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Abstract
We prove the equivalence of the semantic version of Tarski’s theorem on the undefinability of truth with the semantic version
of the diagonal lemma and also show the equivalence of a syntactic version of Tarski’s undefinability theorem with a weak
syntactic diagonal lemma. We outline two seemingly diagonal-free proofs for these theorems from the literature and show
that the syntactic version of Tarski’s theorem can deliver Gödel–Rosser’s incompleteness theorem.
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1 Introduction

One of the cornerstones of modern logic (and theory of incompleteness after Gödel) is the diagonal
lemma (aka self-reference or fixed-point lemma) due to Gödel and Carnap (see [14], and the
references therein). The lemma states that (when α �→ �α� is a suitable Gödel coding that assigns
the closed term �α� to a syntactic expression or object α) for a given formula Ψ (x) with the only
free variable x, there exists some sentence θ such that the equivalence Ψ (�θ�) ↔ θ holds; ‘holding’
could mean either being true in the standard model of natural numbers N or being provable in a
suitable theory T (which is usually taken to be a consistent extension of Robinson’s arithmetic).
When the equivalence Ψ (�θ�) ↔ θ holds in N we call it the semantic diagonal lemma (studied
in Section 2); when T proves the equivalence, we call it the syntactic diagonal lemma. A version
of the diagonal lemma, which is called the weak diagonal lemma here, states the consistency of the
sentence Ψ (�θ�) ↔ θ with T , for some sentence θ that depends on the given arbitrary formula Ψ (x)
and the theory T (studied in Section 3).

The diagonal lemma has been used in proving many fundamental theorems of mathematical logic,
such as Gödel’s first and (also) second incompleteness theorems, Rosser’s (strengthening of Gödel’s
incompleteness) theorem and Tarski’s theorem (on the undefinability of truth). One problem with
the diagonal lemma is its standard proof, which is a kind of magic (or ‘pulling a rabbit out of the
hat’; see, e.g. [20]); indeed it is not easy to remember its typical proof, even after several years of
teaching it. Here, we quote some texts on the proof of this lemma from the literature:

(1998) S. Buss writes in [1] that the proof of the diagonal lemma is ‘quite simple but rather tricky
and difficult to conceptualize.’

(2002) V. McGee states in [10] that by the diagonal (aka self-referential) lemma there exists a
sentence φ for a given formula Ψ (x) such that Ψ (�φ�) ↔ φ is provable in Robinson’s
arithmetic. ‘You would hope that such a deep theorem would have an insightful proof. No
such luck. I am going to write down a sentence φ and verify that it works. What I won’t
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do is give you a satisfactory explanation for why I write down the particular formula I
do. I write down the formula because Gödel wrote down the formula, and Gödel wrote
down the formula because, when he played the logic game he was able to see seven or
eight moves ahead, whereas you and I are only able to see one or two moves ahead. I don’t
know anyone who thinks he has a fully satisfying understanding of why the Self-referential
Lemma works. It has a rabbit-out-of-a-hat quality for everyone.’

(2004) H. Kotlarski [9] said that the diagonal lemma ‘being very intuitive in the natural language,
is highly unintuitive in formal theories like Peano arithmetic. In fact, the usual proof of
the diagonal lemma ... is short, but tricky and difficult to conceptualize. The problem was
to eliminate this lemma from proofs of Gödel’s result.’

(2006) G. Serény [16] attempts to make ‘the proof of the lemma completely transparent by
showing that it is simply a straightforward translation of the Grelling paradox into first-
order arithmetic.’

(2006) H. Gaifman mentions in [4] that the proof of the diagonal lemma is ‘extremely short’.
However, the ‘brevity of the proof does not make for transparency; it has the aura of a
magician’s trick.’

