) f M(	,p)(t1/p,...,tm/p)= f (t1,...,tm)/p, and
(2) RM(	,p) ={(t1/p,...,tm/p) |p |=R(t1,...,tm)},

for function symbol f , relation symbols R, and terms t1,...,tm∈	〈∞〉.

Lemma 2.8
The definition of L−structure on M(	,p) is well-defined, and when p is an T−evaluation on	〈∞〉,
for an L−theory T , then M(	,p) |=T .

Proof. That the definitions of f M(	,p) and RM(	,p) are well-defined follows directly from the
definition of an evaluation. By the definition of 	〈∞〉, the structure M(	,p) is closed under
all the Skolem functions of L, and moreover it satisfies an atomic (or negated atomic) formula
A(t1/p,...,tm/p) if and only if p |=A(t1,...,tm). Then it can be shown, by induction on the complexity
of formulas, that for every RNNF formula ψ , we have M(	,p) |=ψ whenever p satisfies all the
available Skolem instances of ψ in 	〈∞〉. Whence, if p is a T−evaluation, then M(	,p) |=T . �
For arithmetizing the notion of Herbrand consistency, we adopt an efficient Gödel coding, introduced
e.g. in Chapter V of [4]. For convenience, and shortening the computations, we introduce the P
notation: we say x is of P(y), when x is bounded above by a polynomial of y; and we write this as
x�P(y), meaning that for some natural n the inequality x�yn +n holds. Let us note that x�P(y) is
equivalent to the old (more familiar) O−notation ‘logx∈O(logy)’. Here, we collect some very basic
facts about this fixed efficient coding that will be needed later.

Remark 2.9
Let A,B be sets of terms and let |A|,|B| denote their cardinality. Then

• �A∪B��64·(�A�·�B�) (Proposition 3.29 page 311 of [4]); and
• |A|� log(�A�) (Section (e), pp. 304–310 of [4]);

where �A� denotes the Gödel code of the set A. �
Let LA =〈0,s,+,·,�〉 be the language of arithmetics (see Example 2.3). If we let LSk

A be the closure
of LA under Skolem function and constant symbols, i.e. let LSk

A be the smallest set that contains
LA and for any LSk

A −formula ∃xφ(x) we have f∃xφ(x)∈LSk
A , then this new countable language can

also be re-coded, and this recoding can be generalized to LSk
A −terms and LSk

A −formulas. We wish
to compute an upper bound for the codes of evaluations on a set of terms 	. For a given 	, all the
atomic formulas, in the language LA, constructed from terms of 	 are either of the form t =s or of
the form t �s for some t,s∈	. And every member of an evaluation p on 	 is an ordered pair like
〈t =s,i〉 or 〈t �s,i〉 for some t,s∈	 and i∈{0,1}. Thus, the code of any member of p is a constant
multiple of (�t�·�s�)2, and so the code of p is bounded above by P(

∏
t,s∈	�t�·�s�). Let us also

note that
∏

t,s∈	�t�·�s�=∏
t∈	(�t�)2|	| = (

∏
t∈	�t�)2|	| �P(�	�)2log�	� �P(�	�log�	�) and
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that �	�log�	� �ω1(�	�). Thus, we have �p��P (
ω1(�	�)

)
for any evaluation p on any set of terms

	. As noted in [11] there are exp(2|	|2) different evaluations on the set	, and by |	|� log�	� we
get exp(2|	|2)�P (

exp((log�	�)2)
)
�P (

ω1(�	�)
)
. So, only when ω1(�	�) exists, can we have

all the evaluations on	 in our disposal. We need an upper bound on the size (cardinal) and the code
of 	〈j〉 defined above.

Theorem 2.10
If for a set of terms	 with non-standard �	� the value ω2(�	�) exists, then for some non-standard
j the value �	〈j〉� will exist.

Proof. We first show that the following inequalities hold when �	� and |	| are sufficiently larger

than n: (1) |	〈n〉|�P
(
|	|n!) and (2) �	〈n〉��P

((
�	�

)|	|(n+1)!)
.

