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GÖDEL’S SECOND INCOMPLETENESS THEOREM:

HOW IT IS DERIVED ANDWHAT IT DELIVERS

SAEED SALEHI

Abstract. The proofs of Gödel (1931), Rosser (1936), Kleene (first 1936 and second 1950),

Chaitin (1970), and Boolos (1989) for the first incompleteness theorem are compared with

each other, especially from the viewpoint of the second incompleteness theorem. It is shown

thatGödel’s (first incompleteness theorem) andKleene’s first theorems are equivalent with the

second incompleteness theorem, Rosser’s and Kleene’s second theorems do deliver the second

incompleteness theorem, and Boolos’ theorem is derived from the second incompleteness

theorem in the standardway. It is also shown that none ofRosser’s,Kleene’s second, or Boolos’

theorems is equivalent with the second incompleteness theorem, and Chaitin’s incompleteness

theorem neither delivers nor is derived from the second incompleteness theorem.We compare

(the strength of) these six proofs with one another.

§1. Introduction and preliminaries. The first incompleteness theorem
states the existence of a Π1-sentence ø for a given sufficiently strong
and recursively enumerable (re) arithmetical theory T such that
if T is consistent, then N � ø and T 0 ø . If T is, moreover, Σ1-sound
(i.e., every T-provable Σ1-sentence is true in the standard model of natural
numbers N), then we also have T 0 ¬ø (since if we had T ⊢ ¬ø , then
we would have N 2 ø by the Σ1-soundness of T and the fact that ¬ø
is a Σ1-sentence). The Π1-sentence ø depends on the theory T, or more
precisely, on how T is presented. An re theory T may be presented (given)
by, for example, an input-free Turing machine (or a program) that outputs
a set of axioms for the theory T (after running). It is known that a theory
T is re if and only if it can be defined by a Σ1-formula; that is, for some
Σ1-formula î(x), the set {è | N � î(pèq)} axiomatizes T, where è ranges
over the sentences and pèq denotes the Gödel code of è (see, e.g., [13,
Theorem 3.3]). By Craig’s trick [8], every such theory can be axiomatized
by a ∆0-definable set of axioms (see, e.g., [24, Lemma 2.4] or [29, Section
4.3.4]): if î(x) = ∃y æ (y,x) for some ∆0-formula æ , then the ∆0-formula
ô(x) = ∃u,v6x

[
x=(u∧[v̄= v̄])∧ æ (v,u)

]
defines another axiomatization

for the theory T.
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242 SAEED SALEHI

Any given ∆0-formula ô(x), with the only one free variable x, defines the
theory Thô = {è | N � ô(pèq)}, where è ranges over sentences. By some
fixed Gödel coding, one can construct a ∆0-formula prfô(y,x), called the
proof predicate of ô, in the language of arithmetic which states that “y is
(the Gödel code of) a proof in Thô of the sentence (with the Gödel code)
x” (see [1, p. 215] or [3, p. 204]). Then the provability predicate of a system
ô is the Σ1-formula Prô(x)=∃y prfô(y,x), and Conô = ¬Prô(p0 6=0q) is the
consistency statement of ô. Let us note that a theory may have different
axiomatizations, and even one single axiomatization of it may have different
defining formulas, and so different proof (and provability) predicates, and
different consistency statements.
Let us fix a Base TheoryB, which is an re theory such that:

◦ The theoryB is a sound extension of Robinson’s arithmetic (therefore,
the theory B is Σ1-complete, i.e., can prove all the true Σ1-sentences,
and can strongly represent all the recursive functions; see [28]).

◦ The theory B can prove the Derivability (or Provability) Conditions of
Gödel, Hilbert, Bernays, and Löb (see p. 3 below, and cf. [6, 27]).

Of course, Peano’s Arithmetic could be taken for B, though it is too
strong for that. However, Robinson’s arithmetic (Q or R) seems too weak
to be such a base theory (though, we have no concrete proof for, e.g., Q’s
weakness at hand). By [1, Proposition 16] the Elementary Arithmetic EA
may suffice for us (cf. [29, Remark 6.7] where it is argued that one needs
EA+BΣ1, or equivalently I∆1 by [26], for handling the Σ1-formulas Prô).
To stay on the safe side one can take forB the finitely axiomatizable theory
IΣ1 (the fragment of Peano’s arithmetic where the induction axiom scheme
is restricted to Σ1-formulas). One good reason (other than the ability of IΣ1
to arithmetize the syntax and prove the basic propositions of it, see [11])
is that we will need a variant of the proof predicate, denoted prfô(y,x),
whose all Rosserian sentences are equivalent with each other (in the base
theory); and for that Primitive Recursive Arithmetic PRA suffices (see [27,
Chapter 6, Theorem 3.6]).
By a system, we mean a ∆0-formula ô(x), with the only one free variable
x, such that Thô ⊢B. A system is consistent (or Σ1-sound) when Thô is a
consistent (or Σ1-sound) theory.
A mapping F : ô 7→ Fô which assigns a Π1-sentence Fô to any given
system ô is called a Π1-incompleteness witness when for every consistent
system ô we have N � Fô and Thô 0 Fô . In this paper, we investigate the
Π1-incompleteness witnesses of Gödel [9], Rosser [22], Kleene (first [15]
and second [16]), Chaitin [7] and Boolos [5]. Our purpose is comparing
those Π1-incompleteness witnesses with each other, and withGödel’s second
incompleteness theorem, which is the following statement:

If ô is a consistent system, then Thô 0 Conô . (G2)

Let F and H be two Π1-incompleteness witnesses. We say that F is derived
from H, or H delivers F (in the standard way) denoted F 4 H when for
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GÖDEL’S SECOND INCOMPLETENESS THEOREM 243

every system ô we have Thô ⊢ Fô→Hô . We note that then the unprovability
of Fô (in Thô) follows from the unprovability ofHô .
Some results of this paper are summarized in the following table:

Π1-incompleteness Does deliver G2 Is derived from G2

Gödel1 (1931) [9] X X

Kleene1 (1936) [15] X X

Rosser (1936) [22] X X

Kleene2 (1950) [16] X X

Chaitin (1970) [7] X X

Boolos (1989) [5] X X

Let us denote Gödel’s (respectively, Kleene’s) first Π1-incompleteness

witness by G (respectively, K); let R (respectively, K′) denote an alternative
version of Rosser’s (respectively, Keelen’s second) Π1-incompleteness wit-
ness (which will be rigorously determined later). Let C denote (one of the
infinitely many Π1-sentences that) Chaitin’s incompleteness witness (proves
to be true and unprovable in consistent systems). Finally, we denote by
B̃ a Π1-incompleteness witness that is very similar to that of Boolos, but
substantially different from his original formulation. Some results of our
comparison are depicted in the following diagram (whereF ≅H abbreviates
F4H4F and F �H abbreviates F4H64F):

C� B̃� G2 ≅K≅ G� R≅K
′.