In this paper, we attempt at giving some explanations and motivations for this basic lemma, in a
way that we will have a satisfactory understanding for at least some weaker versions of it. For that
purpose, we will first see the equivalence of the semantic form of the diagonal lemma with Tarski’s
theorem on the undefinability of arithmetical truth (in Section 2). In other words, the diagonal lemma
holds in a model just in case the set of (the Gödel codes of) the true sentences of that model is not
definable in that model (see Theorem 2.5 below). As a matter of fact, different proofs for Tarski’s
undefinability theorem can lead to different proofs for the semantic version of this lemma. We
will review two such proofs (presented in [2, 7–9, 15]) that are supposedly diagonal-free. Having
different proofs will, hopefully, shed some new light on the nature of this lemma and will increase
our understanding about it. Then, secondly, we will see that a syntactic version of Tarski’s theorem
is equivalent to a weak (syntactic) version of the diagonal lemma (in Section 3). This weak form of
the diagonal lemma is still sufficiently strong to prove Gödel–Rosser’s incompleteness theorem. So,
different proofs of the syntactic version of Tarski’s theorem will provide some seemingly diagonal-
free proofs for Rosser’s theorem (cf. [19], in which Gödel’s second incompleteness theorem is
derived from Tarski’s undefinability theorem by some circular-free arguments).

2 The Diagonal Lemma, Semantically

Let us fix the language of arithmetic as Lar = {0, 1, +, ×} and let �·� be a fixed Gödel coding that
maps Lar-sentences to closed Lar-terms in a computable and injective way. Let #η denote the value
(the standard interpretation) of the closed term �η�.

DEFINITION 2.1 (Semantic Diagonal Lemma).
The following statement is called the semantic diagonal lemma:

For every Lar-formula Ψ (x) there exists an Lar-sentence θ such that N � Ψ (�θ�) ↔ θ .

This (weaker) form of the diagonal lemma serves to prove the semantic version of Gödel’s
incompleteness theorem (see [17, Theorem 6.3]):

THEOREM 2.2 (Gödel’s Incompleteness Theorem for Sound and Definable Theories).
For every definable and sound theory T in the language of Lar there exists a true Lar-sentence, which
is independent from T .
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PROOF. If T is definable then there exists an Lar-formula PrT (x) such that for every Lar-sentence
η we have T � η if and only if N � PrT (�η�). Now, by the semantic diagonal lemma (Definition
2.4) we have N � γ ↔ ¬PrT (�γ �) for some Lar-sentence γ . It can be seen that T � γ , since
T � γ implies on the one hand that N � PrT (�γ �) and on the other hand (by the soundness of T)
that N � γ and so N � ¬PrT (�γ �), a contradiction. So, T � γ , therefore N � ¬PrT (�γ �), hence
N � γ , which also implies (by the soundness of T) that T � ¬γ . �

Also, Tarski’s theorem on the undefinability of (arithmetical) truth follows from the semantic
diagonal lemma (see [6, Exercise 3.7] and cf. [6, Chapter 9]):

THEOREM 2.3 (Tarski’s Theorem on the Undefinability of Arithmetical Truth).
The Gödel codes of the set of true sentences, i.e. {#η∈N | N � η}, is not definable in N.

PROOF. If {#η | N � η} is definable by some Lar-formula Υ (x), then (i) N � Υ (�η�) ↔ η holds
for every Lar-sentence η. Now, by the semantic diagonal lemma we have (ii) N � ¬Υ (�λ�)↔λ for
some Lar-sentence λ. So, from (i) and (ii) we have N � λ↔¬λ, a contradiction. �

In fact, as we show below, the semantic diagonal lemma is equivalent to Tarski’s theorem on the
undefinability of truth and to the semantic incompleteness theorem of Gödel (cf. [13, Remark 2.6]).
To set the stage for a genuine equivalence we use the following definition.1

DEFINITION 2.4 (Gödel Coding and Definability).
For a first-order language L, a Gödel coding is a mapping �·� : SentL → ClTermsL from L-
sentences to closed L-terms, which is computable and injective (see [5, §2]). An L-theory T (i.e.
a deductively closed set of L-sentences) is definable in an L-structure M when for an L-formula
Φ(x) we have T = {η∈SentL | M�Φ(�η�)}.
THEOREM 2.5 (Semantic Diagonal Lemma ≡ Semantic Gödel’s Theorem ≡ Tarski’s Theorem).
For every first-order language L with a Gödel coding �·� and every L-structure M the following
are equivalent:

DM (Diagonal Lemma for M): For every L-formula Ψ (x) there exists an L-sentence θ such
that M � Ψ (�θ�)↔θ .

GM (Gödel’s Theorem for M): If an L-theory T ⊆ Th(M) is definable in M, then T is
incomplete.

TM (Tarski’s Theorem for M): The complete theory Th(M) of M is not definable in M.

