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ON THE DIAGONAL LEMMA OF GÖDEL AND CARNAP

SAEED SALEHI

Abstract. A cornerstone of modern mathematical logic is the diagonal lemma of Gödel

and Carnap. It is used in, for example, the classical proofs of the theorems of Gödel, Rosser,

and Tarski. From its first explication in 1934, just essentially one proof has appeared for the

diagonal lemma in the literature; a proof that is so tricky and hard to relate that many authors

have tried to avoid the lemma altogether. As a result, some so-called diagonal-free proofs have

been given for the above-mentioned fundamental theorems of logic. In this paper, we provide

new proofs for the semantic formulation of the diagonal lemma, and for a weak version of

the syntactic formulation of it.

§1. Introduction. Gödel’s original proof, in his seminal paper [13], for
the first incompleteness theorem constructed a sentence, nowadays denoted
by G, such that G is equivalent to ¬PrT(pGq), that is, to the sentence that
asserts the nonprovability of G in the theory T. Here pGq denotes a term
in the language of T that represents the Gödel code of G. Later on, as was
also confirmed by Gödel in [14, footnote 23, p. 363], Carnap [7, Section 35]
realized that for any formula Ψ(x), with the only free variable x, there exists
a sentence è such that the biconditional sentence è↔Ψ(pèq) holds (is true
in the standard model of natural numbers N, and is even provable in certain
weak arithmetical theories). This statement, now called the diagonal lemma
(of Gödel and Carnap), has essentially only one proof in the literature.
A proof that Buss [5, p. 119] describes as “quite simple but rather tricky
and difficult to conceptualize,” and McGee writes about it in [22] that we
“would hope that such a deep theorem would have an insightful proof. No
such luck. I am going to write down a sentence . . . and verify that it works.
What I won’t do is give you a satisfactory explanation for why I write down
the particular formula I do. I write down the formula because Gödel wrote
down the formula, and Gödel wrote down the formula because, when he
played the logic game he was able to see seven or eight moves ahead, whereas
you and I are only able to see one or two moves ahead. I don’t know anyone
who thinks he has a fully satisfying understanding of why the Self-referential
Lemmaworks. It has a rabbit-out-of-a-hat quality for everyone.” This tricky
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and magical proof has prompted some authors to try to either demystify
it, such as in, for example [28], or even abandon the lemma altogether and
look for some other (the so called diagonal-free) proofs; see, for example,
[20, p. 126] and the references therein.
Here, we give a new proof for the semantical version of the diagonal
lemma. This semantical form is sufficiently strong to prove a semantic
version of Tarski’s theorem on the undefinability of arithmetical truth, and
the incompleteness of sound and definable arithmetical theories in the sense
ofGödel and Smullyan.We also study aweak syntactic version of this lemma
and provide an alternative proof for it. We will see that this weaker form is
still sufficiently strong to prove certain formulations of the incompleteness
theorems of Gödel and Rosser. Before going into the details, let us review
the general strategy of the proofs.
A key observation is that if some formula Ψ(x) does not have a fixed point
in N (i.e., for no sentence è, the biconditional è↔Ψ(pèq) holds true in N),
then N � è↔¬Ψ(pèq) holds for all sentences è; in other words, the formula
¬Ψ(x) is a truth definition, contradicting Tarski’s theorem. We employ a
paradox that is named after George Godfrey Berry (1867–1928), a junior
librarian at Oxford’s Bodleian Library, by Russell (see, e.g. [25, p. 223]). As
the history goes, this is Russell’s version of Berry’s original paradox that is
nowadays called the Berry paradox (see [9, pp. 8, 9]). The paradox is this:
“The least natural number that cannot be described by less than 15 words”