§2. Proofs ofGödel, Rosser, andKleene. For n∈N, let n denote its numeral
(the term representing n in the language of arithmetic).A functionf : N→N
is said to be strongly representable in B when for a formula 〈〈f(x)=y〉〉 in
its language, with the only free variables x and y, we have

for all m,n∈N, if f(m)=n, thenB ⊢ ∀y [〈〈f(m)=y〉〉↔y=n].

The derivability conditions are the following (for a system ô):

(C1)B ⊢ Prô(pèq) if and only if Thô ⊢ è, for all sentences è.
(C2) B ⊢ Prô(pè→ çq) → [Prô(pèq)→ Prô(pçq)], for all sentences è
and ç.
(C3)B ⊢ ó→ Prô(póq), for all Σ1-formulas ó.

Let us start with a straightforward observation about the consistency
statements:

Lemma 2.1. For a system ô and a sentence è, we have

(1) B ⊢ ¬Conô → Prô(pèq) and
(2) B ⊢ Prô(p¬èq)∧Prô(pèq)→¬Conô .

Proof. Both parts of the lemma follow from the derivability conditions
by using the tautologies 0 6=0→è for (1), and ¬è→(è→0 6=0) for (2). ⊣
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244 SAEED SALEHI

In the following proposition, we show some necessary and sufficient
conditions for delivering G2, and being derivable from G2, in the standard
way (cf. [19]):

Proposition 2.2. For every system ô and everyΠ1-sentence ø, we have

(1) Thô ⊢ Conô→ø if and only if Thô ⊢ ¬Prô(pøq)→ø;
(2) Thô ⊢ ø→Conô if and only if Thô ⊢ ø→¬Prô(pøq).

Proof. (1⇒): Suppose that Thô ⊢ Conô→ø holds. By Lemma 2.1(1) we
have Thô ⊢ ¬Prô(pøq)→Conô ; so Thô ⊢ ¬Prô(pøq)→ø follows.
(1⇐): Now, suppose Thô ⊢ ¬Prô(pøq)→ø; so, Thô ⊢ ¬ø→ Prô(pøq)
holds. Also, since ¬ø is Σ1, by (C3), we have Thô ⊢ ¬ø→Prô(p¬øq). Thus,
by Lemma 2.1(2) we get Thô ⊢ ¬ø→¬Conô , and so Thô ⊢ Conô→ø.
(2⇒): Suppose that we have Thô ⊢ ø→Conô ; then by (C1) and (C2), it
follows thatThô ⊢ ¬Prô(pConôq)→¬Prô(pøq). Now, by Löb’s theorem (or,
formalized G2, see [6]) we have Thô ⊢ Conô→¬Prô(pConôq). Therefore, we
have the desired conclusion Thô ⊢ ø→¬Prô(pøq).
(2⇐): Now, suppose that Thô ⊢ ø→¬Prô(pøq) holds. Then by Lemma
2.1(1), that Thô ⊢ ¬Prô(pøq)→Conô , we get Thô ⊢ ø→Conô . ⊣

Let us note that the assumption “ø is a Π1-sentence” is used only in the
proof of (1⇐): ifThô ⊢¬Prô(pøq)→ø, thenThô ⊢ Conô→ø. The rest of the
implications in Proposition 2.2 hold for arbitraryø. Thatø should be Π1 in
(1⇐) can be seen by the following example: Let ô be a system such thatThô ⊢
Prô(¬Conô) andThô 0¬Conô ; one can take ô(x) to be the system ò(x)∨[x=
Prò(¬Conò)] for a system ò with Thò 0 ¬Conò , see [6] or [12, Theorem 36].
Then, for the Σ1-sentence ø=¬Conô we have Thô ⊢ ¬Prô(pøq)→ø, but
Thô 0 Conô→ø.

2.1. Gödel’s proof. The proof of Gödel constructs a Π1-sentence ã, for a
given system ô, such that (∗)B ⊢ ã↔¬Prô(pãq) holds. If Thô is consistent,
then the unprovability of ã fromThô follows from the derivability conditions
(ifThô ⊢ ã, thenThô ⊢ Prô(pãq) by (C1), and alsoThô ⊢ ¬Prô(pãq) by (∗),
contradicting the consistency of Thô), and the truth of ã follows from the
soundness ofB (since we have N � ã↔¬Prô(pãq) by (∗), and N � ¬Prô(pãq)
by Thô 0 ã, then we have N � ã). Proposition 2.2 immediately implies that
Thô ⊢ Conô↔ã holds for every Π1-sentence ã that satisfies (∗). Essentially,
the same proof can show that (‡)B ⊢ Conô↔ã holds for all such sentences,
and conversely, that if (‡) holds, then (∗) holds too.