PROOF. (DM ⇒ GM): This can be proved exactly in the same lines of the proof of Theorem 2.2
(and the implication DM ⇒ TM is essentially proved in Theorem 2.3).
(GM ⇒ TM): If Th(M) were definable in M, then by GM it should have been incomplete; a
contradiction.
(TM ⇒ DM): Suppose that (by TM) the set {�η� | η ∈ SentL, M � η} is not definable by any
L-formula. Then for a given L-formula Ψ (x), with x free, the L-formula ¬Ψ (x) cannot define this

1Let us compare this to another theorem of Tarski [18], which states that the proposition ∀infκ(κ2 = κ), saying that for
every infinite cardinal number κ we have κ · κ = κ , implies AC, the axiom of choice (the converse implication was known
before). As is reported in [12], ‘Tarski... tried to publish his theorem... but Fréchet and Lebesgue refused to present it. Fréchet
wrote that an implication between two well known propositions is not a new result. Lebesgue wrote that an implication
between two false propositions is of no interest.’ With the further development of Zermelo–Frankel set theory ZF and thanks
to the results of Gödel (1938) and Cohen (1963) we now know that the theories ZF + AC and ZF + ¬AC are both consistent,
and the result of Tarski (1924) makes much sense when formulated as ZF � AC↔∀infκ(κ2 =κ).
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set, and so we cannot have [[M � ¬Ψ (�η�) ⇐⇒ M � η, for all L-sentences η]]; hence there
should exist some L-sentence θ such that M � ¬Ψ (�θ�) ↔ θ . Now, by the classical propositional
tautology ¬(p ↔ q) ≡ (¬p ↔ q) we have M � Ψ (�θ�) ↔ θ . So, for every Ψ (x) there exists some
θ for which the equivalence Ψ (�θ�) ↔ θ holds in M. �

Let us note that the result of Theorem 2.5 is quite general, as the model M can even be finite, thus
it may verify that all the closed terms denote the same object; the definition of Gödel coding requires
only an injective mapping of sentences into the set of closed terms of the language. It is instructive to
have a look at the direct proof of (TM ⇒ GM): if GM does not hold, then there exists a complete
theory T ⊆ Th(M), which is definable in M. Since complete theories are maximally consistent,
then we should have T = Th(M), and so the full theory Th(M) of M is definable in M, and this
contradicts TM.

REMARK 2.6 (Making Sense of the Equivalences in Theorem 2.5).
For some 〈L, �·�,M〉’s all of the statements DM, GM, and TM hold: for e.g. Lar with a standard
Gödel coding �·� and M = 〈N; 0, 1, +, ×〉.

For other 〈L, �·�,M〉’s none of those three statements hold: let L+ = {1, +} and M = 〈N; 1, +〉,
and for a standard Gödel coding �·� let for every L+-sentence η,

�η� =
{

(#η)+(#η) if M � η,

1+[(#η)+(#η)] if M � η,

where (as we recall) #η is the value (natural number) of the closed term �η�, and m (for m ∈ N) is
the standard term representing m, i.e. 1+· · ·+1 where 1 appears for m times. Since M is a decidable
structure by Presburger’s theorem (see e.g. [3,Theorem 32E]), the mapping �·� (from L+-sentences
to closed L+-terms) is computable (and also injective, since �·� is so). Now, for Φ(x) = ∃y(x = y+y)
and Ψ (x) = ¬Φ(x) the proposition DM does not hold since for every L+-sentence η we have M � η

iff M � Φ(�η�), and so M � η ↔ Φ(�η�); thus, for no L+-sentence θ could M � Ψ (�θ�) ↔ θ

hold. Hence, neither GM nor TM holds, as the complete theory Th(M) is definable in M by the
L+-formula Φ(x).

So, after all, Tarski’s undefinability theorem (in its semantic form) is not very much different from
the diagonal lemma (in the semantic form). Therefore, it may seem at the first glance that the only
way to prove Tarski’s theorem is to use the diagonal lemma (as is done in almost all the textbooks).
But as a matter of fact, there are some, supposedly, diagonal-free proofs for Tarski’s theorem in the
literature (see, e.g. [7]) which by Theorem 2.5 can give us some diagonal-free proofs for the diagonal
lemma itself! We will outline two of them below.