Denote �	〈k〉� by λk (thus �	�=λ0 =λ) and |	〈k〉| by σk (and thus |	|=σ0 =σ ). We first
note that σk+1 �σk +MσM

k +kσ k
k for a fixed M. Thus σk+1 �P(σ k+1

k ), and then, by an inductive
argument, we have σn �P(σ n!). For the second statement, we first compute an upper bound for
the code of the Cartesian power Am for a set A. Now we have �Ak+1��P(∏

t∈Ak&s∈A�t�·�s�
)
�

P(
�Ak�|A| ·�A�|A|k ), and thus �Am��P(

�A�|A|m)
can be shown by induction on m. We also have

λk+1 �P(
�	〈k〉�·�(	〈k〉)M�·�(	〈k〉)k�

)
for a fixed M. So, λk+1 �P(

λ
σk

k

k

)
and finally our desired

conclusion λm �P(
λσ

(m+1)!)
follows by induction.

Now since �	� is a non-standard number, there must exist a non-standard j such that
j� log4(�	�). Thus 2(j+1)!�exp2(j)� log2(�	�). Now, by the inequality (2) above we can

write �	〈j〉��P
(

(�	�)|	|(j+1)!)�P
(

(22log�	�)(log�	�)(j+1)!)�P
(

exp((log�	�)2(j+1)!)
)

, and so

�	〈j〉��P (
exp(ω1(log�	�))

)
�P (

ω2(�	�)
)
. �

The reason that Theorem 2.10 is stated for non-standard �	� is that the set 	〈∞〉, needed for
constructing the model M(	,p), is not definable in LA. But the existence of the definable	〈j〉 for a
non-standard j can guarantee the existence of	〈∞〉 and thus of M(	,p). This non-standard j exists
for non-standard �	�. Finally, we formalize the notion of Herbrand consistency as follows.

Definition 2.11
A theory T is called Herbrand consistent if for any set of terms 	 (constructed from the Skolem
terms of T ) for which ω1(�	�) exists, there is a T−evaluation on 	.
This notion can be formalized in the language of arithmetic, denoted by HCon(T ). �
Remark 2.12
The above formalization of the notion of Herbrand consistency may seem unnatural, as one would like
to have a T−evaluation on any set of terms	. The requirement for the existence of ω1(�	�) is only
to assure the existence (availability) of all the evaluations on	. As it was noted before Theorem 2.10,
the size of an evaluation on a given set of terms 	 may be roughly bounded by ω1(�	�). �

3 Separating bounded arithmetical hierarchy

3.1 Separating by Herbrand consistency

Let us recall that the (usual) Hilbert Provability T �ϕ is, by definition, the existence of a sequence
of formulas whose last element is (the Gödel code of) ϕ and every other element is either a
logical axiom or an axiom of T , or has been resulted from two previous elements by means of
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modus ponens. Thus, Hilbert consistency means the non-existence of such a sequence whose last
element is a contradiction. Let us note that Herbrand consistency is, in a sense, a weaker notion
of consistency; some more explanation is in order. The super-exponentiation function is defined
by the equation sup−exp(x)=expx(x); let Sup−Exp be the sentence which expresses the totality
of this function (Sup−Exp=∀x∃y[y=sup−exp(x)]). By the techniques of cut elimination (see e.g.
[4]), the equivalence I�0 +Sup−Exp�Con(T )↔HCon(T ) can be shown for any theory T . Though
the theory I�0 +Exp it too weak to recognize this equivalence, since I�0 +Exp�HCon(Q) but
I�0 +Exp 
�Con(Q) ([4], Theorem 5.20 and Corollary 5.29). So, I�0 +Exp 
�HCon(T )→Con(T )
in general, though it can be shown that I�0 +Exp�Con(T )→HCon(T ) (see [4]). Thus, showing the
unprovability of Herbrand consistency of weak theories in themselves is an interesting generalization
of Gödel’s Second Incompleteness Theorem. We are interested here in the question as to whether the
notion of Herbrand consistency can �1−separate the hierarchy (2) above. We already know (only)
that I�0 +Exp is not�1−conservative over I�0 +∧

�j, but we do not yet know if these two theories
can be �1−separated by the Herbrand consistency of I�0 +Exp. In other words, we do not know
whether I�0 +Exp is able to derive the Herbrand consistency of the theory I�0 +∧

�j.