Theorem 2.3. For every system ô and Π1-sentence ã we have

B ⊢ ã↔¬Prô(pãq) if and only if B ⊢ Conô↔ã. ⊣

This theorem is a special case of the theorem(s) ofD. de Jongh,G. Sambin,
and C. Bernardi (see [6, Chapter 8]).
So, we can define the Gödel sentence Gô of a system ô to be any of the
Π1-sentences ã that satisfy B ⊢ ã↔¬Prô(pãq); noting that Gô is unique up
to equivalence, even provably so inB.
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GÖDEL’S SECOND INCOMPLETENESS THEOREM 245

2.2. Rosser’s proof. The proof of Rosser constructs, by using the diagonal
lemma, a Π1-sentence ñ, for a given system ô, such that

B ⊢ ñ↔∀x[prfô(x,pñq)→∃y<x prfô(y,p¬ñq)]

holds. Let us call any such Π1-sentence ñ, a Rosserian sentence of the
system ô.
The classical proof of Rosser shows the independence of ñ from Thô ,
if Thô is (only) consistent (and not necessarily Σ1-sound): if Thô ⊢ ñ,
then Thô ⊢ ∀x[prfô(x,pñq)→∃y < x prfô(y,p¬ñq)], and also, by (C1),
Thô ⊢ prfô(n,pñq) for some n ∈N; whence, Thô ⊢ ∃y < nprfô(y,p¬ñq),
but the ∆0-sentence ∃y<nprfô(y,p¬ñq) would be false by the consistency
ofThô , and so would be refutable inB, contradiction. Also, the assumption
Thô ⊢ ¬ñ, would imply Thô ⊢ ∃x[prfô(x,pñq)∧∀y<x¬prfô(y,p¬ñq)] on
the one hand, and B ⊢ prfô(m,p¬ñq) for some m ∈N, by (C1), on the
other hand; thus,Thô ⊢ ∃x6mprfô(x,pñq), but by the consistency ofThô ,
the ∆0-sentence ∃x6mprfô(x,pñq) would be false, and so refutable in B,
contradiction.
Rosser’s theorem is not derivable from G2 in the standard way (though,
it does deliver G2): For a consistent system ô, let ̺(x)=ô(x)∨[x=¬Conô ];
then Th̺ is consistent by G2, and Th̺ ⊢ ¬Con̺. So, for every Rosserian
sentence ñ of ̺, we have Th̺ 0 ñ→Con̺, since otherwise Th̺ ⊢ ¬ñ would
hold, contradicting Rosser’s theorem. Below we show a stronger result.1

Theorem 2.4. Let ô be a system, and ñ be a Rosserian sentence of ô. Then
B ⊢ Conô→ñ holds; and if Thô is consistent, then Thô 0 ñ→Conô .

Proof. By B ⊢ ¬ñ↔∃x[prfô(x,pñq)∧∀y <x¬prfô(y,p¬ñq)], we have
thatB ⊢ ¬ñ→Prô(pñq). Thus, Proposition 2.2(1) impliesB ⊢ Conô→ñ.
For showing the second part, we first show a formalized version ofRosser’s
theorem,B ⊢ Conô→¬Prô(p¬ñq). Reason insideB+Conô+Prô(p¬ñq):

We have ¬ñ ↔ ∃x[prfô(x,pñq) ∧ ∀y < x¬prfô(y,p¬ñq)], and so
Prô(p¬ñq) implies (‡) Prô

(
p∃b[prfô(b,pñq)∧∀y<b¬prfô(y,p¬ñq)]q

)

by (C1,C2). Also, Prô(p¬ñq) implies the existence of some a such
that (‡‡) prfô(a,p¬ñq) holds. Now, by (‡), (‡‡), and Conô, we
have (∗) Prô

(
p∃b 6 a prfô(b,pñq)q

)
. On the other hand, by the

assumption Conô + Prô(p¬ñq), we have ¬Prô(pñq), and so the ∆0-
formula ∀x 6 a¬prfô(x,pñq) is true; whence, by (C3), we have
(∗∗) Prô

(
p∀x6a¬prfô(x,pñq)q

)
. Now, (∗) and (∗∗) contradict Conô .

Assume now that Thô is consistent; and assume (for the sake of
a contradiction) that Thô ⊢ ñ→ Conô holds. Then by Thô ⊢ Conô →
¬Prô(p¬ñq), proved above, we haveThô+ñ ⊢ ¬Prô(p¬ñq). This contradicts

1Theorem 2.4 was first proved in [18, p. 16] where it is stated that this result was “implicit
in the papers of Gödel [9] and Rosser [22]” (see also the end of [17]). It is also proved in [2]
(see the Lemma on page 405) in which it is stated that although this result “was certainly
known before,” the author “was unable to find a proof of it in the literature.”
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G2, unlessThô+ñ is inconsistent, orThô ⊢¬ñ; and this contradicts Rosser’s
theorem, unlessThô is inconsistent. So, we showed that ifThô is consistent,
then Thô 0 ñ→Conô . ⊣

It follows from Theorem 2.3 that all the Π1-sentences ã for which we have
that B ⊢ ã↔¬Prô(pãq) are B-provably equivalent with (each other and
with) Conô . That all the Rosserian sentences of ô, that is, all the Π1-sentences
ñ for which we have B ⊢ ñ↔ ∀x[prfô(x,pñq)→∃y <x prfô(y,p¬ñq)], are
equivalent with each other (in Thô) was posed as an open question in [18,
p. 16]. This was answered in [10] as follows: there are standard proof
predicates2 for which all the Rosserian sentences are equivalent (see [10,
Theorem 6.2], and [30] for a correct proof); and there are standard proof
predicates for which there are nonequivalent Rosserian sentences (see [10,
Theorem 6.1]). For a given system ô, let prfô(y,x) be a proof predicate of
ô all of whose Rosserian sentences are equivalent (see [4]). Then, (a variant
of) theRosser sentence Rô of ô can be defined to be any of the Π1-sentences
ñ that satisfyB ⊢ ñ↔∀x[prfô(x,pñq)→∃y<x prfô(y,p¬ñq)].
So far, we have noticed that for every system ô,

B⊢Gô↔Conô andB⊢Conô→Rô ;but Thô 0Rô→Conô for consistent Thô .

Let us note that Rô is sensitive to implementation details modulo provable
equivalence in the ambient theory, while Gô is not so.

2.3. Kleene’s proof(s). The proofs of Gödel and Rosser use the diagonal
(aka self-referential) lemma for constructing the unprovable sentences.
Kleene’s (both first and second) proof can be considered diagonal-free in a
sense, since it does not use this lemma directly, and avoids self-referentiality.
However, as will be seen below, one can still argue that there could be some
(at least, hidden) circularity in the proof. For stating Kleene’s proofs, let us
fix the notation.

