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GODEL’S SECOND INCOMPLETENESS THEOREM:
HOW IT IS DERIVED AND WHAT IT DELIVERS

SAEED SALEHI

Abstract. The proofs of Godel (1931), Rosser (1936). Kleene (first 1936 and second 1950).
Chaitin (1970), and Boolos (1989) for the first incompleteness theorem are compared with
each other, especially from the viewpoint of the second incompleteness theorem. It is shown
that Godel’s (first incompleteness theorem) and Kleene’s first theorems are equivalent with the
second incompleteness theorem, Rosser’s and Kleene’s second theorems do deliver the second
incompleteness theorem, and Boolos’ theorem is derived from the second incompleteness
theorem in the standard way. It is also shown that none of Rosser’s, Kleene’s second, or Boolos’
theorems is equivalent with the second incompleteness theorem, and Chaitin’s incompleteness
theorem neither delivers nor is derived from the second incompleteness theorem. We compare
(the strength of) these six proofs with one another.

§1. Introduction and preliminaries. The first incompleteness theorem
states the existence of a Ilj-sentence w for a given sufficiently strong
and recursively enumerable (RE) arithmetical theory 7 such that
if T is consistent, then N F w and T ¥ w. If T is, moreover, X;-sound
(i.e., every T-provable Xi-sentence is true in the standard model of natural
numbers N), then we also have T ¥ —y (since if we had T F -y, then
we would have N ¥ w by the X;-soundness of 7 and the fact that -y
is a X -sentence). The IT;-sentence y depends on the theory 7T, or more
precisely, on how T is presented. An RE theory T may be presented (given)
by, for example, an input-free Turing machine (or a program) that outputs
a set of axioms for the theory 7 (after running). It is known that a theory
T is RE if and only if it can be defined by a X;-formula; that is, for some
Y -formula &(x), the set {6 | Nk &("07)} axiomatizes T, where 6 ranges
over the sentences and "07 denotes the Godel code of 0 (see, e.g.. [13,
Theorem 3.3]). By Craig’s trick [8]. every such theory can be axiomatized
by a A¢-definable set of axioms (see, e.g., [24. Lemma 2.4] or [29, Section
4.3.4]): if &(x) = Iy (y.x) for some Ag-formula ¢, then the Aj-formula
t(x) = Ju.v <x[x = (uA[0=10]) A{(v.u)] defines another axiomatization
for the theory T.
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Any given Ag-formula 7(x), with the only one free variable x, defines the
theory Th, = {0 | NE 7("07)}, where 6 ranges over sentences. By some
fixed Godel coding, one can construct a Ap-formula prf,(y,x), called the
proof predicate of T, in the language of arithmetic which states that “y is
(the Godel code of) a proof in T#. of the sentence (with the Godel code)
x” (see [1., p. 215] or [3. p. 204]). Then the provability predicate of a system
7 is the X;-formula Pr,(x) =3y prf,(y,x), and Con, = —~Pr,(T0£0") is the
consistency statement of 7. Let us note that a theory may have different
axiomatizations, and even one single axiomatization of it may have different
defining formulas, and so different proof (and provability) predicates, and
different consistency statements.

Let us fix a Base Theory B, which is an RE theory such that:

o The theory B is a sound extension of Robinson’s arithmetic (therefore,
the theory B is £;-complete, i.e., can prove all the true X;-sentences,
and can strongly represent all the recursive functions; see [28]).

o The theory B can prove the Derivability (or Provability) Conditions of
Godel, Hilbert, Bernays, and Lob (see p. 3 below, and cf. [6. 27]).

Of course, Peano’s Arithmetic could be taken for 9B, though it is too
strong for that. However, Robinson’s arithmetic (Q or R) seems too weak
to be such a base theory (though, we have no concrete proof for, e.g., Q’s
weakness at hand). By [1, Proposition 16] the Elementary Arithmetic EA
may suffice for us (cf. [29. Remark 6.7] where it is argued that one needs
EA + BX,, or equivalently IA; by [26]. for handling the X;-formulas Pr,).
To stay on the safe side one can take for ®B the finitely axiomatizable theory
I, (the fragment of Peano’s arithmetic where the induction axiom scheme
is restricted to X;-formulas). One good reason (other than the ability of I,
to arithmetize the syntax and prove the basic propositions of it, see [11])
is that we will need a variant of the proof predicate, denoted prf,(y.x).
whose all Rosserian sentences are equivalent with each other (in the base
theory); and for that Primitive Recursive Arithmetic PRA suffices (see [27,
Chapter 6, Theorem 3.6]).

By a system, we mean a Ag-formula 7(x), with the only one free variable
x, such that T, F B. A system is consistent (or X;-sound) when J#, is a
consistent (or ;-sound) theory.