Conjecture 3.1
The notion of Herbrand consistency cannot �1−separate the (already �1−distinct) theories
I�0 +Exp and I�0 +∧

�j; that is I�0 +Exp 
�HCon(I�0 +∧
�j). �

Though, for any m�1, Herbrand consistency can�1−separate I�0 +Exp from the theory I�0 +�m,
and also from I�0. Since already I�0 +�m 
�HCon(I�0 +�m) for any m�1 (see [1, 10]) and also
the following theorem hold.

Theorem 3.2
For any m�1 we have I�0 +Exp�HCon(I�0 +�m).

Proof. Reason inside a model M |= I�0 +Exp. For any set of terms 	∈M, assume it has been
rearranged in a non-decreasing order	={t0,t1,t2,··· ,tj}. Then for some terms u1,u2,··· ,uj we have
t1�ωu1

m (t0),t2�ωu2
m (t1),··· ,tj�ωuj

m (tj−1). Let u=∑
i ui; then ti�ωu

m(t0) for each i�j. On the other
hand, ωu

m(t0)=expm([logm(t0)]exp(u))�expm+1(u ·t0); and since u�(�	�)2 and exp is available for
all elements, then every term in 	 has a realization inside M. Denote the realization of ti by tMi .
Then the evaluation p defined on 	 by

(1) p |= tk = tl if and only if tMk = tMl , and (2) p |= tk �tl if and only if tMk �tMl ,
is an (I�0 +�m)−evaluation on 	 (note also that M |= I�0 +�m). Now the desired conclusion
M |=HCon(I�0 +�m) follows from the classical fact that there exists a well-behaved truth definition
for bounded formulas which can be used in induction inside M. �
Remark 3.3
The above proof also shows that I�0 +Exp�HCon(I�0) and indeed it is shown in [11] that I�0
does not prove HCon(I�0). Thus, HCon(−) can �1−separate I�0 +Exp and I�0 as well. �
Remark 3.4
A reason that the proof of the above theorem cannot be applied for showing the presumably
false deduction I�0 +Exp�HCon(I�0 +∧

�j) in the conjecture, is that for the set of terms
�={v0,v1,··· ,vj} defined by v0=4 and vi+1=ωi+1(vi) for each i<j, we have vj =expj(4) (the
equality vi =expi(4) follows by induction on i). Thus a model of I�0 +Exp can contain a big j, and
the set � above, for which expj(4) does not exist. So, some terms of �may not have a realization in
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the model; and a suitable evaluation could not be defined in it. Note that expj(4) is a super-exponential
term and cannot be obtained by applying a finite number of the exponential function. �

3.2 Unprovability of Herbrand consistency of I�0 in I�0+∧
�j

Here, we show the unprovability of the Herbrand consistency of I�0 in I�0 +∧
�j. The proof is

by a technique of logarithmic shortening of bounded witnesses, introduced by Z. Adamowicz in [1],
and also employed in [5, 11]. The following is an outline of the proof. If I�0 +∧

�j �HCon(I�0),
then there is an m�2 such that

(3) I�0 +�m �HCon(I�0).