Definition 2.5. Let all the unary partial recursive functions be effectively
(recursively) listed as ϕ0,ϕ1,ϕ2, .... For m,n∈N, if ϕm is defined at n (i.e.,
ϕm(n) exists), then we write ϕm(n)↓, and say that ϕm halts on n; likewise,
ϕm(n)↑means that the functionϕm is not defined at n. Let us take 〈〈ϕm(n)↑〉〉
to be the formula, in the language of arithmetic, that expresses ϕm(n)↑. ⊣

Let us note that 〈〈ϕm(n)↑〉〉 is a Π1-sentence. Kleene’s proof [15] shows the

existence of some k∈N, for a given system ô, such that the sentence 〈〈ϕk(k)↑
〉〉 is (true but) unprovable inThô , ifThô is consistent. The nonconstructive
version of the proof goes as follows: since the set {n∈N | Thô ⊢ 〈〈ϕn(n)↑〉〉}
is re, but the set {n∈N |N � 〈〈ϕn(n)↑〉〉} is not, and the former is contained
in the latter for consistent system Thô , so there must exist some k such
that we have N � 〈〈ϕk(k)↑〉〉 but Thô 0 〈〈ϕk(k)↑〉〉. Indeed, any re and
(effectively) undecidable set could be used for the proof; so, the existence
of an re and undecidable set implies Gödel’s first incompleteness theorem,

2A proof predicate ë(y,x) is called standard, when its provability predicate, defined as
Λ(x)=∃y ë(y,x), satisfies the derivability conditions.
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GÖDEL’S SECOND INCOMPLETENESS THEOREM 247

by this argument of Kleene. It suffices for ϕk to have the property ϕk(n)↓
⇐⇒ Thô ⊢〈〈ϕn(n)↑〉〉, for every n∈N (see [25, Theorem 2.2]); it is worth
noting that there are indeed infinitely many such k’s. Now, the (true and)
unprovable sentence of Kleene’s first proof, for a given system ô, can be
constructed in a diagonal-free way as follows.

Definition 2.6. For a system ô, let t∈N be an index (out of the infinitely
many indexes) for the recursive function n 7→ ìz:prfô(z,p〈〈ϕn(n)↑〉〉q). Let
Kô = 〈〈ϕ

t
(t)↑〉〉 be Kleene’s (first) sentence for system ô. ⊣

Let us note that by the definition of t, ϕ
t
(t)=ìz :prfô(z,p〈〈ϕt

(t)↑〉〉q),
and soϕ

t
(t)↑⇐⇒Thô 0 〈〈ϕ

t
(t)↑〉〉 , or equivalentlyKô↔¬Prô(pKôq) (even

provably in B), which resembles Gödel’s equivalence Gô ↔¬Prô(pGôq).
So, the equivalence of Kleene’s first incompleteness witness with G2 is a
consequence of Theorem 2.3 (which also shows that Kô is not sensitive to
various implementation details):

Corollary 2.7. For every system ô we haveB ⊢ Conô↔Kô . ⊣

2.4. Kleene’s symmetric proof. Kleene’s first sentence is not independent
from the system if the system is consistent (see [25, Theorem 2.3]); and so
Kleene [16] gave another proof for the Gödel–Rosser theorem, which was
called by him “a symmetric form” of Gödel’s (incompleteness) theorem; see
also [23, Theorem 14].

Definition 2.8. Let us effectively list all the binary partial recursive
functions as φ0,φ1,φ2, .... Let φn(k,l)↓m mean that the binary partial
recursive function φn is defined at (k,l) and its value can be computed (in a
fixedprogramming language) inm steps (or less).As before, its formalization
in the language of arithmetic is denoted by 〈〈φn(k,l)↓m〉〉. ⊣

Let us note that 〈〈φx(u,v)↓y〉〉 can be written by a ∆0-formula of the free
variables u,v,x, and y. For a system ô, let fô : N→N be the ô-proof search
function, fô(u)=ìz:prfô(z,u), whose algorithm is as follows:

input u, put i :=0, and run the sub-program ♯i ;
♯i : check if i is a ô-proof (if for some j6 i , prfô(i,j) holds); if not, then
put i := i+1 and repeat ♯i ; if yes, then compute what i proves (the above
j); if j 6=u, then put i := i+1 and repeat ♯i ; if j=u, then output i and
halt.

Definition 2.9. For numbers m,n∈N, let mnג be the following sentence:
∀x[〈〈φm(m,n)↓x〉〉→∃y<x〈〈φn(m,n)↓y〉〉]. For a given system ô, let r and
s be some indexes for the (binary recursive) functions (m,n) 7→ fô(pגmn q)

and (m,n) 7→ fô(p¬גmn q), respectively. For a given system ô, let K
′

ô = rsג be
Kleene’s second sentence for ô. ⊣

Thus, for a system ô, φr(m,n)= fô(pגmn q) and φs(m,n)= fô(p¬גmn q); also

K
′

ô=∀x[〈〈φr(r,s)↓x〉〉→∃y<x〈〈φs(r,s)↓y〉〉], which is a Π1-sentence.

For a consistent system ô, the independence ofK′

ô fromThô can be shown

along the lines ofRosser’s proof: IfThô ⊢K
′

ô , thenφr(r,s)↓m for somem∈N,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2020.22
https://www.cambridge.org/core


248 SAEED SALEHI

and so Thô ⊢ ∃y<m〈〈φs(r,s)↓y〉〉. But by the consistency of Thô we have

Thô 0 ¬K′

ô and soφs(r,s)↑; whence, the ∆0-sentence ∃y<m〈〈φs(r,s)↓y〉〉 is

false and so should be refutable in Thô , contradiction. Also, if Thô ⊢ ¬K′

ô ,
then φs(r,s)↓n for some n∈N, and so Thô ⊢ ∃x6n〈〈φr(r,s)↓x〉〉. But the
∆0-sentence ∃x6n〈〈φr(r,s)↓x〉〉 is false by the consistency of Thô (which

implies Thô 0 K
′

ô , thus φr(r,s)↑) and so it should be refutable in Thô ;
contradiction again.
Also, very similarly to the proof of Theorem 2.4, it can be shown that for

every system ô we have Thô ⊢ Conô→K
′

ô ; and Thô 0 K
′

ô→Conô if Thô is

consistent. We show, more generally, that K′

ô is a Rosserian sentence of ô,
and so this follows directly from Theorem 2.4.
If x= fô(u) for a system ô, and some u, then let x̂ be the least s such that

fô(u)↓s holds. We note that, for every u,v,x,y, if fô(u)=x<y= fô(v), then
x̂<ŷ: this is because the algorithm of fô , on the input v, has already checked
x, before halting at the step ŷ, to see if it is a ô-proof, and if (yes, then)
it is a ô-proof of v. The algorithm has noticed that x is a ô-proof of some
u 6=v, and then has gone to the next step (to check x+1 and so on). So, the
number of steps that fô needs to calculate y (on the input v) is greater than
the number of steps that it needs to calculate x (on the input u); thus x̂ <ŷ.

