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Congruence preserving functions of Wilke’s tree algebras

Saeed Salehi

Abstract. As a framework for characterizing families of regular languages of binary trees,
Wilke introduced a formalism for defining binary trees that uses six many-sorted operations
involving letters, trees and contexts. In this paper a completeness property of these oper-
ations is studied. It is shown that all functions involving letters, binary trees and binary
contexts which preserve congruence relations of the free tree algebra over an alphabet, are
generated by Wilke’s functions, if the alphabet contains at least seven letters. That is to
say, the free tree algebra over an alphabet with at least seven letters is affine-complete. The
proof yields also a version of the theorem for ordinary one-sorted term algebras: congruence
preserving functions on contexts and members of a term algebra are substitution functions,
provided that the signature consists of constant and binary function symbols only, and
contains at least seven symbols of each rank. Moreover, term algebras over signatures with
at least seven constant symbols are affine-complete.

1. Introduction

A new framework for characterizing families of tree languages was introduced by
Wilke [15] which can be regarded as a combination of the universal algebraic frame-
work of Steinby [11, 12] and Almeida [1], in the case of binary trees, which is based
on syntactic algebras and of the syntactic monoid/semigroup framework of Thomas
[14] and Nivat and Podelski [7, 8]. It is based on three-sorted algebras whose signa-
ture Σ consists of six operation symbols involving the sorts Alphabet, Tree and
Context. Binary trees over an alphabet are represented by terms over Σ, namely
as Σ-terms of sort Tree. A tree algebra is a Σ-algebra satisfying every identity
that consists of two Σ-terms representing the same tree or context. Wilke [15] ax-
iomatized these algebras by four identities. The syntactic tree algebra congruence
relation of a tree language is defined in a natural way (Definition 2.1 below.) The
Tree-sort component of the syntactic tree algebra of a tree language is the syntactic
algebra of the language in the sense of [12], while its Context-component is the
syntactic semigroup of the tree language, cf. [14]. A rather comprehensive study of
tree algebras and Wilke’s formalism has been initiated by Steinby and Salehi [10].
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In this paper we give a detailed proof of what was claimed, without presenting the
full proof, in Theorem 1 of [9]: Wilke’s functions generate all congruence preserving
operations on the term algebra of trees, when the alphabet contains at least seven
letters. A one-sorted version of this theorem, presented in Section 3 below, is
interesting by itself: every congruence preserving function on contexts and members
of a term algebra is a substitution function, when the signature consists of constant
and binary function symbols and contains at least seven symbols of each rank.

2. Preliminaries

For an alphabet A, let ΣA be the signature which contains a constant symbol
ca and a binary function symbol fa for every a ∈ A, that is ΣA = (ΣA)0 ∪ (ΣA)2,
where (ΣA)0 = {ca | a ∈ A} and (ΣA)2 = {fa | a ∈ A}. The set of binary trees over
A, denoted by TA, is defined inductively by:

• ca ∈ TA for every a ∈ A;
• fa(t1, t2) ∈ TA whenever t1, t2 ∈ TA and a ∈ A.

A binary tree language over an alphabet A is any subset of TA.
Fix a new symbol ξ which does not appear in A. Binary contexts over A are

binary trees over A ∪ {ξ} in which ξ appears exactly once as a leaf. The set of
non-unit binary contexts over A, denoted by CA, can be defined inductively by:

• fa(t, ξ), fa(ξ, t) ∈ CA whenever a ∈ A, t ∈ TA, and
• fa(t, p), fa(p, t) ∈ CA whenever a ∈ A, t ∈ TA, and p ∈ CA.

The set of A-contexts is C1
A = CA ∪ {ξ}. For contexts p, q ∈ CA and tree t ∈ TA,

the context p(q) ∈ CA and tree p(t) ∈ TA are obtained from p by replacing the
occurrence of ξ with q and with t, respectively.

Definition 2.1. ([15], page 92) For a tree language L ⊆ TA we define the syntactic
tree algebra congruence relation of L, denoted by (≈L

A,≈L
C,≈L

T), as follows:

(1) For any a, b ∈ A, a ≈L
A b ≡ ∀p ∈ C1

A{p(ca) ∈ L ↔ p(cb) ∈ L}&
∀p ∈ C1

A∀t1, t2 ∈ TA{p(fa(t1, t2)) ∈ L ↔ p(fb(t1, t2)) ∈ L}.
(2) For any p, q ∈ CA, p ≈L

C q ≡ ∀r ∈ C1
A∀t ∈ TA{r(p(t)) ∈ L ↔ r(q(t)) ∈ L}.

(3) For any t, s ∈ TA, t ≈L
T s ≡ ∀p ∈ C1

A{p(t) ∈ L ↔ p(s) ∈ L}.