From now on fix this m.We first show that one cannot always logarithmically shorten the witness of
a bounded formula inside I�0 +�m. Or in other words, for any cut (i.e. a definable initial segment)
like I and its logarithm J ={logx|x∈I}, there exists a bounded formula η(x) such that the theory
(I�0 +�m)+∃x∈Iη(x) is consistent, but the theory (I�0 +�m)+∃x∈Jη(x) is not consistent; or in
other words we have I�0 +�m �∀x∈J¬η(x) and I�0 +�m 
�∀x∈I¬η(x). For a similar statement
on I�0 +�1 see Theorem 5.36 of [4]. Second we show that, under the assumption (3) above, for any
bounded θ (x), if the theory (I�0 +�m)+∃x∈Iθ (x) is consistent, then so is (I�0 +�m)+∃x∈Jθ (x).
This immediately contradicts (3). The first theorem is a classical result in the theory of bounded
arithmetic, which can be proved without using the assumption (3). The second theorem uses the
assumption (3) to be able to logarithmically shorten a witness α∈I ∧θ (α) for the formula x∈I ∧θ (x)
in a model M |= (I�0 +�m)+∃x∈Iθ (x) by constructing a model N |= (I�0 +�m)+∃x∈Jθ (x). And
for that we will use the assumption (3) to infer M |=HCon(I�0), which implies the existence of an
I�0−evaluation on any set of terms 	 for which ω1(�	�) exists. That evaluation on a suitable 	
will give us a model of I�0+∃x∈Jθ (x) (see Lemma 2.8). Then by a trick of [5] we will construct a
model for (I�0 +�m)+∃x∈Jθ (x). The suitable set of terms	 should contain a term for representing
α and all the polynomials (i.e. arithmetical terms) of α. Define the terms j’s by induction: 0=0, and
j+1=s(j). The term j represents the (standard or non-standard) number j. We require the inclusion

	⊇{j|j�ω1(α)}=�.The code of � is bounded above by����P
(∏j=ω1(α)

j=0 2j
)
�P (

exp(ω1(α)2)
)
.

And the value ω2(���) is bounded above by

ω2(���)�P
(
ω2(exp(ω1(α)2))

)
�P

(
exp(ω1(ω1(α)2))

)
�P

(
exp2

(
4(logα)4

))
.

Thus, by Theorem 2.10, for some non-standard j the (code of the) set 	=�〈j〉 exists, and the value
ω1(�	�)=ω1(��〈j〉�) is bounded above by

ω1
(
ω2(���)

)
�P

(
ω1(exp2

(
4(logα)4

)
)
)
�P

(
exp2

(
8(logα)4

))
.

Definition 3.5
Let the cut I be defined by I ={x |∃y[y=exp2(

8(logα)4)]} and let J be the logarithm of its elements:
J ={x |∃y[y=exp2(

8α4)]}. �
Note that ∀x[exp(x)∈I ⇐⇒ x∈J ]. The two mentioned theorems are the following.
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Theorem 3.6
There exists a bounded formula η(x) such that the theory (I�0 +�m)+∃x∈Iη(x) is consistent, but
the theory (I�0 +�m)+∃x∈J η(x) is not consistent.

Theorem 3.7
If I�0 +�m �HCon(I�0), then for any bounded formula θ (x), the consistency of the theory
(I�0 +�m)+∃x∈Iθ (x) implies the consistency of (I�0 +�m)+∃x∈J θ (x).

Having proved the theorems below, we conclude our main result.

Corollary 3.8
For any m∈N, I�0 +�m 
�HCon(I�0); thus I�0 +∧

�j 
�HCon(I�0).

We have already proved Theorem 3.6, which is an interesting theorem in its own right.

Proof (of Theorem 3.6.). The proof is rather long and we will sketch the main ideas, cf. the proof
of Theorem 5.36 in [4]. We will follow [1] here. If the theorem does not hold, then for any bounded
formula θ (x), the consistency of the theory (I�0 +�m)+∃x∈Iθ (x) will imply the consistency of
(I�0 +�m)+∃x∈J θ (x). Now let ψ(x) be a bounded formula such that (I�0 +�m)+∃x∈Iψ(x) is
consistent. Then (I�0 +�m)+∃x∈Jψ(x) is consistent also. The formula ∃x∈Jψ(x) is equivalent
to ∃y∈Iψ ′(y) where ψ ′(y)=∃x�y(y=exp(x)∧ψ(x)) is clearly a bounded formula. So, the theory
(I�0 +�m)+∃y∈Iψ ′(y) is consistent, and by the assumption, the theory (I�0 +�m)+∃y∈Jψ ′(y)
must be consistent too. Again ∃y∈Jψ ′(y) is equivalent to ∃z∈I∃x�z(z=exp2(x)∧ψ(x)). Continuing
this way, we infer that the theory (I�0 +�m)+∃u∈I∃x�u(u=expk(x)∧ψ(x)) is consistent for any
natural k∈N. Let b be a constant symbol. By the above argument, the theory