describes a number, uniquely, by less than 15 words. Since there are finitely
many sentences with less than 15 words, such a number exists and is unique.
But the above description has less than 15 words and does describe that
natural number; a contradiction.
In fact, Berry’s paradox was first used by Chaitin [8] in 1970 for his
proof of the first incompleteness theorem. Later, Boolos [2] gave another
proof for the first incompleteness theorem of Gödel, in 1989, which was
based on Berry’s paradox too; see also [1], [3], and [4, Section 17.3]. Berry’s
paradox has been used for proving Tarski’s undefinability theorem as well,
see [6] and [27, Corollary 2]. The research on Berry-based proofs is a
live topic, the two most recent publications on which are [17] and [26].
Before Chaitin and Boolos, Rosser [24] (in 1936) and Kleene [18, 19] (in
1936 and 1950) had given alternative proofs for the first incompleteness
theorem. Their proofs did not use Berry’s paradox (see [26] and the
references therein), and, instead, used ideas of computability theory. The
computability theory approach to proving the incompleteness has the
conceptual advantage of linking the study of incompleteness with the study
of computability in a smooth way. Another important connection with
computability theory is that Kleene’s second recursion theorem implies a
slightly weaker form of the syntactic form of the diagonal lemma that is
sufficient for proving the Gödel–Rosser theorem; see [23, Section 5] and
also [12].
Gödel remarked in [13, footnote 14, p. 149] that any epistemological
paradox “could be used for a similar proof of the existence of undecidable
propositions”; as another example, the surprise examination paradox can be
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used to prove Gödel’s (second) incompleteness theorem (see [21]). Gödel’s
proof is analogous to Richard’s paradox, and “closely related to the” Liar
paradox (see [13, p. 149]). Our proofs are similar to Boolos’.

§2. Diagonal lemma, semantically and syntactically. Let us fix the lan-
guage of arithmetic as 〈s,0,+, ·,<〉 (over first-order logic with the equality),
where s is a unary function symbol, interpreted as the successor function
(s(m) =m+1 for each m), 0 is a constant symbol, + and · are binary
function symbols, and < is a binary relation symbol, with their standard
interpretations. For any n∈N, let n denote the term s(. . . s(0)), where s
appears n-times. Let us be given a fixed Gödel coding æ 7→ pæq, where pæq
is the term n in the language of arithmetic when n is the Gödel number
of æ.

2.1. The semantic form of the diagonal lemma.

Convention. Let us make the convention that all the individual
variables are x,x′,x′′,x′′′,. . . whose lengths are 1,2,3,4,. . ., respectively.
This way, there will be at most finitely many formulas with length less
than n for all n ∈ N; otherwise, the length of x < x,x′ < x′,. . . would
be 3. ⊣

Definition 2.1 (Definability, and the formulas ä(u,v), F1(u), and L<v(u)).
A formula ϕ(x), with the only free variable x, defines the natural number
n when the sentence ∀x[ϕ(x)↔ x= n] is true (in N). Let ä(pϕq,n) be an
abbreviation for the sentence ∀x[ϕ(x)↔ x=n].
Let F1(u) be the formula indicating that u is the Gödel code
of a formula whose only free variable is x. Let L

<v(u) be the
formula indicating that u is the Gödel code of a formula with length
less than v; here u and v are free variables (among x,x′,x′′,. . .,
above). ⊣

ByGödel’s arithmetization and coding techniques,F1(u) andL<v(u) canbe
expressed by some formulas in the language of arithmetic; also the mapping
(y,z) 7→ pä(y,z)q, for the y’s with F1(y), can be represented in the language
of arithmetic. We show in Theorem 2.3 that for any given formula Ψ(x) with
the only free variable x, there are some natural numbers m,n∈N such that
N � ä(m,n)↔Ψ

(

pä(m,n)q
)

. So, let us fix Ψ(x) as a given such formula.

Definition 2.2 (D<v(u), â<v(u), ℓ, and B(x) depending on Ψ).
Let D<v(u) be the formula ∃φ[F1(φ)∧L

<v(φ)∧¬Ψ
(

pä(φ,u)q
)

].
Let â<v(u) be the formula ¬D<v(u)∧∀w<u D<v(w).
Let ℓ be the length of the formula â<x

′

(x).
Let B(x) be the formula ∃x′[x′=5 ·ℓ∧â<x

′

(x)]. ⊣

The intuitive meaning of D<v(u) is that the number u is definable by a
formula with length less than v, if ¬Ψ is a truth predicate. Then â<v(u) says
that u is the least number not definable by any formula with length less than
v. It is rather easy to see that the length of the formula B(x) is less than 5ℓ
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(cf. [26]). So, the relation of the formulas â<v(u) and B(u) with the Berry’s
paradox is apparent now.