Definition 2.2. ([15], page 88) Wilke’s functions over an alphabet A are:

ιA : A → TA ιA(a) = ca

κA : A × T
2

A → TA κA(a, t1, t2) = fa(t1, t2)

λA : A × TA → CA λA(a, t) = fa(ξ, t)
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ρA : A × TA → CA ρA(a, t) = fa(t, ξ)

σA : C
2

A → CA σA(p1, p2) = p1(p2)

ηA : CA × TA → TA ηA(p, t) = p(t)

The above definition is the interpretation of the signature Σ = {ι, κ, λ, ρ, η, σ}
in the 3-sorted Σ-structure F= (A, CA, TA, Σ), defined in [15] page 89.

Definition 2.3. ([9], Definition 4) A function F : A
n × C

k

A × T
m

A → X where
X ∈ {A, CA, TA} is called congruence preserving, if for every tree language L ⊆ TA

and for all a1, b1, . . . , an, bn ∈ A, p1, q1, . . . , pk, qk ∈ CA, t1, s1, . . . , tm, sm ∈ TA,

if a1 ≈L
A b1, . . . , an ≈L

A bn, p1 ≈L
C q1, . . . , pk ≈L

C qk, and t1 ≈L
T s1, . . . , tm ≈L

T sm,

then F (a1, . . . , an, p1, . . . , pk, t1, . . . , tm) ≈L
x F (b1, . . . , bn, q1, . . . , qk, s1, . . . , sm),

where x is A, C, or T, if X = A, X = CA, or X = TA, respectively.

Remark 2.4. In universal algebra, the functions which preserve congruence rela-
tions of an algebra are called congruence preserving functions. On the other hand
it is known that every congruence relation over an algebra is the intersection of
some syntactic congruence relations (see Remark 2.12 of [1] or Lemma 6.2 of [12].)
So, a function preserves all congruence relations of an algebra iff it preserves the
syntactic congruence relations of all subsets of the algebra. This justifies the notion
of congruence preserving function in our Definition 2.3, even though we require that
the function preserves only the syntactic tree algebra congruence relations of tree
languages, which is the case if and only if the function preserves all the congruence
relations of the 3-sorted Σ-structure F.

Definition 2.5. For sets B1, . . . , Bn, the projection functions πn
j : B1×· · ·×Bn →

Bj are defined by πn
j (b1, . . . , bn) = bj. Each element b ∈ Bj determines the constant

function B1 × · · · × Bn → Bj defined by (b1, . . . , bn) 	→ b.
Let B be a collection of sets, and let C be a collection of functions of the form

B1 × · · · × Bn → B for any B1, . . . , Bn, B ∈ B. The Pclone generated by C is the
smallest class of functions of the form B1×· · ·×Bn → B, for some B1, . . . , Bn, B ∈
B, denoted by Pclone〈C〉, that contains C and the projection and constant functions
and is closed under the composition of functions. cf. the definition of clone in [6].

It is easy to see that all functions in the Pclone generated by Wilke’s functions
are congruence preserving.

The main result of the present paper is ([9], Theorem 1): For an alphabet A

which contains at least seven letters, every congruence preserving function over A

is in the Pclone generated by Wilke’s functions.
More precisely, we prove the following theorems in Section 4.
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Theorem 2.6. If |A| ≥ 3, then for all n, m, k ∈ N every congruence preserving
function A

n × C
k

A × T
m

A → A is in Pclone〈∅〉, i.e., it is either a constant function
or a projection function over A.

Theorem 2.7. If |A| ≥ 7, then for all n, m, k ∈ N every congruence preserving
functions A

n × C
k

A × T
m

A → TA is in Pclone〈{ιA, κA, ηA}〉.

Theorem 2.8. If |A| ≥ 7, then for all n, m, k ∈ N every congruence preserving
function A

n × C
k

A × T
m

A → CA is in Pclone〈{ιA, κA, ηA, λA, ρA, σA}〉.

Remark 2.9. An algebra is called congruence-primal or hemi-primal, if all its
congruence preserving functions are term functions, and is called affine-complete,
if all its congruence preserving functions are polynomials, see e.g. [6]. Our main
theorems imply that if |A| ≥ 7, then the 3-sorted tree algebra F= (A, CA, TA, Σ)
is affine-complete. Moreover, Theorem 2 of [9] states that any term algebra whose
signature contains at least 7 constant symbols is affine-complete. We note that
since in term algebras polynomials coincide with term functions, a term algebra is
affine-complete iff it is congruence-primal.

3. Congruence preserving functions on contexts

In this section, Theorem 2 of [9] is generalized for contexts. For one-sorted
term algebras we show that the congruence preserving functions on terms and
contexts are substitution functions, when the signature consists of constant and
binary function symbols and contains at least seven symbol of each rank (Theorem
3.6 below).

Our notation, as in [9], follows mainly [2, 4, 5, 6, 12, 13]. A ranked alphabet is
a finite nonempty set of symbols each of which has a unique non-negative arity (or
rank). For each m ≥ 0, the set of m-ary symbols in a ranked alphabet Σ is denoted
by Σm. For a set of variables X , the set of ΣX-terms, denoted by T (Σ, X), is
defined inductively by

• Σ0 ∪ X ⊆ T (Σ, X), and
• f(t1, . . . , tm) ∈ T (Σ, X), for f ∈ Σm (m > 0) and t1, . . . , tm ∈ T (Σ, X).