Theorem 2.10. For every system ô, the sentence K′

ô of ô is a Rosserian

sentence:B ⊢K
′

ô↔∀x[prfô(x,pK
′

ôq)→∃y<x prfô(y,pK
′

ôq)].

Proof. Reason insideB:
Suppose that K′

ô holds, and for some a, we have prfô(a,pK
′

ôq). Let α

be the minimum x with prfô(x,pK
′

ôq); then a>α, and 〈〈φr(r,s)↓α̂〉〉 holds.

Thus, by K′

ô , there exists some â <α̂ such that 〈〈φs(r,s)↓â〉〉 holds. So, for

b=φs(r,s) we have prfô(b,p¬K
′

ôq). We show that b<a; if on the contrary

b>a, then we would have b>α, and so â> b̂> α̂; contradiction with â<α̂.

Thus, if K′

ô holds, then for all a with prfô(a,pK
′

ôq) there exists some b<a

with prfô(b,p¬K
′

ôq).

Now, suppose that¬K′

ô holds. So, there exists some p such that 〈〈φr(r,s)↓p
〉〉 holds, and for no q<p can 〈〈φs(r,s)↓q〉〉 hold. Then, let a=φr(r,s); so,p>

â, and we have prfô(a,pK
′

ôq).We show that for no b<a can prfô(b,p¬K
′

ôq)

hold. Assume, on the contrary, that for some b<a we have prfô(b,p¬K
′

ôq).
Then, 〈〈φs(r,s)↓〉〉; letd=φs(r,s). So,wehave 〈〈φs(r,s)↓d̂ 〉〉, andwe also have

d6b<a. Thus, d <a holds, and so we have d̂ <â6p; this is a contradiction

with the property of p (that ∀q<p ¬〈〈φs(r,s)↓q〉〉). Thus, if ¬K
′

ô holds, then

there exists some a such that prfô(a,pK
′

ôq)∧∀b<a¬prfô(b,p¬K
′

ôq). ⊣

Therefore, under some certain considerations (and the choice of
prfô(y,x) for proof predicate), Kleene’s second Π1-incompleteness witness
is equivalent to Rosser’s Π1-incompleteness witness.
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Corollary 2.11. For every system ô, we have B ⊢ K
′

ô↔Rô . So, we have

B ⊢ Conô→K
′

ô ; and Thô 0K
′

ô→Conô if Thô is consistent ⊣

Thus far, we have shown that Gödel’s first theorem is equivalent with G2

andwithKleene’s first theorem; (a variant of) Rosser’s theorem is equivalent
with (a variant of) Kleene’s second theorem, and it does deliver G2, but is
dot derivable from G2. In picture:

(Gödel2≅Kleene≅ Gödel1)� (Rosser≅K
′leene).

§3. Proofs of Chaitin and Boolos. We say that the Π1-incompleteness wit-
nessF is constructive (or effective), whenFô can be effectively (computably)
constructed form ô. We say that the Π1-incompleteness witness F has the
Rosser property, when Fô is independent from Thô , for every consistent
system ô. Constructivity and the Rosser property of the Π1-incompleteness
theorems of Gödel, Rosser, Kleene, Chaitin, and Boolos were studied in [25]
(see the table on its p. 579). There, it was shown that the Π1-incompleteness
theorems of Gödel, Rosser, and (both theorems of) Kleene are constructive,
and the theorems ofChaitin andBoolos are not; also none of the theorems of
Gödel, Kleene’s first, or Boolos have theRosser property, while the theorems
of Rosser, Kleene’s second, and (a variant of) Chaitin do have the Rosser
property.

3.1. Chaitin’s proof. There are several variants ofChaitin’s theorem.Here,
we consider one of the simple ones.

Definition 3.1. The Kolmogorov–Chaitin Complexity function is defined
to be the mapping K(w) = ìe : [ϕe(0) =w], for w ∈N. Let 〈〈K(x)>y〉〉
denote the Π1-formula ∀v6y[〈〈ϕv(0)↓〉〉→〈〈ϕv(0) 6= x〉〉], in the language
of arithmetic, with the free variables x and y, that expresses K(x)>y. ⊣

Chaitin’s theorem [7] shows the existence of some cô∈N, for a given system
ô, such that for every w,e∈N with e>cô we have Thô 0 〈〈K(w)>e〉〉 if Thô
is consistent. It suffices to put for a system ô,

ϕ
cô
(x) = ð1

[
ìz: prfô

(
ð2[z],p〈〈K(ð1[z])>x+cô〉〉q

)]
,

which is possible by Kleene’s recursion (or fixed point) theorem; here, ð1,ð2
are the projection functions of a fixed enumeration of ordered pairs (i.e., if
we have a bijectivemapping (a,b) 7→ 〈a,b〉 between ordered pairs of numbers
and numbers, then we have ð1(〈a,b〉)=a and ð2(〈a,b〉)=b).
Chaitin’s proof goes as follows: If Thô is consistent, and Thô ⊢ 〈〈K(w)>
e〉〉 for some w,e∈N with e>cô , then let z=〈u,p〉 be the minimum ordered
pair such that prfô(p,p〈〈K(u)>cô〉〉q) holds. Then, Thô ⊢ 〈〈K(u)>cô〉〉 and
alsoϕ

cô
(0)=u holds; thus,K(u)6cô . Whence, the Σ1-sentence 〈〈K(u)6cô〉〉

is true, and so should be provable in Thô ; a contradiction with the
consistency of Thô (cf. [25, Theorem 3.3]). Let us note that there are
cofinitely many w’s such that N � 〈〈K(w)> cô〉〉; so it is tempting to fix
one of those w’s as wô , and define the Chaitin sentence of system ô as
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Cô = 〈〈K(wô)> cô〉〉. For technical reasons, we will postpone this till the
next subsection (Definition 3.12); for the moment, we would like our results
on Chaitin’s proof to be as general as possible. We now show a Rosserian
form of Chaitin’s theorem (see [25, Theorem 3.9]).