A mapping F: t — F, which assigns a II;-sentence F, to any given
system 7 is called a Ilj-incompleteness witness when for every consistent
system t we have N E F, and %, ¥ F;. In this paper, we investigate the
IT;-incompleteness witnesses of Godel [9]. Rosser [22], Kleene (first [15]
and second [16]), Chaitin [7] and Boolos [5]. Our purpose is comparing
those IT;-incompleteness witnesses with each other, and with Gddel’s second
incompleteness theorem, which is the following statement:

If 7 is a consistent system, then J#., ¥ Con,. (G2)

Let F and H be two IT;-incompleteness witnesses. We say that F is derived
from H, or H delivers F (in the standard way) denoted F < ‘H when for
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every system t we have %, - F; — H.. We note that then the unprovability
of F, (in T#.) follows from the unprovability of #,.
Some results of this paper are summarized in the following table:

IT; -incompleteness Does deliver G Is derived from Go
Godel; (1931) [9] v v
Kleene; (1936) [15]
Rosser (1936) [22]
Kleene, (1950) [16]
Chaitin (1970) [7]
Boolos (1989) [5]

I JENENEN
X X X

Let us denote Godel’s (respectively, Kleene’s) first IT;-incompleteness
witness by G (respectively, IK): let R (respectively, IK’) denote an alternative
version of Rosser’s (respectively, Keelen’s second) IT;-incompleteness wit-
ness (which will be rigorously determined later). Let € denote (one of the
infinitely many IT;-sentences that) Chaitin’s incompleteness witness (proves
to be true and unprovable in consistent systems). Finally, we denote by
IB a IT;-incompleteness witness that is very similar to that of Boolos, but
substantially different from his original formulation. Some results of our
comparison are depicted in the following diagram (where F = H abbreviates
F<H=<F and F 3 H abbreviates F S H £ F):

CEBZG2Kx=GZ3RxK.

§2. Proofs of Godel, Rosser, and Kleene. ForneN, let# denote its numeral
(the term representing n in the language of arithmetic). A function /' : N — N
is said to be strongly representable in B when for a formula ((f (x)=y)) in
its language, with the only free variables x and y, we have

for all m,n €N, if f(m)=n, then B - Vy [((f (m)=y)) < y=n].
The derivability conditions are the following (for a system 7):

(C1) B FPr.("07) if and only if Th, - 0, for all sentences 0.

(Ca) BFPr ("0 —n") = [Pr,("07) — Pr,("n")]. for all sentences 0
and 7.

(C3) BF o — Pr.("¢"), for all X;-formulas o.

Let us start with a straightforward observation about the consistency
statements:

LemMA 2.1. For a system t and a sentence 8, we have

(1) B F —=Con; — Pr.("07) and
(2) BFPr,(™=07) APr;("07) — =Con,.

Proor. Both parts of the lemma follow from the derivability conditions
by using the tautologies 0#£0— 6 for (1), and =0 — (0 —0+£0) for (2).
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In the following proposition, we show some necessary and sufficient
conditions for delivering G2, and being derivable from G-, in the standard
way (cf. [19]):

PROPOSITION 2.2. For every system t and every I1-sentence w, we have

(1) k. F Con, — y if and only if Th, - —Pr. (Ty") = w:
(2) The b w—Con, if and only if Th, - w — —Pr (Ty7).

PrOOF. (1~ ): Suppose that T#, - Con, — y holds. By Lemma 2.1(1) we
have %, - =Pr,("y ") — Con,; s0 Th, - =Pr.(Ty ) — w follows.

(1=): Now, suppose Th, - —Pr,.(Ty") — y: so, Th, - =y — Pr, (Ty")
holds. Also, since -y is X1, by (C3). we have Th, - -y —Pr,("—y7). Thus,
by Lemma 2.1(2) we get Th, - -y — —Con,, and so T#, - Con, — .

(2-): Suppose that we have T, - v — Con,: then by (C) and (C5). it
follows that 5%, - =Pr,("Con, ') ——=Pr,("w 7). Now. by Lob’s theorem (or.
formalized Gs. see [6]) we have T#, I Con, — —Pr,("Con, ). Therefore, we
have the desired conclusion T#, -y — —Pr, (Ty 7).

(2<): Now, suppose that T, - w — =Pr,("w") holds. Then by Lemma
2.1(1), that Th, - —Pr.("w ") — Con,, we get Th, I v — Con,. 4

Let us note that the assumption “i is a I;-sentence” is used only in the
proofof (1.):if T#, - —Pr,("y")— v, then Th, - Con, — y. The rest of the
implications in Proposition 2.2 hold for arbitrary . That v should be IT; in
(1) can be seen by the following example: Let 7 be a system such that T#., -
Pr,(—Con,) and I#, ¥ —Con,; one can take 7 (x) to be the system ¢ (x)V[x=
Pr.(—Con.)] for a system ¢ with T# . ¥ —Con,, see [6] or [12, Theorem 36].
Then, for the ;-sentence y = —~Con, we have Th, - —Pr,("y") — v, but
Th, ¥ Con, — .

2.1. Godel’s proof. The proof of Gddel constructs a IT;-sentence y, for a
given system 7, such that (x) B F y <+ =Pr,("y") holds. If T#, is consistent,
then the unprovability of y from J#, follows from the derivability conditions
(if Th, Fy. then Th, - Pr,(Ty7) by (C}). and also Th, - —Pr.("y") by (*).
contradicting the consistency of 7. ), and the truth of y follows from the
soundness of B (since we have N y <+ —Pr.(7y") by (*). and NF —Pr,(7y")
by T#. ¥ y. then we have Nk y). Proposition 2.2 immediately implies that
T, - Con, ++y holds for every IT;-sentence y that satisfies (x). Essentially,
the same proof can show that () B I~ Con, <+ y holds for all such sentences.
and conversely, that if (1) holds. then (*) holds too.