(I�0 +�m)+{∃z[z=expk(b)∧ψ(b)]|k∈N}

is finitely consistent, and whence it is consistent. Thus there exists a model K |= I�0 such that for
some element b∈K, K |=∃z[z=expk(b)∧ψ(b)] for any k∈N. The initial segment M of K determined
by {a∈K|∃k∈N :a�expk(b)}=expN(b) is a model of I�0 +Exp for which M |=ψ(b). Thus the
theory (I�0 +Exp)+∃xψ(x) is consistent. Hence, if the theorem is not true, then for any bounded
formula ψ(x), if the theory (I�0 +�m)+∃x∈Iθ (x) is consistent, then (I�0 +Exp)+∃xψ(x) is also
consistent. Contrapositing this statement, we get: if for a �1−formula ∀xθ (x) (with bounded θ ) we
have I�0 +Exp�∀xθ (x), then we must also have I�0 +�m �∀x∈Iθ (x). Since for any x∈I the value
exp3(x) exists, and all finite applications of ωm are dominated by one use of exp, then

I�0 +�m �∀x∈Iθ (x)

implies that
I�0 �∀x[∃y(y=exp4(x))→θ (x)].

All in all, from the falsity of the theorem we inferred that whenever

I�0 +Exp�∀xθ (x)

for a bonded θ (x), then
I�0 �∀x[∃y(y=exp4(x))→θ (x)].

Or in other words, four times application of Exp is enough to deduce all the �1−theorems of the
theory I�0 +Exp! And this contradicts Theorem 5.36 of [4]. �
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The rest of the article will be dedicated to proving Theorem 3.7.

Definition 3.9
The inverse of ωn, denoted by�n(x), is defined to be the smallest y such that the inequality ωn(y)�x
holds. The cut In is the set {x |∃y[y=exp2(�n−1(8x4))]}. �
Let us note that J ⊂In ⊂I holds for any n>1. Theorem 3.7 will be proved by the help of an
intermediate theorem.

Theorem 3.10
If I�0 +�m �HCon(I�0), then for any bounded formula θ (x), the consistency of the theory
(I�0 +�m)+∃x∈Iθ (x) implies the consistency of (I�0 +�m)+∃x∈Imθ (x).

Having proved this, Theorem 3.7 can be proved easily:

Proof (of Theorem 3.7 from Theorem 3.10.). Assume I�0 +�m �HCon(I�0). Let θ (x) be a
bounded formula such that (I�0 +�m)+∃x∈Iθ (x) is consistent. Then by Theorem 3.10, the theory
(I�0 +�m)+∃x∈Imθ (x) is consistent too. Let θ ′(y) be the bounded formula

θ ′(y)=∃x�y[8x4�ωm−1(8(logy)4)∧θ (x)];
then ∃x∈Imθ (x) is equivalent to ∃y∈Iθ ′(y). Now, since (I�0 +�m)+∃y∈Iθ ′(y) is consistent, again
by Theorem 3.10, the theory (I�0 +�m)+∃y∈Imθ

′(y) must be consistent. Now we note that

(y∈Im)∧[8x4�ωm−1(8(logy)4)]⇒ (x∈J )

holds for non-standard x and y, because ω2
m−1(8[logy]4)<8y4. So, (I�0 +�m)+∃x∈J θ (x) must be

consistent too. �
For proving Theorem 3.10, we assume that for the bounded formula θ (x) there exists a model M
such that

(4) M |= (I�0 +�m)+(α∈I∧θ (α))

holds for some non-standard α∈M. We will construct another model

N |= (I�0 +�m)+∃x∈Imθ (x).