Theorem 3.2. For every consistent system ô and for every e> cô , there are
cofinitely many w’s such that 〈〈K(w)>e〉〉 is independent from Thô .

Proof. Fix an e>cô ; we showed that for now canThô ⊢ 〈〈K(w)>e〉〉 hold.
We now show thatThô ⊢ 〈〈K(w)6e〉〉 can hold for at most (e+1)-many w’s.
First let us note that the ∆0-sentence ∀{xi <n}i6n

(∨∨
i<j6n xi =xj

)
, which

is a version of the Pigeonhole Principle, is true for each n∈N, and thus is
provable inB. Reason inside Thô :

If for some distinct w0,w1, ...,we+1 we have 〈〈K(wi)6e〉〉, then for each
i 6 e+1 we have 〈〈ϕzi (0)=wi〉〉 for some zi 6 e. By the Pigeonhole
Principle there should exist some j <k6e+1 such that zj=zk . Thus,
we should have wj=wk , contradicting the distinctness of wi ’s.

So, there are cofinitely many w’s for which we have both Thô 0 〈〈K(w)>e〉〉
and Thô 0 〈〈K(w)6e〉〉. ⊣

We note that if Thô 0 〈〈K(w)6 e〉〉, then N � 〈〈K(w)>e〉〉. So, it would
be more tempting to fix as wô one of the cofinitely many w’s with Thô 0
〈〈K(w)6 e〉〉; since then the Chaitin sentence Cô of ô will be independent
from Thô . In the following theorem, we show that Chaitin’s theorem can
deliver no constructive Π1-incompleteness witness. Let us note that adding
a true Π1-sentence to a Σ1-sound theory results in a Σ1-sound theory; and
the union of a chain of Σ1-sound theories is also a Σ1-sound theory.

Theorem 3.3. For every constructiveΠ1-incompleteness witness F , and for
every Σ1-sound system ô there exists some Σ1-sound super-system ̺ of ô such
that we have Th̺ 0 F̺→〈〈K(w)>c̺〉〉 for all w.

Proof. Let ô0= ô, and inductively, ôn+1(x)= ôn(x)∨[x=Fôn ]. We note
that all the {Thôn}n’s and alsoThô∞=

⋃
nThôn are Σ1-sound.We show that

there is some n such that Thôn 0Fôn→〈〈K(w)>côn〉〉 for all w; thus proving
the theorem. Assume, for the sake of a contradiction, that for every n there
exists some wn such that Thôn ⊢ Fôn→〈〈K(wn)>côn〉〉. There are two cases:

(1) For some n, côn>côn+1 . Then, from Thôn+1 ⊢ 〈〈K(wn)>côn〉〉 we have

Thôn+1 ⊢ 〈〈K(wn)>côn+1〉〉, contradicting Chaitin’s theorem for ô
n+1.

(2) For every n, côn < côn+1 . By the constructivity of F the system Thô∞

is re. So, there should exist some m such that cô∞ 6 côm . Thus, from
Thôm+1 ⊢ 〈〈K(wm)> côm〉〉, we get Thô∞ ⊢ 〈〈K(wm)> cô∞〉〉, which
contradicts Chaitin’s theorem for the consistent ô∞. ⊣

A mapping ô 7→ wô , which assigns wô ∈N to a given system ô, is called a
Chaitin mapping when N � 〈〈K(wô)> cô〉〉 holds for every consistent system
ô. Let us call it a Rosser–Chaitin mapping when Thô 0 〈〈K(wô)6cô〉〉 holds
for every consistent system ô.
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Corollary 3.4. No Chaitin mapping can be constructive ([25, Theorem
3.5]).
Chaitin’s Π1-incompleteness theorem can deliver none of the Π1-
incompleteness theorems of Gödel (first and second ), Kleene (first and
second ), or Rosser. ⊣

We will see below that Chaitin’s Π1-incompleteness witness does deliver a
variant of the Π1-incompleteness witness of Boolos; thus, Boolos’ theorem
is not constructive (see [25, Theorem 4.5]). As the last result on Chaitin’s
theorem, we show that essentially noΠ1-incompleteness witness may deliver
Chaitin’s Π1-incompleteness witness in the standard way:

Corollary 3.5. For every consistent system ô and every sentence ø with
Thô 0 ø, there are cofinitely many w’s with Thô 0 〈〈K(w)>cô〉〉→ø.

Proof. Since Thô+¬ø is consistent, then by (the proof of) Theorem 3.2
for cofinitely many w’s, we have Thô+¬ø 0 〈〈K(w)6cô〉〉. ⊣

As a consequence, for every given Rosser–Chaitin mapping ô 7→ vô , there
exists anotherRosser–Chaitinmapping ô 7→wô such that for every consistent
system ô we have Thô 0 〈〈K(wô)>cô〉〉→〈〈K(vô)>cô〉〉.

3.2. Boolos’ proof. Finally, we consider the theorem of Boolos, for which
we make the following convention.

Convention. All the variables are ϑ,ϑ′,ϑ′′,ϑ′′′, ... whose lengths are
1,2,3,4, ..., respectively. ⊣

The length of an expression is the number of symbols in it. By the above
convention (3.6), for any natural number n∈N, there are at most finitely
many formulaswith length n; without this convention, for variablesx,y,z, ...,
all of the formulas x=0, y=0, z=0, ... would be length of 3.

Definition 3.7. Anumber n∈N is definable in the theoryT, by the formula
è(ϑ) with the only free variable ϑ, when T ⊢ ∀ϑ[è(ϑ)↔ϑ= n̄] holds. Let
ä(pèq,n) denote the Gödel code p∀ϑ[è(ϑ)↔ϑ= n̄]q. ⊣

Suppose that the formula F1(x) in the language of arithmetic states that
“x is (the Gödel code of) a formula which has ϑ as its only free variable,”
and the formula L<y(x) states that “the formula (with Gödel code) x has
length less than y.” Indeed, there are such Σ1-formulas in the language
of arithmetic, whose existence can be shown by the techniques of Gödel’s
arithmetization.