THEOREM 2.3. For every system t and I1-sentence y we have
B y<r—Pr, (") ifandonlyif B Con,<s7. =

This theorem is a special case of the theorem(s) of D. de Jongh, G. Sambin,
and C. Bernardi (see [6, Chapter 8]).

So, we can define the Godel sentence G, of a system 7 to be any of the
I1;-sentences p that satisfy B F y <+ —Pr.(7y"): noting that G, is unique up
to equivalence, even provably so in B.
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2.2. Rosser’s proof. The proof of Rosser constructs, by using the diagonal
lemma, a IT;-sentence p, for a given system z, such that

B+ p < Vx[pre, (x."p") =3y <xprf, (y."—p")]

holds. Let us call any such IT;-sentence p, a Rosserian sentence of the
system t.

The classical proof of Rosser shows the independence of p from J#%.,
if J#, is (only) consistent (and not necessarily Xj-sound): if T, - p,
then Jh, - Vx[prf, (x."p") — Iy < xprf, (»."—p")], and also, by (Cy).
Th, - prf, (n.,7p7) for some n € N; whence, Th, - Iy <mprf (y."—p").
but the Ag-sentence 3y <7nprf,(y.”—p") would be false by the consistency
of T#,, and so would be refutable in B, contradiction. Also, the assumption
Th. + =p, would imply Th, - Ix[prt, (x,"p7) AVy <x—prf, (p.7—p")] on
the one hand, and B I prf (m,"—p") for some m €N, by (C;), on the
other hand; thus, I, - 3x <mprf, (x,"p"), but by the consistency of T#.,
the Ap-sentence Ix <mprf,(x. p") would be false, and so refutable in B,
contradiction.

Rosser’s theorem is not derivable from G2 in the standard way (though,
it does deliver Gz): For a consistent system 7. let o(x)=1(x)V[x =—Con,];
then 97, is consistent by Gg. and %, - —Con,. So, for every Rosserian
sentence p of g, we have T, ¥ p— Con,. since otherwise T, - —p would
hold, contradicting Rosser’s theorem. Below we show a stronger result. !

THEOREM 2.4. Let Tt be a system, and p be a Rosserian sentence of t. Then
B + Con, — p holds; and if Th., is consistent, then T, ¥ p— Con,.

PROOF. By B + —p > Ix[prf, (x,"p") AVy < x —prf (y.7—p")], we have
that B - —p —Pr,("p7). Thus, Proposition 2.2(1) implies B + Con, — p.

For showing the second part, we first show a formalized version of Rosser’s
theorem, B I Con, — —Pr.("—p ™). Reason inside B+Con, +Pr,("—p7):

We have —p <> Ix[prf, (x,"p") AVy < x—prf,(y,7=p")], and so
Pr.("—p7) implies (%) Pry ("3b[prt, (b."p7) AVy <b-prf (y."—p™)]")
by (C1.C). Also, Pr;("—p™") implies the existence of some a such
that (f) prf,(a."—p") holds. Now, by (f), (i), and Con, we
have (%) Pry("3b < aprf,(b."p")7). On the other hand. by the
assumption Con; + Pr.("—p7). we have —Pr,("p7), and so the Ag-
formula Vx < a—prf (x,"p7) is true; whence, by (C3), we have
(%) Pre ("Vx <a—prf,(x.”p")7). Now, (x) and (+«) contradict Con.

Assume now that J#%, is consistent; and assume (for the sake of
a contradiction) that 9%, - p — Con, holds. Then by J#%, - Con, —
—Pr.("—p7). proved above, we have Th . +p - —Pr,("—p™). This contradicts

'Theorem 2.4 was first proved in [18, p. 16] where it is stated that this result was “implicit
in the papers of Godel [9] and Rosser [22]” (see also the end of [17]). It is also proved in [2]
(see the Lemma on page 405) in which it is stated that although this result “was certainly
known before.” the author “was unable to find a proof of it in the literature.”
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G2, unless T#.,+p is inconsistent, or %, - —p; and this contradicts Rosser’s
theorem, unless 9%, is inconsistent. So, we showed that if I# . is consistent,
then %, ¥ p— Con,. =

It follows from Theorem 2.3 that all the IT;-sentences y for which we have
that B F y <> —Pr,("y7) are B-provably equivalent with (each other and
with) Con,. That all the Rosserian sentences of 7, that is, all the IT;-sentences
p for which we have B + p «+ Vx[prf,(x."p") = Iy <xprf,(y."~p")], are
equivalent with each other (in J#%.) was posed as an open question in [18,
p. 16]. This was answered in [10] as follows: there are standard proof
predicates’ for which all the Rosserian sentences are equivalent (see [10,
Theorem 6.2], and [30] for a correct proof); and there are standard proof
predicates for which there are nonequivalent Rosserian sentences (see [10,
Theorem 6.1]). For a given system z, let pr£f, (y.x) be a proof predicate of
7 all of whose Rosserian sentences are equivalent (see [4]). Then, (a variant
of) the Rosser sentence IR, of T can be defined to be any of the IT;-sentences
p that satisfy B + p <> Vx[pz£, (x,"p") = Iy <xpzf,(y.—p")].

So far, we have noticed that for every system 7,

B+ G, <> Con, and B+ Con, — R,:but Th, ¥ R, — Con, for consistent Th,.

Let us note that R, is sensitive to implementation details modulo provable
equivalence in the ambient theory, while G, is not so.