Assume that the Lar-formulaΥ (x)defines truth in 〈N;Lar〉,

i.e. N � Υ (�ξ�) ↔ ξ for all Lar-formulas ξ . (T)

2.1 The first proof

Berry’s paradox is rephrased as ‘the least integer admitting no name involving less than two hundred
words in English’ by the late Kotlarski [9, §4]. The first proof uses the idea of this paradox, for which
we need to make a convention.
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CONVENTION 2.7
Let us make the convention that all the individual variables of our syntax are x, x′, x′′, x′′′, · · · whose
lengths are 1, 2, 3, 4, · · · , respectively. By this convention, there will be at most finitely many Lar-
formulas with length n for a given natural number n ∈N (otherwise the formulas x = x, y = y, z =
z, · · · all would have length three).

DEFINITION 2.8 (len(x), n, definability, D(x),Def<z
Υ (y),Berry<v

Υ (u), 
Υ ,BΥ (x)).

• Let len(x) denote the length of the Lar-formula with Gödel code x; let us note that len is
an Lar-definable function.

• For n ∈N, let n be the standard Lar-term that represents the number n, i.e. 0 = 0, 1 = 1 and
for every m�1 we have m + 1 = 1 + (m).

• We say that a number n ∈N is definable by the Lar-formula ϕ(x), in which x is the only free
variable, when ∀x[ϕ(x) ↔ x=n] is true (in N).

• Let D(x, x′) be the Gödel code of the Lar-formula, which states that the formula with Gödel
code x defines the number x′; let us note that D is an Lar-definable function and for every
Lar-formula ϕ(x) and every m ∈ N we have D(�ϕ�, m) = �∀x[ϕ(x) ↔ x=m]�.

• Let Def<x′
Υ (x) be the Lar-formula ∃x′′ (

Formula(x′′) ∧ len(x′′) < x′ ∧ Υ [D(x′′, x)]
)

which states that the number x is definable by a formula with length less than x′, if Υ

is a truth predicate; needless to say, Formula(x′′) states that x′′ is the Gödel code of a
formula.

• Let Berry<x′
Υ (x) be the Lar-formula ¬Def<x′

Υ (x) ∧ ∀x′′ <xDef<x′
Υ (x′′), which states that x

is the least number not defined by a formula with length less than x′.
• Let 
Υ be the length of the Lar-formula Berry<x′

Υ (x). Let qΥ be the Lar-term (6)×(
Υ ); note
that the value of qΥ is the number 6
Υ .

• Let BΥ (x) be the Lar-formula ∃x′[x′ =qΥ ∧ Berry <x′
Υ (x)

]
.

Here is an alternative proof (from [2, 9, 15]) for contradicting (T):

PROOF. The length of BΥ (x) is less than 6
Υ ; since it is 14+len(6)+len(
Υ )+
Υ = 32+5
Υ ,
as we have len(m)= 4m−3 for every m � 1. So, the Lar-formula BΥ (x) with length less than 6
Υ

states that x is the least number that is not definable by any Lar-formula with length less than 6
Υ .
Hence, if BΥ (α) holds, then α should not be definable by BΥ (x) itself. But this is a contradiction,
since if BΥ (α) holds, then α is definable by BΥ (x). That is because BΥ (α) implies ∀x[BΥ (x) ↔
x = α] by the sentence ∀x, x′[BΥ (x) ∧ BΥ (x′) → x = x′], which follows in turn from the sentence
∀x, x′, x′′[Berry<x′′

Υ (x) ∧ Berry<x′′
Υ (x′) → x = x′] that can be proved from the basic laws of the

order relation. So, for no α can BΥ (α) hold. Now, in reality, there exists a least number b ∈N that
is not definable by any Lar-formula of length less than 6
Υ (since by our convention there are only
finitely many Lar-formulas with length less than 6
Υ ). So, ¬Def<qΥ

Υ (b) is true, and since it is the
least such number then ∀x′′ <bDef<qΥ

Υ (x′′) is true too. Thus, Berry<qΥ

Υ (b) is true and so is BΥ (b),
which is a contradiction. �

This proof of Tarski’s theorem (2.3) does not use the diagonal lemma (and so it can be called
diagonal-free in a way), though it can be debated whether the proof is genuinely circular-free or
not. By incorporating the proof of Theorem 2.5 into this proof (e.g. by taking Υ ≡ ¬Ψ ), one can
get a proof for the semantic diagonal lemma, which is different from the standard (textbook) proofs
(see [14]).