Definition 3.8. For a system ô, let D<yô (x) = ∃î[F1(î) ∧ L<y(î) ∧
Prô

(
ä(î,x)

)
] be a formula, in the language of arithmetic, stating that “x

is definable in theory Thô by a formula with length <y.” Let B
<y
ô (x)=

¬D<yô (x)∧∀z <xD<yô (z) be the formula which states that “x is the least
number not definable (in Thô) by any formula with length less than y.” Let
ℓô be the length of B<ϑ

′

ô (ϑ). ⊣
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Let k be any natural number nonsmaller than 10 (Boolos [5] originally
takes it to be 10). For a system ô, let kô = k̄ · ℓ̄ô be a term representing kℓô .
Let â ô(ϑ)=∃ϑ

′[ϑ′=kô ∧B<ϑ
′

ô (ϑ)] be the formula stating that “ϑ is the least
number that is not definable by any formula with length less than kℓô .” It
can be shown that the length of â ô is less than kℓô (cf. the proof of Theorem
4.3 in [25]). Let bô be the least number (if any) that is not definable (inThô)
by any formula with length less than kℓô . Boolos’ original theorem is the
following:

Theorem 3.9. If ô is a consistent system, then â ô(bô) is a true sentence that
is not provable in Thô .

Proof. The truth of â ô(bô) follows from the definition of bô . Assume, for
the sake of a contradiction, that Thô ⊢ â ô(bô); thus, Thô ⊢ B<kôô (bô). Then,
B ⊢ ∀x[B<kôô (x)↔x=bô ],3 and so bô is definable (in Thô) by the formula
B<kôô (ϑ) whose length is less than kℓô ; thus, Thô is inconsistent. ⊣

Let us note that â ô(bô) is not a Π1-sentence; though we have

B ⊢ â ô(bô)≡ B<kôô (bô)≡ ¬D<kôô (bô)∧∀z<bôD
<kô
ô (z)≡ ¬D<kôô (bô),

because ∀z<bôD
<kô
ô (z) is a true Σ1-sentence, for a consistent system ô, and

so it isB-provable. Whence, the essence of Boolos’ theorem is the truth and
Thô -unprovability of the Π1-sentence ¬D<kôô (bô). Indeed, G2 can deliver
this, and much more:

Theorem 3.10. For every consistent system ô and every numbers m,n∈ N
with m>3 we have Thô 0 ¬D<mô (n).

Proof. IfThô ⊢¬D<mô (n), thenThô ⊢∀î[F1(î)∧L<m(î)→¬Prô
(
ä(î,n)

)
].

There is some formula æ(ϑ) with the only free variable ϑ, such as ϑ=0,
whose length is less than m; thus, Thô ⊢ ¬Prô

(
ä(pæq,n)

)
. So, by Lemma

2.1(1), we should have Thô ⊢ Conô , which contradicts G2. ⊣

Chaitin’s theorem can deliver Boolos’ theorem too, even in a more general
form:

Theorem 3.11. For every consistent system ô there is a number kô such that
for every system ̺ and for every m,n with m>kô we have Thô 0 ¬D<m̺ (n).

Proof. Let kô be a number that is greater than the lengths of all the
formulas 〈〈ϕe(0)=ϑ〉〉 with e6 cô . Fix m,n∈N with m> kô . We first show
(even insideB) that (for an arbitrary system ̺) if ¬D<m̺ (n), thenK(n)>cô :
If, on the contrary, we had K(n)6 cô , then for some e6 cô we would have
ϕe(0)=n. Since B can strongly represent all the recursive functions, then
n would be definable in B (and so in Th̺) by the formula 〈〈ϕe(0)=ϑ〉〉
whose length is less than kô6m. Thus, D<kô̺ (n) and so D

<m
̺ (n) would hold;

3Here, we use the fact that B ⊢ ∀x(x<n∨x=n∨n<x) for each n∈N (see the proof of
Theorem 4.3 in [25]).
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a contradiction. Therefore, Thô 0 ¬D<m̺ (n) follows from Chaitin’s theorem
that Thô 0 〈〈K(n)>cô〉〉. ⊣

Now we can define the Chaitin and the Boolos sentence(s) of a system.

Definition 3.12. For a system ô, if Thô is not consistent, then let wô=0.
If Thô is consistent, then let wô be one of the cofinitely many w’s such that

(i) Thô+¬Rô 0 〈〈K(w)6cô〉〉, and

(ii) N � ¬D<κôô (w);

where, κô is the least number k such that k>10·ℓô , and also k is greater
than the lengths of all the formulas 〈〈ϕe(0)=ϑ〉〉 with e6cô .

For a consistent system ô, let Cô = 〈〈K(wô)> cô〉〉 be the Chaitin sentence
of ô, and let B̃ô=¬D<κôô (wô) be (a variant of) theBoolos sentence of ô. ⊣

Let us note that for every consistent system ô, the Π1-sentences Cô and B̃ô
are both true and unprovable in Thô .

Corollary 3.13. (1) For every consistent system ô, Thô ⊢ B̃ô→Cô ;
(2) For every consistent system ô, Thô ⊢ B̃ô→Conô ;
(3) Boolos’ Π1-incompleteness theorem is not constructive.

Proof. (1) The deductionB ⊢ ¬D<κôô (wô)→〈〈K(wô)>cô〉〉 was shown in
the proof of Theorem 3.11. (2) Follows from the proof of Theorem 3.10. (3)
Follows from Theorem 3.3 and the item (1) above. ⊣

Corollary 3.14. For every consistent system ô,

(1) Thô 0 Cô→Rô ;
(2) Thô 0 Cô→Conô ;
(3) Thô 0 Cô→ B̃ô ;
(4) Thô 0 Rô→ B̃ô .

Proof. (1) By Definition 3.12. (2) By Theorem 2.4 and (1) above. (3)
By Corollary 3.13(2) and (2) above. (4) By Theorem 2.4 and Corollary
3.13(2). ⊣

Corollary 3.15. For every Σ1-sound system ô there exists some Σ1-sound
super-system ̺ of ô such that

(1) Th̺ 0 Con̺→C̺;

(2) Th̺ 0 R̺→C̺;

(3) Th̺ 0 Con̺→ B̺̃.