2.3. Kleene’s proof(s). The proofs of Godel and Rosser use the diagonal
(aka self-referential) lemma for constructing the unprovable sentences.
Kleene’s (both first and second) proof can be considered diagonal-free in a
sense, since it does not use this lemma directly, and avoids self-referentiality.
However, as will be seen below, one can still argue that there could be some
(at least, hidden) circularity in the proof. For stating Kleene’s proofs, let us
fix the notation.

DErINITION 2.5. Let all the unary partial recursive functions be effectively
(recursively) listed as .., .... For m,n €N, if ¢, is defined at n (i.e.,
¢,,(n) exists), then we write ¢,,(n)], and say that ¢,, halts on n; likewise,
¢,,(n)T means that the function ¢,, is not defined at n. Let us take (¢ (7)1))
to be the formula, in the language of arithmetic, that expresses ¢, (n)t. -

Let us note that {{(p-(7)1)) is a IT;-sentence. Kleene’s proof [15] shows the
existence of some k €N, for a given system 7, such that the sentence <(¢;(E)T
)) is (true but) unprovable in T#., if T, is consistent. The nonconstructive
version of the proof goes as follows: since the set {n €N | T, - {(p(7)1)) }
is RE, but the set {n €N | NF ((¢(7)1))} is not, and the former is contained
in the latter for consistent system J7.. so there must exist some k such
that we have N E ((¢r(k)1)) but Th, ¥ (¢r(k)?1)). Indeed, any RE and
(effectively) undecidable set could be used for the proof: so, the existence

of an RE and undecidable set implies Godel’s first incompleteness theorem,

A proof predicate A(y,x) is called standard, when its provability predicate, defined as
A(x)=3y A(y.x). satisfies the derivability conditions.
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by this argument of Kleene. It suffices for ¢, to have the property ¢, (n)|
< Th. - {(p:(7)1)), for every n €N (see [25, Theorem 2.2]); it is worth
noting that there are indeed infinitely many such k’s. Now, the (true and)
unprovable sentence of Kleene’s first proof, for a given system z, can be
constructed in a diagonal-free way as follows.

DEFINITION 2.6. For a system 7, let t€ N be an index (out of the infinitely
many indexes) for the recursive function n — uz:prf_(z. {(p;(7)1))"). Let
K, = ((p(t)1)) be Kleene’s (first) sentence for system 7.

Let us note that by the definition of t, ¢ (t) =puz:prf, (z. (e ()1)7).
and so (1)t < T, ¥ {(p7(t)1)) . or equivalently K, <> —Pr,("IK, ") (even
provably in B), which resembles Godel’s equivalence G, <+ —Pr.("G,").
So, the equivalence of Kleene’s first incompleteness witness with Gg is a
consequence of Theorem 2.3 (which also shows that IK, is not sensitive to
various implementation details):

COROLLARY 2.7. For every system t we have B F Con, <> IK,. -

2.4. Kleene’s symmetric proof. Kleene’s first sentence is not independent
from the system if the system is consistent (see [25, Theorem 2.3]): and so
Kleene [16] gave another proof for the Godel-Rosser theorem, which was
called by him “a symmetric form” of Godel’s (incompleteness) theorem: see
also [23, Theorem 14].

DeriNiTION 2.8. Let us effectively list all the binary partial recursive
functions as ¢y, ¢, ®,,.... Let ¢,(k,l)],, mean that the binary partial
recursive function ¢, is defined at (k,/) and its value can be computed (in a
fixed programming language) in m steps (or less). As before, its formalization
in the language of arithmetic is denoted by (¢ (k.)lm)). =

Let us note that (¢ (u,v)],)) can be written by a Aj-formula of the free
variables u,v,x, and y. For a system 7, let f,: N— N be the z-proof search
function, f,(u)=pz:prf,(z,u), whose algorithm is as follows:

input u, put 7 :=0, and run the sub-program f;:

#;: check if i is a T-proof (if for some j <i, prf, (i, /) holds); if not, then
puti:=i+1 and repeat §,: if yes, then compute what i proves (the above
J); if j #u, then put i :=i+1 and repeat §;; if j =u, then output i and
halt.

DEFINITION 2.9. For numbers m.n €N, let J' be the following sentence:
Vx[{(¢y(m.7)1x)) — Jy < x{(¢pz(m.n)],))]. For a given system 7. let r and
s be some indexes for the (binary recursive) functions (m,n) — §,(7377)
and (m.n) — §.(T=J3"7), respectively. For a given system 7. let K, =1¢ be
Kleene's second sentence for t. =

Thus, for a system 7, ¢ (m,n) =f,("3"7) and ¢, (m,n) =f,("—=177); also
K e =Vx[((¢(T.5) 1)) — Iy < x ((¢(E.5)],))]. which is a IT;-sentence.

For a consistent system 7, the independence of WT from 9%, can be shown
along the lines of Rosser’s proof: If T#., - IK_’,, then ¢, (t,5)],, for some meN,
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and so I, - 3y <m{(¢5(t.5)],)). But by the consistency of T#, we have
Th. ¥ —IK'; and so ¢5(t,5)1; whence, the Ag-sentence Jy <7 {(¢p5(T.5)l,)) is

false and so should be refutable in T#%.,. contradiction. Also, if T#, - —IK,.
then ¢, (r.5)|, for some n €N, and so T, - Ix <7{(¢P+(t.5)],)). But the
Ap-sentence Ix <7 {{¢p+(%,5)|)) is false by the consistency of T#, (which
implies T#%, ¥ K';, thus ¢+(t.5)1) and so it should be refutable in T#.;
contradiction again.