Define the terms j’s by induction: 0=0, and j+1=s(j). The term j represents the (standard or non-

standard) number j. Let q be the Skolem function symbol for the formula ∃y(y�x2 ∧y=x2) and c

be the Skolem constant symbol for the sentence ∃x
(∃w(w�x2 ∧w=x2)∧∀v(v 
� (sx)2 ∧v 
= (sx)2)

)
,

and let ϒ={0,0+0,02,c,c2,c2 +0,sc,qc,(sc)2,(sc)2 +0} (see Example 2.4). Define the terms zi’s
inductively: z0 =2, and zj+1 =q(zj). Since we have q(x)=x2 in I�0−evaluations (by Example 2.4),
then zi will represent exp2(i) (by induction on i). Take 	=ϒ∪{j|j�ω1(α)}∪{zj |j�8α4}; then

ω2(�	�) is of order exp2(
4(logα)4) which exists by the assumption M |=α∈I (see (4) above).

Whence, for some non-standard j the set 	〈j〉 exists (in M), and moreover the value ω1(�	〈j〉�)
exists because by (the proof of) Theorem 2.10, ω1(�	〈j〉�)�ω1(exp2(

4(logα)4))�exp2(
8(logα)4),

and α∈I. Since by the assumptions (3) and (4) we have M |=HCon(I�0), then there must exist an
I�0−evaluation p∈M on this 	〈j〉. Now, we can build the model K :=M(	,p).

Lemma 3.11
With the above assumptions, K |=θ (α/p).
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After proving this lemma, we can finish the proof of Theorem 3.10.

Proof (of Theorem 3.10 from Lemma 3.11.). By Lemma 2.8 we already have K |= I�0, and by
Lemma 3.11, K |=θ (α/p). Also α/p∈J K by the existence of zi/p’s (K |=z8α4/p=exp2(8[α/p]4)).
Whence K |=α/p∈J ∧θ (α/p). By Lemma 2.6 there exists some (non-standard) element β∈K
such that the inequalities ωN

m(β)<z8α4/p�ωm+1(β) hold. Now, let N be the initial segment
of K determined by ωN

m(β), i.e. N ={x∈K|∃k∈N :x<ωk
m(β)}. Then, for this model N we have

that N |= (I�0 +�m)+θ (α/p), and all we have to show is that N |=α/p∈Im. First note that
β∈N , and second that exp2(8[α/p]4)�ωm+1(β) implies 8[α/p]4�ωm−1(2log2β), and so we have
�m−1(8[α/p]4)�2log2β. Thus exp2(�m−1(8[α/p]4)) exists (�ω1(β)), and so [α/p]∈Im holds.

�
Finally, it remains (only) to prove Lemma 3.11. This is exactly Corollary 35 of [11]; and the reader
is invited to consult it for more details. Here a sketch of the proof, for the sake of self-containedness,
is presented.

Proof ( of Lemma 3.11 – A Sketch.). Since θ (x)∈�0 and M |=θ (α), we note that the range of the
quantifiers of θ (α) is the set {x∈M |x�t(α) for some LA–term t}. This set is the initial segment of
M determined byαN; denote it by M′. We have M′ |=θ (α). For any j∈αN we have the corresponding
j∈	, and thus j/p∈K. So, this suggests a correspondence between αN and the initial segment of K
determined by (α/p)N which we denote it by K′. It suffices to show that this correspondence exists
and is an isomorphism between M′ and K′. Because, then we will have K′ |=θ (α/p) which will
immediately imply K |=θ (α/p); our desired conclusion.

We first note that M′ ={t(i1,...,in) | i1,...,in�α & t is an LA−term}. This follows from a more
general fact:

(5) If for some model A |= I�0 and x,a1,...,an∈A we have A |=x�t(a1,...,an) for an LA−term t,
then there are some b1,...,bm∈A and some LA−term s such that A |=x=s(b1,...,bm); moreover

maxbj�maxai.

This can be proved by induction on the complexity of t. For t = t1 +t2, distinguish two cases: (i) if
A |=x�t1(a), where a is a shorthand for (a1,...,an), then we are done by the induction hypothesis;
(ii) if A |= t1(a)�x then there exists some y∈A such that A |=[x= t1(a)+y]∧[y�t2(a)], and the
result follows from the induction hypothesis. For t = t1 ·t2, there are some q,r∈A for which we have
A |=[x= t1(a)·q+r]∧[r<t1(a)]∧[q�t2(a)]. Two uses of induction hypothesis (for the terms t1 and
t2) will finish the proof.