Theorem 2.3 (The semantic diagonal lemma). For a given formula Ψ(x)
with the only free variable x, there are some natural numbers m,n∈N with

F1(m) such that N � ä(m,n)↔Ψ
(

pä(m,n)q
)

.

Proof. Assume for the sake of a contradiction that for all numbers
m,n∈N with F1(m), we have N 2 ä(m,n)↔ Ψ

(

pä(m,n)q
)

. Then ¬Ψ is a

truth predicate for the ä(y,z) formulas: N � ä(m,n)↔¬Ψ
(

pä(m,n)q
)

holds
for every m,n∈N with F1(m). Let b∈N be the least number that is not
definable by any formula with length less than 5ℓ. Then N � B(b) holds by
our assumption on Ψ. Since N � ∀x,y[B(x)∧B(y)→x=y] holds as well, we
have N � ∀x[B(x)↔ x=b] too. So, b is definable by B(x) whose length is
less than 5ℓ; a contradiction. ⊣

This semantic form of the diagonal lemma is sufficiently strong for proving
Gödel’s first incompleteness theorem for sound and definable theories, and
also for proving the semantic form of Tarski’s theorem on the undefinability
of the truth of the set of the (Gödel codes of the) arithmetical sentences:

Corollary 2.4 (Semantic theorems of Gödel and Tarski). 1. If T is a
sound theory whose set of axioms is arithmetically definable, then T is

incomplete.

2. The set {pîq | N � î}, where î ranges over the sentences in the language
of arithmetic, is not arithmetically definable.

2.2. The classical proof of the diagonal lemma. Let us compare the proof
of Theorem 2.3 with the classical proof(s) of the diagonal lemma. The
following argument appears in the lemma of [16], which, according to its
author, “was discovered by the referee” of the Journal of Symbolic Logic.
If our language contains a symbol for the primitive recursive function ̺
with the interpretation that ̺(pϕ(x)q) = pϕ

(

pϕ(x)q/x
)

q, for any ϕ(x) with

F1(pϕ(x)q), then for a formula Ψ(x), let è =Ψ
(

̺
(

pΨ(̺(x))q
))

. Now,

è =Ψ
(

pΨ
(

̺
(

pΨ(̺(x))q
))

q
)

=Ψ(pèq).

So, in Primitive Recursive Arithmetic, for any Ψ(x), there exists a sentence
è such that è is (not only equivalent with but also equal to) Ψ(pèq). If
our language does not contain a symbol for the ̺ function, this primitive
recursive function should be (strongly) representable by a formula such
as ó(x,y) in the language of arithmetic. That is to say that the sentence
∀y[ó(n,y)↔ y = ̺(n)], for each natural number n∈N, is true. Both of the
following arguments appear in, for example, [29, Theorem 24.4]:
(A): The universal argument goes as follows:
Let α(x) = ∀y[ó(x,y)→Ψ(y)] and èα = α(pα(x)q/x). Then we have

èα = ∀y[ó(pα(x)q,y)→Ψ(y)]

↔∀y[y= ̺(pα(x)q)→Ψ(y)]
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↔∀y[y= pèαq→Ψ(y)]

↔Ψ(pèαq).

(E): The existential argument goes as follows:
Let ç(x) = ∃y[ó(x,y)∧Ψ(y)] and èç = ç(pç(x)q/x). Then we have

èç = ∃y[ó(pç(x)q,y)∧Ψ(y)]

↔∃y[y= ̺(pç(x)q)∧Ψ(y)]

↔∃y[y= pèçq∧Ψ(y)]

↔Ψ(pèçq).