Also, very similarly to the proof of Theorem 2.4, it can be shown that for
every system t we have J#, - Con, — K';: and T4, ¥ IK', — Con, if T, is
consistent. We show, more generally, that IK’, is a Rosserian sentence of 7.
and so this follows directly from Theorem 2.4.

If x =f.(u) for a system 7, and some u, then let X be the least s such that
f-(u)s holds. We note that, for every u.v.x.y, if f;(u) =x <y =f.(v), then
X < this is because the algorithm of f,, on the input v, has already checked
x, before halting at the step 7, to see if it is a T-proof, and if (yes, then)
it is a z-proof of v. The algorithm has noticed that x is a z-proof of some
u+#wv, and then has gone to the next step (to check x+1 and so on). So, the
number of steps that f, needs to calculate y (on the input v) is greater than
the number of steps that it needs to calculate x (on the input u); thus X < 7.

THEOREM 2.10. For every system t, the sentence IK_’, of T is a Rosserian
sentence: B - K’y <> Vx[prf, (x,"K'; ") = Iy <xprf, (y." K )]

ProOOF. Reason inside B: _
Suppose that K, holds, and for some a, we have prf, (a,"K';"). Let o

be the minimum x with p££, (x."IK';"): then a > . and ((¢+(%.5)/4)) holds.
Thus, by K, there exists some 8 <& such that {(¢5(%.5).4)) holds. So. for
b= ¢<(t.5) we have prf, (b, =K', 7). We show that b <a: if on the contrary
b>a. then we would have b > ., and so > b > a; contradiction with f <.
Thus, if K, holds, then for all @ with pEf, (a,"K',") there exists some b < a
with pE£, (b. ™K', 7).

Now, suppose that —IK’, holds. So, there exists some psuch that ((¢¢(%.5)),
) holds, and for no ¢ < p can ((¢5(%.5)|,)) hold. Then, let a = p(%.5): s0. p>
a, and we have prf_(a, FIK’,7). We show that for no b <a can prf, (b, TIK, )
hold. Assume, on the contrary, that for some b <a we have pr£, (b, rﬁIK_’ﬂ).
Then. ((¢5(v.5)1)): letd =¢5(t.5). So. we have ((¢5(t.5)] 7). and we also have
d <b<a.Thus, d <a holds, and so we have d <a < p: this is a contradiction
with the property of p (that Vg < p —((¢5(¥.5)},))). Thus, if ~IK’, holds, then
there exists some a such that p£f, (a,"K'; ") AVb < a —pE£, (b, K, 7).

Therefore, under some certain considerations (and the choice of

prf,(y.x) for proof predicate), Kleene’s second I1;-incompleteness witness
is equivalent to Rosser’s I1;-incompleteness witness.
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COROLLARY 2.11. For every system t, we have B WT < R,. So, we have
B Con, — K';: and Th. ¥ IK', — Con, if Th, is consistent -

Thus far, we have shown that Godel’s first theorem is equivalent with Go
and with Kleene’s first theorem; (a variant of ) Rosser’s theorem is equivalent
with (a variant of) Kleene’s second theorem, and it does deliver G2, but is
dot derivable from Gs. In picture:

(Godels = IKleene Godely) 5 (Rosser~ IK'Leene).

§3. Proofs of Chaitin and Boolos. We say that the I1;-incompleteness wit-
ness F is constructive (or effective), when F, can be effectively (computably)
constructed form z. We say that the IT;-incompleteness witness F has the
Rosser property, when F, is independent from J#% ., for every consistent
system 7. Constructivity and the Rosser property of the IT;-incompleteness
theorems of Gddel, Rosser, Kleene, Chaitin, and Boolos were studied in [25]
(see the table on its p. 579). There, it was shown that the IT;-incompleteness
theorems of Godel, Rosser, and (both theorems of ) Kleene are constructive,
and the theorems of Chaitin and Boolos are not; also none of the theorems of
Godel, Kleene’s first, or Boolos have the Rosser property, while the theorems
of Rosser, Kleene’s second, and (a variant of) Chaitin do have the Rosser

property.

3.1. Chaitin’s proof. There are several variants of Chaitin’s theorem. Here,
we consider one of the simple ones.

DEerINITION 3.1. The Kolmogorov—Chaitin Complexity function is defined
to be the mapping K(w)=pe:[p,(0) =w], for w € N. Let {(K(x)>y))
denote the IT;-formula Yo < y[({¢,(0)1)) = (¢, (0) # x))]. in the language
of arithmetic, with the free variables x and y, that expresses K(x)>y. -

Chaitin’s theorem [ 7] shows the existence of some ¢, €N, for a given system
7, such that for every w,e €N with e >¢, we have T, ¥ (K(w) >e)) if Th,
is consistent. It suffices to put for a system 7,

@ (x) =mi[pz:pre, (malz]. "(K(mi[2]) > x+cc))7) |

which is possible by Kleene’s recursion (or fixed point) theorem; here, 1.7,
are the projection functions of a fixed enumeration of ordered pairs (i.e., if
we have a bijective mapping (a.b) — (a.b) between ordered pairs of numbers
and numbers, then we have | ({(a.b)) =a and n>({a.b)) =b).