Second, we note that K |= I�0 by Lemma 2.8, and so K′ |= I�0, whence by (5) above we can
write K′ ={t(u1,...,un) |u1,...,un�α/p & t is an LA−term}. And it can be proved by induction on
j that if K′ |=u� j/p (or equivalently M |= ‘p |=u� j’) there there exists an l� j (in M) such that
K′ |=u= l/p (or equivalently M |= ‘p |=u= l’). Whence, we can present K′ as

K′ ={t(i1/p,...,in/p) | i1,...,in �α & t is an LA−term}.

Thus a correspondence by t(i1,...,in) �→ t(i1/p,...,in/p) exists between the two I�0− models M′
and K′. That this mapping preserves atomic formulas of the form u=v for terms u,v follows from
the axioms of Q (the inductive definitions of addition and multiplication). It also preserves atomic
formulas of the form u�v because we have in Q that u�v↔w+u=v for some w�v. The preservation
of negated atomic formulas follows from the I�0−derivable equivalences x 
=y↔sy�x∨sx�y, and
x 
�y↔sy�x. Thus the above mapping is an isomorphism. �
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4 Conclusions

We saw one example of the provability of Herbrand consistency of a theory S in a (super-)theory
(of it) T (Theorem 3.2 for S = I�0 +�m,T = I�0 +Exp) and one example of the unprovability of
Herbrand consistency of S in T (Corollary 3.8 for S = I�0,T = I�0 +∧

�j). The main point common
in both of the results was that, if every Skolem term of S has an evaluation in T , then T may prove
the Herbrand consistency of S; but if there are some Skolem terms of S which grow too fast for
T to catch them, then T could not be able to derive the Herbrand consistency of S. This is not a
general law, but a rule of thumb. Note that in our proof of Corollary 3.8, the terms zi had the code of
order exp(i) but the value of exp2(i). And the theory I�0 +∧

�j cannot catch the value of exp2(i) by
having the code exp(i); the gap is of exponential order. And in our proof of Theorem 3.2, the theory
I�0 +Exp could evaluate all the Skolem terms of I�0 +�m. A very similar argument can show that
I�0 +Sup−Exp�HCon(I�0 +Exp). An open question, asked by L. A. Kołodziejczyk, is whether
showing the unprovability of Herbrand consistency is possible without making use of fast-growing
terms. More explicitly, if bounded formulas are required to have only variables in their bounds, and
the re-axiomatization of I�0 by the induction scheme ∀y

(
θ (0)∧∀x<y[θ (x)→θ (sx)]→∀x�yθ (x)

)
is taken into account, then is it possible to show the unprovability of the Herbrand consistency of
(this axiomatization of) I�0 in itself? Note that here having terms like zi’s with double exponential
values could not be possible.

The proof of our main result (Corollary 3.8) is very similar to the proof of the main result of
[11]—the unprovability I�0 
�HCon(I�0). A major difference was the technique of Theorem 3.10
for constructing a model of I�0 +�m from a model of I�0, for which Lemma 2.6 was used. The
idea of this technique is taken from [5]; note that the proof of our Theorem 3.6 is different from the
proof of the corresponding theorem in [5], in that we had fixed one m and (instead) followed the
lines of the corresponding proof in [1]. That way we did not need to show the theorem for the theory
I�0 +∧

�j, and instead a simplified proof of the theorem for I�0 +�m in [1] would suffice for us.
Let us note that the corresponding theorem in [5] is somehow stronger: I�0 +∧

�j 
�HCon(S+�1)
has been shown for a finite fragment S⊆ I�0. The question of generalizing this result, as follows,
was asked by the referee.

Conjecture 4.1
There exists a finite fragment S⊆ I�0 such that I�0 +∧

�j 
�HCon(S). �
Let us finish the article by repeating the open question asked also in [11], which is whether Gödel’s
Second Incompleteness Theorem for the Herbrand consistency predicate has a uniform proof for
theories containing Robinson’s Arithmetic Q.

Question 4.2
Can a Book proof (in the words of Paul Erdös) of T 
�HCon(T ) be given uniformly for any theory
T ⊇Q and a canonical definition of Herbrand consistency HCon? �
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