Let us note that the constructed sentences èα and èç, as fixed-points of
Ψ(y), are not necessarily equivalent with each other: if Ψ(y) states that “the
expression with the Gödel code y begins with a universal quantifier,” then
èα is true while èç is not; whence, èα↔èç does not hold.
Apart from the syntactic and qualitative differences, the classical proof
and the proof of Theorem 2.3 differ from the constructivity point of view.
The classical proof is constructive, that is, for a given Ψ(x), it constructs a
sentence è such that è↔Ψ(pèq) holds, but the proof of Theorem 2.3 is not;
it only shows the mere existence of some m,n∈N such that the equivalence
ä(m,n)↔ Ψ

(

pä(m,n)q
)

holds. The proof does not determine for which
numbersm,n∈N this equivalence holds.As noted by a referee of thisBulletin,
every sentence è is equivalent with some ä(m,n): take ϕ(x) = [è↔x=pèq],
and letm= pϕ(x)q and n= pèq. Then è↔∀x[è↔(x=pèq↔x=pèq)], and
so by the associativity of ↔, we have è↔∀x[(è↔x=pèq)↔x=pèq], or
equivalently, è↔∀x[ϕ(x)↔x=pèq]=ä(m,n). It is worth noting that then
the classical proof of the diagonal lemma proves Theorem 2.3 for extensional
formulasΨ(x), that is, for formulasΨ(x)with the property that æ↔î implies
Ψ(pæq)↔Ψ(pîq), for all sentences æ,î.
We should also point out that the Parametric Length Diagonalization
Lemma [17, Lemma 3.2] implies Theorem 2.3 for arbitrary formulas Ψ(x):

there exists a formula B′(x) such that B′(x)↔ â<s(||B
′(x)||)(x) is true, where

||æ|| denotes the length of æ. If we let b′ ∈N to be the least number that
is not definable by any formula with length less than s(||B′(x)||), then the
proof of Theorem 2.3 goes through with B′(x) and b′ in the place of B(x)
and b, respectively (and s(||B′(x)||) in the place of 5ℓ). Even this proof is
nonconstructive; for extensional Ψ(x), one can constructively find some
m,n∈N such that ä(m,n)↔ Ψ

(

pä(m,n)q
)

holds, by first finding a fixed-
point è of Ψ(x) by the classical proof, and then finding some m,n∈N

such that è↔ä(m,n) holds. For nonextensional formulas Ψ(x), we do not
know yet if there is a constructive way of finding some m,n∈N such that
ä(m,n)↔Ψ

(

pä(m,n)q
)

holds.

2.3. The syntactic form of the diagonal lemma. The syntactic version of
the diagonal lemma asserts the existence of a sentence è for a given formula
Ψ(x), with the only free variable x, such that è ↔ Ψ(pèq) is (true and
also) provable in a (sound) weak arithmetical theory, such as Robinson’s
Arithmetic Q (see [30]). Here, we assume familiarity with Q, the notion of
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Σ1-formula, and the fact that Q is Σ1-complete (i.e., can prove all the true
Σ1-sentences) and can, therefore, prove the Σ0-sentence ∀x<n (

∨∨

i<nx= i)
for any n∈N; see, for example, [29, Chapters 10 and 11]. As a result, a version
of the Pigeonhole Principle ∀{xi<n}i6n

(
∨∨

i<j6nxi=xj
)

can be proved in

Q. Let us note that F1(u) and L
<v(u), in Definition 2.1, can be written as

Σ1-formulas. Since F1(pBq) and L<5·ℓ(pBq) are true Σ1-sentences, then they
are both provable in Q.

Theorem 2.5 (The syntactic diagonal lemma). For any given formulaΨ(x)
with the only free variable x, we have

Q ⊢
∨

F1(i)
∨

i,j6~

[

ä(i, j)↔Ψ
(

pä(i, j)q
)]

,

where ~=1+max{pϕq | F1(pϕq)∧L
<5·ℓ(pϕq)}.

Proof. If Q 0
∨∨

F1(i)
i,j6~

[

ä(i, j)↔ Ψ
(

pä(i, j)q
)]

, then the following theory

should be consistent:

Q′ =Q+
∧

F1(i)
∧

i,j6~

[

ä(i, j)↔¬Ψ
(

pä(i, j)q
)]

.

We reach a contradiction by proving the inconsistency of the theoryQ ′. We
show that Q′ ⊢ ¬B(n) holds for each n6~. Reason inside Q′:

IfB(n), then â<5·ℓ(n) and so we have¬D<5·ℓ(n) and ∀w<nD<5·ℓ(w).