Proof. (1) By Theorem 3.3. (2) By Theorem 2.4 and (1) above. (3) By
Corollary 3.13(1) and (1) above. ⊣

§4. Conclusions. We examined the incompleteness theorems of five great
minds of symbolic logic, namely Gödel, Rosser, Kleene, Chaitin, and
Boolos. We compared their proofs with each other, putting Gödel’s second
incompleteness theorem at the center of our attention, which resulted in the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2020.22
https://www.cambridge.org/core


254 SAEED SALEHI

following diagram (where F 4H means that F is derived from H in the
standard way and thus F 64H means that F is not derivable from H in the
standard way):

Gödel24Gödel14Kleene4Gödel2 Rosser4K
′leene4Rosser

Gödel24Rosser 64Gödel2 Rosser 64Chaitin 64Rosser

Gödel2 64Chaitin 64Gödel2 Gödel2 64 B̃oolos4Gödel2

B̃oolos4Chaitin 64 B̃oolos B̃oolos4Rosser 64 B̃oolos

The lines over R and K
′ indicate that some alternative versions of the

sentences of Rosser and (the second) Kleene have been considered, and the
tilde over B indicates that a substantial variant of the sentence of Boolos is
considered.
As the diagram shows, Boolos’ theorem is indeed the weakest among the
other theorems, since it is derivable from all of them. Rosser’s theorem is
the strongest in a sense, since it delivers all of the other theorems except
Chaitin’s incompleteness theorem. Chaitin’s is the most neutral one, since
it is not derived from any other theorem, and it delivers no other theorem,
except Boolos’. Here, we did not study the incompleteness proofs whose
unprovable sentences are not Π1; one prominent example is Kripke’s proof
[21] for the incompleteness theorem, which shows the Π2-incompleteness of
Σ2-sound and (re) extensions ofB.
Let us examine Boolos’ original proof more closely from [5] to see the
little and amusing point that Boolos’ theorem is derivable from G2: His
formula B(x,y) is our D<yô (x), stating that “x is definable (namable) by a
formula with length <y in theory Thô .” His A(x,y) is our B

<y
ô (x), stating

that “x is the least number not definable (not named) by any formula with
length <y in Thô .” Boolos’ k is our ℓô , the length of B(x,y), and his
F (x)=∃y

(
y=[10]×[k]∧A(x,y)

)
is our â ô(x). Boolos notes that the length

of F (x) is less than 10k, and if n (our bô) is the least number not definable by
a formula with length less than 10k, then ∀x(F (x)↔x=[n]) is true but not
in the output ofM (unprovable in our Thô). This sentence is not Π1, but it
is equivalent with F ([n]), and this is equivalent withA([n],[10]×[k]). This is
not Π1 either, but it is equivalent inM (or our Thô) with ¬B([n],[10]×[k]),
which is a Π1-sentence. This sentence says that n is not definable by any
formula with length less than 10k, and in particular it is not definable by the
formula F (x). Thus, ¬B([n],[10]×[k]) implies the unprovability of F ([n])
in Thô (that F ([n]) is not in the output list of M), so it implies Conô ,
the consistency of Thô (thatM does not output contradictory statements).
Whence,∀x(F (x)↔x=[n]) is not provable inThô , because Conô is notThô -
provable byG2. So, the unprovability of the Boolos sentence follows fromG2

(Boolos continues his argument in [5] and shows the unprovability of F ([n])
by an argument similar to Berry’s paradox; see the proof of Theorem 3.9).
One could read in the literature that G2 follows from the first incomplete-
ness theorem; this is said (and is true) for Gödel’s proof, and we showed that
it is true also for Rosser’s proof and Kleene’s proof(s). As the history goes,
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the ground breaking paper [9] of Gödel was the first part, as its title shows.
The second part never appeared, as Gödel felt that people could derive G2

(which was promised to be proven in a sequel paper) by themselves from
the first theorem; so he did not even attempt to write it. On some other
proofs for the first incompleteness theorem, one may read the opposite; for
example, the authors of [14] write that Maehara [20] “insists that Boolos’
theorem is different from Gödel’s one,” one reason being that “we cannot
obtain the second theorem from Boolos’ theorem in the standard way.”
We gave a rigorous proof for this insight in Corollary 3.15(3), and showed,
moreover, that one cannot obtainG2 fromChatin’s theorem, in the standard
way, either.
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[19] A. Macintyre and H. Simmons, Gödel’s diagonalization technique and related

properties of theories. Colloquium Mathematicum, vol. 28 (1973), pp. 165–180.
[20] S. Maehara, Boolos Shi No Genkou Wo Mite. Gendai Shisou (December 1989),

pp. 80–92.
[21] H. Putnam,Nonstandardmodels andKripke’s proof of the Gödel theorem.NotreDame
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[27] C. Smoryński, Self-Reference and Modal Logic, Springer, New York, 1985.
[28] A. Tarski, A. Mostowski, and R. M. Robinson, Undecidable Theories, North-

Holland, Netherlands, 1953. Reprinted by Dover Publications, 2010.
[29] A. Visser,Another look at the second incompleteness theorem.The Review of Symbolic

Logic, vol. 13 (2020) no. 2, pp. 269–295.
[30] C. von Bülow, A remark on equivalent Rosser sentences. Annals of Pure and Applied

Logic, vol. 151 (2008), no. 1, pp. 62–67.

RESEARCH INSTITUTE FOR FUNDAMENTAL SCIENCES

UNIVERSITY OF TABRIZ

29 BAHMAN BOULEVARD, P.O. BOX 51666-17766, TABRIZ, IRAN
and

SCHOOL OFMATHEMATICS

INSTITUTE FOR RESEARCH IN FUNDAMENTAL SCIENCES

P.O. BOX 19395-5746, TEHRAN, IRAN

E-mail: root@saeedsalehi.ir

URL: http://saeedsalehi.ir/

mailto:root@saeedsalehi.ir
http://saeedsalehi.ir/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/bsl.2020.22
https://www.cambridge.org/core

	1 Introduction and preliminaries
	2 Proofs of Gödel, Rosser, and Kleene
	2.1 Gödel's proof
	2.2 Rosser's proof
	2.3 Kleene's proof(s)
	2.4 Kleene's symmetric proof

	3 Proofs of Chaitin and Boolos
	3.1 Chaitin's proof
	3.2 Boolos' proof

	4 Conclusions