494 Tarski’s Undefinability Theorem and the Diagonal Lemma

2.2 The second proof

DEFINITION 2.9 (Definable and Dominating Functions).
A function f : N → N is called definable whenever there exists an Lar-formula ϕ(x, x′) such that for
every m, n∈N we have f (m)=n ⇐⇒ N � ϕ(m, n).
A function F: N → N is said to dominate a function f : N → N, whenever there exists some n ∈N
such that F(x)> f (x) holds for all x�n.

Indeed, for a given countably indexed family of functions {fi: N → N}i∈N one can find a function
that dominates all the functions of this family: put F(x)=1+maxi�x fi(x); then for every k ∈N and
every x�k we have fk(x)	maxi�x fi(x)< [1+maxi�x fi(x)]=F(x). This idea is used in the following
proof of Tarski’s theorem (2.3); cf. [8, 9]:

PROOF. Define the function F: N → N as

F(x) = min{x′ | ∀ξ 	x[∃x′′ξ(x, x′′)→∃x′′ <x′ξ(x, x′′)]},

where ξ ranges over (the codes of) Lar-formulas with two free variables (whose codes are non-
greater than x). We show that the function F dominates every Lar-definable function, but is itself
Lar-definable if (T) holds; and this is a contradiction (since no function can dominate itself). To
see that F dominates the family of all Lar-definable functions, assume that a function f : N → N
is definable by an Lar-formula ϕ(x, x′). Now, for every m � #ϕ we show that F(m) > f (m) holds:
if F(m) 	 f (m), then from ϕ(m, f (m)) we have ∃x′′ϕ(m, x′′) and so ∃x′′ < F(m) : ϕ(m, x′′) by the
definition of F, which implies ∃x′′ < f (m): ϕ(m, x′′) by the assumption F(m) 	 f (m); but for every
k �= f (m) we have ¬ϕ(m, k), and so ∀x′′ < f (m) : ¬ϕ(m, x′′), a contradiction. Now, if (T) holds
for Υ , then F is definable by the Lar-formula ψ(x, x′)∧∀x′′ < x′¬ψ(x, x′′) where ψ is the formula
∀ξ 	x[∃x′′Υ (�ξ(x, x′′)�)→∃x′′ <x′Υ (�ξ(x, x′′)�)]. �

As a matter of fact, the function F used by Kotlarski [8, 9] is defined as

F(x) = min{x′ | ∀ξ , α	x[∃x′′ ξ(α, x′′)→∃x′′ <x′ ξ(α, x′′)]},

which corresponds to F(x)=1+maxi,j�x fi(j) that dominates {fi: N→N}i∈N.

3 The Diagonal Lemma, Syntactically

The diagonal lemma is usually stated as the provability of Ψ (�θ�) ↔ θ in a theory like Robinson’s
arithmetic, for some sentence θ which depends on the given formula Ψ (x). Let us call this the
syntactic diagonal lemma. A syntactic version of Tarski’s theorem on the undefinability of truth
is as follows (where L is a first-order language with a computable injective Gödel coding �·� :
SentL → ClTermsL).

DEFINITION 3.1 (Syntactic Version of Tarski’s Theorem).
For an L-formula Φ(x), let TBΦ be the set of all truth biconditionals Φ(�η�) ↔ η, where η ranges
over all the L-sentences. That is TBΦ = {Φ(�η�)↔η | η∈SentL}.
The following statement is called the syntactic version of Tarski’s theorem on a consistent theory T
in the language of L:

For every L-formula Φ(x) we have T � TBΦ .
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DEFINITION 3.2 (Weak Diagonal Lemma).
The following statement is called the weak diagonal lemma for a consistent L-theory T :

For every L-formula Ψ (x) there exists an L-sentence θ such that T is consistent with the sentence
[Ψ (�θ�)↔θ ].

We show that the syntactic version of Tarski’s theorem is equivalent to the weak (syntactic)
diagonal lemma.

THEOREM 3.3 (Weak Diagonal Lemma ≡ Syntactic Version of Tarski’s Theorem).
The weak diagonal lemma is equivalent to the syntactic version of Tarski’s theorem.