For any x, if B(x) holds, then both ¬D<5·ℓ(x) and ∀w< xD<5·ℓ(w)
should hold as well. Now, either x<n or x=n or n<x. If x<n, then we

have a contradiction by ∀w<nD<5·ℓ(w) and ¬D<5·ℓ(x); and if n<x,

then we have a contradiction by ¬D<5·ℓ(n) and ∀w<xD<5·ℓ(w). So,
x=n. Thus, ∀x(B(x)↔ x=n) holds, or equivalently we have ä(pBq,n),

and so ¬Ψ
(

pä(pBq,n)q
)

. Therefore, by F1(pBq) and L
<5·ℓ(pBq), we

have D<5·ℓ(n) and this is a contradiction with B(n).

As a consequence, for each n6~, we have Q′ ⊢ ¬â<5·ℓ(n), and so we have

that Q′ ⊢ ∀w<nD<5·ℓ(w)→ D
<5·ℓ(n). Whence, by induction on n6~, one

can show that Q′ ⊢ D
<5·ℓ(n). Reason inside Q′:

For each n6~, we have F1(pϕnq)∧L
<5·ℓ(pϕnq)∧¬Ψ

(

pä(pϕnq,n)q
)

for some ϕn. For each such ϕn, we have pϕnq< ~, and so by the
pigeonhole principle, there should exist some i< j6~ such that ϕi=ϕj.

By ¬Ψ
(

pä(pϕiq, i)q
)

and ¬Ψ
(

pä(pϕjq, j)q
)

, we should have ä(pϕiq, i)

and ä(pϕjq, j), which, with ϕi=ϕj, imply that i= j.

Finally, since for any i< j, we have Q ⊢ i 6= j, then Q′ is inconsistent. ⊣

This weaker form of the syntactic diagonal lemma can still be used to
prove the Gödel–Rosser incompleteness theorem, by noting that complete
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theories have the disjunction property; that is, ifT is complete andT ⊢A∨B,
then eitherT ⊢A orT ⊢B. So, the standard incompleteness proofs of Gödel
and Rosser should work as usual with Theorem 2.5 too.

Corollary 2.6 (Gödel–Rosser’s Theorem). Any recursively enumerable
and consistent extension of Q is incomplete.

Theorem 2.5 can also be used to prove a syntactic version of Tarski’s
theorem which states the undefinability of arithmetical truth:

Corollary 2.7 (Syntactic form of Tarski’s Theorem). If a theory T
extendsQ, then for any formula Φ(x) with the only free variable x, the theory
T is not consistent with the set {î↔Φ(pîq) | î is a sentence}.

§3. Conclusion. Alternative proofs for theorems strengthen our confi-
dence in them and increase our understanding of them as well (see, e.g.,
[11] or its prequel [10]). In this short note, we presented a “different
sort of reason” (in the words of Boolos [3]) for the semantical version
of the diagonal lemma, and gave an alternative proof for a weak form of
the syntactical diagonal lemma. Let us note that our alternative proof is
nonconstructive, while the classical proof is constructive; and the new proof
could seem even trickier than the classical one to some eyes. Of course, the
problem of giving an entirely different proof for the following (stronger)
syntactic diagonal lemma remains open:
“For a given Ψ(x), there is a sentence è such that Q ⊢ è↔Ψ(pèq).”
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[2] G. S. Boolos,Anew proof of the Gödel incompleteness theorem.Notices of the American

Mathematical Society, vol. 36 (1989), no. 4, pp. 388–390. Reprinted in G. Boolos, Logic,
Logic, and Logic, Harvard University Press, Cambridge, MA, 1998, pp. 383–388.
[3] ———, A letter from George Boolos. Notices of the American Mathematical Society,

vol. 36 (1989), no. 6, p. 676.
[4] G. S. Boolos, J. P. Burgess and R. C. Jeffrey, Computability and Logic, fifth ed.,

Cambridge University Press, Cambridge, 2007.
[5] S. Buss, First-order proof theory of arithmetic, Handbook of Proof Theory (S. Buss,

editor), Elsevier Science, Amsterdam, 1998, pp. 79–147.



DIAGONAL LEMMA OF GÖDEL AND CARNAP 87
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some Gödelean proofs.Annals of Pure and Applied Logic, vol. 169 (2018), no. 10, pp. 971–980.
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