Chaitin’s proof goes as follows: If 5%, is consistent, and T#, - (K(w) >
e)) for some w,e € N with e >¢,, then let z=(u, p) be the minimum ordered
pair such that prf, (p."((K(#) >%;))") holds. Then, T, - ((K(u) >¢;)) and
also ¢ (0)=u holds; thus, K(u)<c.. Whence, the Z;-sentence ((KC() <¢;))
is true, and so should be provable in J%,; a contradiction with the
consistency of J#. (cf. [25, Theorem 3.3]). Let us note that there are
cofinitely many w’s such that N ((K(w) >¢;)); so it is tempting to fix
one of those w’s as to,, and define the Chaitin sentence of system t as


https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2020.22
https://www.cambridge.org/core

250 SAEED SALEHI

C. = ((K(w,) > ;). For technical reasons, we will postpone this till the
next subsection (Definition 3.12); for the moment, we would like our results
on Chaitin’s proof to be as general as possible. We now show a Rosserian
form of Chaitin’s theorem (see [25. Theorem 3.9]).

THEOREM 3.2. For every consistent system t and for every e > ¢, there are
cofinitely many w’s such that ((K(w) >e)) is independent from Th...

ProOF. Fixan e >c,;weshowed that fornowcanJ#, - ((K(w)>e)) hold.
We now show that I#, - (K(w) <e)) can hold for at most (e+1)-many w’s.
First let us note that the Ag-sentence V{x; <7};<, (WKK” x; =x;). which
is a version of the Pigeonhole Principle, is true for each n € N, and thus is
provable in 5. Reason inside T#.,:

If for some distinct Wg, W, ...,We 1 we have ((KC(w;) <e)), then for each
i <e+1 we have ((p=(0) =W;)) for some z; <e. By the Pigeonhole
Principle there should exist some j <k <e+1 such that z; =Zz;. Thus,
we should have w; =wy. contradicting the distinctness of w;’s.

So, there are cofinitely many w’s for which we have both T#., ¥ ((K(w) >e))
and Th. ¥ (K(w)<e)). =

We note that if T#, ¥ (K(w) <e)), then N E (K(w) >e)). So, it would
be more tempting to fix as to, one of the cofinitely many w’s with %, ¥
((K(w) <e)); since then the Chaitin sentence €, of T will be independent
from J% .. In the following theorem, we show that Chaitin’s theorem can
deliver no constructive IT;-incompleteness witness. Let us note that adding
a true IT;-sentence to a Xi-sound theory results in a £;-sound theory; and
the union of a chain of X;-sound theories is also a X;-sound theory.

THEOREM 3.3. For every constructive I1i-incompleteness witness F, and for
every X1-sound system t there exists some X-sound super-system g of t such
that we have Th., ¥ Fo— (K(w) >7¢,)) for all w.

ProOOF. Let 7° =7, and inductively, 7"*!(x) =7"(x) V[x = Fz«]. We note
that all the {T %, },,’s and also T, =, Th,» are Z;-sound. We show that
there is some 7 such that Th, ¥ Fpn — ((K(w) > )) for all w; thus proving
the theorem. Assume, for the sake of a contradiction, that for every » there
exists some wj, such that T, = Fpn — (K (w,) > )). There are two cases:

(1) For some n, ¢;n = c ni1. Then, from T a1 b (K(wy,) > 7)) we have
Thooni F (IC(Wy) > ar1)). contradicting Chaitin’s theorem for 7"+
(2) For every n, c¢zn <c ni1. By the constructivity of F the system T oo
1S RE. So, there should exist some m such that ¢;oc <¢pm. Thus, from
Tty ymer B (K (W) > Tem)), wWe get Thgoo H (K(Wy) > 7)), Which
contradicts Chaitin’s theorem for the consistent 7°°. -

A mapping 7 — w,, which assigns w, € N to a given system 7, is called a
Chaitin mapping when Nk ((K(wz) >¢;)) holds for every consistent system
7. Let us call it a Rosser—Chaitin mapping when J#., ¥ (K (w;) <)) holds
for every consistent system 7.
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COROLLARY 3.4. No Chaitin mapping can be constructive ([25, Theorem
3.5)).

Chaitin’s Tlj-incompleteness theorem can deliver none of the Tl;-
incompleteness theorems of Gédel (first and second), Kleene (first and
second ), or Rosser. =

We will see below that Chaitin’s I1;-incompleteness witness does deliver a
variant of the I1;-incompleteness witness of Boolos; thus, Boolos’ theorem
is not constructive (see [25, Theorem 4.5]). As the last result on Chaitin’s
theorem, we show that essentially no Il;-incompleteness witness may deliver
Chaitin’s I'l;-incompleteness witness in the standard way:

COROLLARY 3.5. For every consistent system t and every sentence y with
Th. ¥ . there are cofinitely many w’s with Th. ¥ (K(w) >e)) — w.

PRrOOF. Since T+, +— is consistent, then by (the proof of ) Theorem 3.2
for cofinitely many w’s, we have Th,+—y ¥ (K(w) <t;)). =

As a consequence, for every given Rosser—Chaitin mapping = +— v,, there
exists another Rosser—Chaitin mapping 7 — w, such that for every consistent
system 7 we have T, ¥ (K(w;) >¢;) — (K(v7) > ;).