PROOF. First, suppose that the weak diagonal lemma holds for a consistent theory T . Take any
formula Φ(x); we show that T � TBΦ . By the assumption, there exists a sentence θ such that the
theory T is consistent with [¬Φ(�θ�) ↔ θ ]. Thus, T � Φ(�θ�) ↔ θ (since [¬Φ(�θ�) ↔ θ ] ≡
¬[Φ(�θ�) ↔ θ ]) and so T � TBΦ . Second, suppose that T � TBΦ for all formulas Φ(x). Take
any formula Ψ (x); we show the existence of some θ such that T is consistent with Ψ (�θ�) ↔ θ .
Since T � TB¬Ψ , there should exist some sentence θ such that T � ¬Ψ (�θ�) ↔ θ . Therefore, T is
consistent with the sentence Ψ (�θ�)↔θ (which is equivalent to ¬[¬Ψ (�θ�)↔θ ]). �

REMARK 3.4 (Making Sense of the Equivalences in Theorem 3.3).
For some 〈L, �·�, T〉s both the weak diagonal lemma and the syntactic version of Tarski’s theorem
hold: when, e.g. our language is Lar and �·� is a classic Gödel coding and T is Robinson’s arithmetic.
For some 〈L, �·�, T〉s neither of them holds: let L+ = {1, +} and T = Th(M), where M and �·�
are as defined in Remark 2.6. For the L+-formulas Φ(x) and Ψ (x) defined in Remark 2.6, we
have T ⊇ TBΦ , and for no L+-sentence θ can the sentence [Ψ (�θ�) ↔ θ ] be consistent with the
theory T .

As a matter of fact, the weak diagonal lemma cannot show the independence of Gödelian
sentences (even when the theory is sound):

REMARK 3.5 (Weak Diagonal Lemma vs. Gödel’s Proof).
For a consistent and recursively enumerable theory T extending Robinson’s arithmetic, the consis-
tency of ¬PrT (�θ�) ↔ θ with T implies that θ is unprovable in T , but does not imply that θ is
independent from T (even if T is ω-consistent):

(1) If T � θ , then T � PrT (�θ�) and so T + [¬PrT (�θ�) ↔ θ ] � ¬θ ; therefore the theory
T + [¬PrT (�θ�) ↔ θ ] cannot be consistent.

(2) For a contradictory sentence like δ = (0 �= 0), the sentence ¬PrT (�δ�) ↔ δ is consistent
with T (by Gödel’s Second Incompleteness Theorem), but δ is not independent from T (as T
proves its negation).

It is stated in [11, p. 202] that ‘if T is also sound, then T � ¬σ ’ where σ is a sentence with the
property T � σ ⇐⇒ T � ¬PrT (�σ�). Unfortunately, this is not true since e.g. for σ = (0 �= 0)

we have T � σ ⇐⇒ T � ¬PrT (�σ�) by Gödel’s second incompleteness theorem, but trivially
T � ¬σ . If we replace PrT (x) with Rosser’s provability predicate RPrT (x), then it is true that for
every � that satisfies T � � ⇐⇒ T � ¬RPrT (���) we have T � �, ¬� if T is (only) consistent;
see the next theorem.

Indeed, the weak diagonal lemma is sufficiently strong to prove Rosser’s theorem:
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THEOREM 3.6 (Weak Diagonal Lemma �⇒ Rosser’s Theorem).
If the weak diagonal lemma holds for a consistent and recursively enumerable theory that extends
Robinson’s arithmetic, then there exists a sentences, which is independent from that theory.

PROOF. For such a theory T , suppose that prfT (x, y) is its proof predicate (stating that x is the Gödel
code of a proof of the sentence with Gödel code y in T). By the weak diagonal lemma there exists a
sentence ρ such that the following theory is consistent:

U = T +
(
∀x

[
prfT (x, �ρ�) → ∃y<xprfT (y, �¬ρ�)

] ←→ ρ
)

.

The standard proof of Rosser’s theorem can show that ρ is independent from T :

• If T � ρ, then T � prfT (k, �ρ�) for some k ∈N and so U � ∃y < k prfT (y, �¬ρ�), by the
definition of U , which contradicts

∧∧
m∈N U � ¬prfT (m, �¬ρ�) (that holds by T � ¬ρ).

• If T � ¬ρ, then T � prfT (k, �¬ρ�) for some k ∈N. Reason inside U :
for some x we have prfT (x, �ρ�) ∧ ∀y < x ¬prfT (y, �¬ρ�); now k < x is impossible,
and so x	k, hence

∨∨
i�k (x = i), therefore

∨∨
i�k prfT (i, �ρ�).