3.2. Boolos’ proof. Finally, we consider the theorem of Boolos, for which
we make the following convention.

CONVENTION. All the variables are 19,9'.9",9". ... whose lengths are
1.2.3.4, ..., respectively. =

The length of an expression is the number of symbols in it. By the above
convention (3.6), for any natural number n € N, there are at most finitely
many formulas with length »; without this convention, for variables x, .z, ...,
all of the formulas x =0, y =0, z=0, ... would be length of 3.

DEerINITION 3.7. A number n € N is definable in the theory T, by the formula
0(9) with the only free variable 9. when T - V9[0 (1) ++ 9 =n] holds. Let
6("07.n) denote the Godel code "VI[O(F) <9 =n]". =

Suppose that the formula F;(x) in the language of arithmetic states that
“x is (the Godel code of) a formula which has 19 as its only free variable.”
and the formula L<”(x) states that “the formula (with Godel code) x has
length less than y.” Indeed, there are such Xi-formulas in the language
of arithmetic, whose existence can be shown by the techniques of Godel’s
arithmetization.

DeriNiTION 3.8, For a system 7, let DyY(x) = 3E[Fi (&) ALY (E) A
Pr.(6(¢.x))] be a formula, in the language of arithmetic, stating that “x
is definable in theory J#%. by a formula with length < y.” Let By (x) =
=D (x) AVz < x D5V (z) be the formula which states that “x is the least
number not definable (in T#.,) by any formula with length less than y.” Let
£, be the length of B=7(19). -
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Let k be any natural number nonsmaller than 10 (Boolos [5] originally
takes it to be 10). For a system 7, let k, = k - £, be a term representing k£,.
Let B.(9)=39"[9'=k, ABY (9 )] be the formula stating that 9 is the least
number that is not definable by any formula with length less than k£,.” Tt
can be shown that the length of g, is less than k£, (cf. the proof of Theorem
4.31in[25]). Let b, be the least number (if any) that is not definable (in T%.,)
by any formula with length less than k£,. Boolos’ original theorem is the
following:

THEOREM 3.9. If't is a consistent system, then f, (b, ) is a true sentence that
is not provable in Th.,.

PrOOF. The truth of #_(b,) follows from the definition of b,. Assume, for
the sake of a contradiction, that 5%,  f_(b,): thus, T#, - B (b, ). Then,
B F Vx[B¥ (x) <+ x =b,].” and so b, is definable (in T#.) by the formula
Bk (19) whose length is less than k£, ; thus, T#, is inconsistent. =

Let us note that #_(b,) is not a ITj-sentence; though we have
B+ B, (b;) = B (b;) = ~Dy* (b)) AVz <b, D7 (z) = ~D* (b.).

because Vz < b, D% (z) is a true X;-sentence, for a consistent system 7, and
so it is B-provable. Whence, the essence of Boolos’ theorem is the truth and
Th.-unprovability of the ITj-sentence =D=* (b, ). Indeed. G can deliver
this, and much more:

THEOREM 3.10. For every consistent system © and every numbers m.n € N
with m>3 we have Th, ¥ =D (n).

PROOE. IfF i, - ~D7 (7). then Th, - VE[F) (€) AL (&) ——Pr, (8 (£.70))].
There is some formula {(«9) with the only free variable 9. such as 9 =0,
whose length is less than m; thus, T#, b —Pr,(6("(7.7)). So. by Lemma
2.1(1), we should have J#%, - Con,, which contradicts Gs. -

Chaitin’s theorem can deliver Boolos’ theorem too, even in a more general
form:

THEOREM 3.11. For every consistent system t there is a number ¥, such that
Jor every system o and for every m.n with m >, we have T, ¥ =D;" (m).

ProOF. Let £, be a number that is greater than the lengths of all the
formulas ((¢5(0)=1)) with e <c,. Fix m,n € N with m > €,. We first show
(even inside %B) that (for an arbitrary system g) if =D5" (n). then K(n) > c.:
If, on the contrary, we had K(n) <c,. then for some e <¢, we would have
©,(0)=n. Since B can strongly represent all the recursive functions, then
n would be definable in B (and so in T#,) by the formula {(¢,(0) =1))
whose length is less than ¢, <m. Thus, D5 (n) and so D5 (n) would hold:

3Here. we use the fact that B F Vx(x <7V x =7 V7i<x) for each n €N (see the proof of
Theorem 4.3 in [25]).
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a contradiction. Therefore, T, ¥ —=D5" (n) follows from Chaitin’s theorem
that Th., ¥ (K1) >t)). =

Now we can define the Chaitin and the Boolos sentence(s) of a system.

DEerINITION 3.12. For a system 7, if 9%, is not consistent, then let v, =0.
If %, is consistent, then let v, be one of the cofinitely many w’s such that

(i) Th.+-R, ¥ (K(w)<T)). and

(ii) NE =D (w):
where, k. is the least number k& such that k > 10-£,, and also k is greater
than the lengths of all the formulas ((¢;(0) =9)) with e<¢,.

For a consistent system 7. let €, = ((K(v;) >;)) be the Chaitin sentence
of 7, and let B, =—D; %+ (to,;) be (a variant of) the Boolos sentence of T. -

Let us note that for every consistent system 7, the IT;-sentences €, and B,
are both true and unprovable in T7,.