Hence, U � ∨∨
i�k prfT (i, �ρ�), but this contradicts

∧∧
m∈N U � ¬prfT (m, �ρ�) (that

holds by T � ρ).

Therefore, T � ρ, ¬ρ. �
So, the weak diagonal lemma is worthy of studying further. Unfortunately, the second proof

(Subsection 2.2) for Tarski’s theorem cannot be carried over to the syntactic version of Tarski’s
theorem (cf. [19]). However, the first proof (Section 2.1) can be adapted for it:

THEOREM 3.7 (Syntactic Tarski’s Theorem).
If T is a consistent extension of Robinson’s arithmetic, then for no formula Ψ (x) can we have
T ⊇ TBΨ .

PROOF. Assume that the consistent theory T contains Robinson’s arithmetic, and it also contains
the set TBΥ for a formula Υ (x). We work with the Convention 2.7 (and also Definition 2.8). Fix a
number n∈N; and reason inside the theory T :

Assume BΥ (n); so, Berry<qΥ

Υ (n) thus (1) ¬Def<qΥ

Υ (n) and (2) ∀x′′ < nDef<qΥ

Υ (x′′) hold.
Fix x; if BΥ (x) holds, then (i) ¬Def<qΥ

Υ (x) and (ii) ∀x′′ <xDef<qΥ

Υ (x′′). We also have either
x < n or x = n or x > n (which holds in Robinson’s arithmetic). Now, x < n contradicts (i)
and (2), and x > n contradicts (1) and (ii). Hence, x = n; which shows that ∀x[BΥ (x) ↔ x =
n] holds. Thus, Υ (D(�BΥ �, n)) holds by TBΥ , and since we have len(BΥ (x)) < qΥ , then
Def<qΥ

Υ (n); which contradicts (1). Therefore, the assumption BΥ (n) leads to a contradiction.
Hence, ¬BΥ (n) holds, so ¬Berry<qΥ

Υ (n) holds too, thus we have (∗)
∧∧

i<n Def
<qΥ

Υ (i) →
Def<qΥ

Υ (n).

Therefore, T � Def<qΥ

Υ (n) can be shown by induction on n ∈ N from (∗). Let m ∈ N be greater
than all the Gödel codes of formulas with length less than 6
Υ . Therefore, for all n ∈ N we have
T � ∃ξ <mΥ (�D(ξ , n)�). So, inside T for any n∈N there exists some formula ξn(x) that defines n,
i.e. ∀x (ξn(x)↔x=n) holds by TBΥ , and the Gödel codes of all ξn’s are less than m. This contradicts
the Pigeonhole’s Principle a version of which is provable in Robinson’s arithmetic: since both of the
sentences ∀x(x ≮ 0) and ∀x(x < k+1 → x 	 k) are provable in this arithmetic, then for every
{ξk <m}k�m there should exist some i< j	m such that ξi =ξj. Reason inside T again:
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There are some i < j 	 m and some formula ϕ(x) for which we have Υ (�D(�ϕ�, i)�) and
Υ (�D(�ϕ�, j)�). So, by TBΥ , both ∀x (ϕ(x) ↔ x= i) and ∀x (ϕ(x) ↔ x= j) hold, combining
which implies that i= i → ϕ(i) → i= j, a contradiction.

So, T is inconsistent, which contradicts the assumption. �

4 Conclusion

The semantic form of Tarski’s undefinability theorem, that the set {#η | N � η} is not definable
in arithmetic, is equivalent to the semantic form of the diagonal lemma, that for a given Ψ (x)
there exists a sentence θ such that N � Ψ (#θ) ↔ θ . We outlined two seemingly diagonal-free
proofs for these equivalent theorems. The syntactic version of Tarski’s theorem, that no consistent
extension of Robinson’s arithmetic contains the set of truth biconditionals TBΦ = {Φ(�η�) ↔ η |
η is a sentence} for any formula Φ(x), is equivalent to the weak (syntactic) diagonal lemma, that for
every Ψ (x) there exists a sentence θ such that Ψ (�θ�) ↔ θ is consistent with such a theory. Even
though Gödel’s proof does not work with the weak diagonal lemma, the weak lemma is sufficiently
strong to prove Rosser’s theorem. So, the syntactic version of Tarski’s theorem can derive Gödel and
Rosser’s incompleteness theorem.
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