CoROLLARY 3.13. (1) For every consistent system T, Thi, - B, — C,:
(2) For every consistent system t. Th, - IB; — Cong:
(3) Boolos’ I1;-incompleteness theorem is not constructive.

PrOOF. (1) The deduction B + D+ (tv,) — (K (10, ) >¢;)) was shown in
the proof of Theorem 3.11. (2) Follows from the proof of Theorem 3.10. (3)
Follows from Theorem 3.3 and the item (1) above. -

COROLLARY 3.14. For every consistent system t,

(1) The ¥ C— Ry
(2) Th, ¥ C; — Con,;
(3) Ojﬁ/‘t%g‘t%@t;
(4) The ¥ Ry —B,.

Proor. (1) By Definition 3.12. (2) By Theorem 2.4 and (1) above. (3)
By Corollary 3.13(2) and (2) above. (4) By Theorem 2.4 and Corollary
3.13(2). 5

COROLLARY 3.15. For every X-sound system T there exists some X-sound
super-system o of t such that

(1) gﬁg%gong—)([g;
(2) Tho ¥ Ry Cy:
(3) Tho ¥ Cong— IB,.

Proor. (1) By Theorem 3.3. (2) By Theorem 2.4 and (1) above. (3) By
Corollary 3.13(1) and (1) above. =

§4. Conclusions. We examined the incompleteness theorems of five great
minds of symbolic logic, namely Godel, Rosser, Kleene, Chaitin, and
Boolos. We compared their proofs with each other, putting Godel’s second
incompleteness theorem at the center of our attention, which resulted in the
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following diagram (where F < H means that F is derived from # in the
standard way and thus F % H means that F is not derivable from # in the
standard way):

Godels < Godel < IKleene < Godels IRosser sIK_/leene < Rosser
Godels < IRosser £ Godels IRosser £ Chaitin £ IRosser

Godels £ Chaitin £ Godely  Godels #IBoolos < Godels

IBoolos < Chaitin A Boolos IBoolos < IRosser £ IBoolos

The lines over R and K’ indicate that some alternative versions of the
sentences of Rosser and (the second) Kleene have been considered, and the
tilde over IB indicates that a substantial variant of the sentence of Boolos is
considered.

As the diagram shows, Boolos’ theorem is indeed the weakest among the
other theorems, since it is derivable from all of them. Rosser’s theorem is
the strongest in a sense, since it delivers all of the other theorems except
Chaitin’s incompleteness theorem. Chaitin’s is the most neutral one, since
it is not derived from any other theorem, and it delivers no other theorem,
except Boolos’. Here, we did not study the incompleteness proofs whose
unprovable sentences are not I1;; one prominent example is Kripke’s proof
[21] for the incompleteness theorem, which shows the I1,-incompleteness of
¥,-sound and (RE) extensions of B.

Let us examine Boolos’ original proof more closely from [5] to see the
little and amusing point that Boolos’ theorem is derivable from Gs: His
formula B(x,y) is our D;” (x), stating that “x is definable (namable) by a
formula with length < y in theory J#..” His A(x.y) is our By’ (x). stating
that “x is the least number not definable (not named) by any formula with
length <y in Jh..” Boolos’ k is our £., the length of B(x,y). and his
F(x)=3y(y=[10]x[k]AA(x.y)) is our B, (x). Boolos notes that the length
of F(x) isless than 10k, and if n (our b, ) is the least number not definable by
a formula with length less than 10k, then Vx(F (x) <> x =[n]) is true but not
in the output of M (unprovable in our J#.,). This sentence is not IT;, but it
is equivalent with F ([n]). and this is equivalent with 4([n].[10]x[k]). This is
not IT; either, but it is equivalent in M (or our T#.) with =B ([n].[10]x[k]).
which is a ITj-sentence. This sentence says that # is not definable by any
formula with length less than 10k, and in particular it is not definable by the
formula F(x). Thus, =B([n].[10]x [k]) implies the unprovability of F([n])
in %, (that F([n]) is not in the output list of M), so it implies Con,.
the consistency of T#., (that M does not output contradictory statements).
Whence, Vx (F (x) <+ x=[n]) is not provable in T#,, because Con, isnot T# .-
provable by G2. So, the unprovability of the Boolos sentence follows from G
(Boolos continues his argument in [5] and shows the unprovability of F ([n])
by an argument similar to Berry’s paradox; see the proof of Theorem 3.9).

One could read in the literature that G2 follows from the first incomplete-
ness theorem; this is said (and is true) for Godel’s proof, and we showed that
it is true also for Rosser’s proof and Kleene’s proof(s). As the history goes.
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the ground breaking paper [9] of Godel was the first part, as its title shows.
The second part never appeared, as Godel felt that people could derive Go
(which was promised to be proven in a sequel paper) by themselves from
the first theorem; so he did not even attempt to write it. On some other
proofs for the first incompleteness theorem, one may read the opposite; for
example, the authors of [14] write that Maehara [20] “insists that Boolos’
theorem is different from Gdodel’s one,” one reason being that “we cannot
obtain the second theorem from Boolos’ theorem in the standard way.”
We gave a rigorous proof for this insight in Corollary 3.15(3), and showed,
moreover, that one cannot obtain G4 from Chatin’s theorem, in the standard
way, either.
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