For empty X it is simply written as TΣ. We note that the structure T (Σ, X) =
(T (Σ, X), Σ) is a Σ-algebra under the interpretation

• cT (Σ,X) = c, for every c ∈ Σ0, and
• fT (Σ,X)(t1, . . . , tm) = f(t1, . . . , tm), for f ∈ Σm and t1, . . . , tm ∈ T (Σ, X);

is a Σ-algebra, and (TΣ, Σ) is called the term algebra over Σ. Members of T (Σ, X)
are called ΣX−trees as well. That is to say, in this framework a tree is a term over
a ranked alphabet and a (possibly empty) set of variables.
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Fix ξ to be a new symbol which does not appear in Σ or X . A ΣX-context is a
Σ(X∪{ξ})-term in which ξ appears exactly once. The set of ΣX-contexts is denoted
by C1(Σ, X), and C(Σ, X) = C1(Σ, X) \ {ξ} is the set of non-unit ΣX-contexts.
Again for empty X we write CΣ and C1

Σ for C(Σ, ∅) and C1(Σ, ∅), respectively.
If p, q ∈ C1

Σ and t ∈ TΣ, then p(q) ∈ C1
Σ and p(t) ∈ TΣ are obtained from p

by replacing the occurrence of ξ with q and with t, respectively. By convention
p(ξ) = p.

For L ⊆ TΣ, let ≈L be the syntactic congruence relation of L ([11, 12]), i.e., the
greatest congruence on the term algebra TΣ saturating L. For t, t′ ∈ TΣ, the relation
t ≈L t′ holds when (p(t) ∈ L ⇐⇒ p(t′) ∈ L) for every p ∈ C1

Σ. Another syntactic
congruence of the language L, denoted by ∼L, is defined on CΣ: for p, q ∈ CΣ,
p ∼L q if (r(p(t)) ∈ L ⇐⇒ r(q(t)) ∈ L) for every r ∈ C1

Σ and t ∈ TΣ, cf. [13, 14].
The following lemma is an immediate consequence of the above definitions.

Lemma 3.1. For L ⊆ TΣ and p, q ∈ CΣ, p ∼L q iff p(t) ≈L q(t) for every t ∈ TΣ.

In [9], congruence preserving functions of the form (TΣ)n → TΣ were defined.
Here we extend the definition to functions involving contexts as well:

Definition 3.2. Functions F : (CΣ)m × (TΣ)n → TΣ and F ′ : (CΣ)m × (TΣ)n →
CΣ are called congruence preserving, if for all contexts p1, q1, . . . , pm, qm ∈ CΣ,
trees t1, s1, . . . , tn, sn ∈ TΣ, and subsets L ⊆ TΣ, whenever p1 ∼L q1, . . . , pm ∼L

qm, t1 ≈L s1, . . . , tn ≈L sn, then

F (p1, . . . , pm, t1, . . . , tn) ≈L F (q1, . . . , qm, s1, . . . , sn)

and
F ′(p1, . . . , pm, t1, . . . , tn) ∼L F ′(q1, . . . , qm, s1, . . . , sn).

Let {	1, 	2, 	3, . . . } be a set of unary function symbols disjoint from Σ, and
Σ{	1, . . . , 	m} be the signature Σ augmented by {	1, . . . , 	m}.

Definition 3.3. Let r ∈ TΣ{�1,...,�m} be a term. We present r as r[	1, . . . , 	m]
to emphasize the appearances of 	i’s. For contexts p1, . . . , pm ∈ CΣ, the term
r[p1, . . . , pm] ∈ TΣ is obtained from r by replacing all the occurrences of 	i(t), for
any t ∈ TΣ{�1,...,�m}, with pi(t) for all i ∈ {1, 2, . . . , m}.

We call the function (CΣ)m → TΣ defined by (p1, . . . , pm) 	→ r[p1, . . . , pm] for all
p1, . . . , pm ∈ CΣ, a substitution function defined by r[	1, . . . , 	m].

For a set {x1, . . . , xn} of variables, a term t ∈ T
(
Σ{	1, . . . , 	m}, {x1, . . . , xn}

)
is also written as t[x1, . . . , xn, 	1, . . . , 	m]. For terms s1, . . . , sn and contexts
p1, . . . , pm, the term t[s1, . . . , sn, p1, . . . , pm] is obtained from t by replacing all
xi’s with si and all 	j ’s with pj for all i, j. The function (TΣ)n × (CΣ)m → TΣ

defined by (s1, . . . , sn, p1, . . . , pm) 	→ t[s1, . . . , sn, p1, . . . , pm] for all s1, . . . , sn ∈ TΣ

and p1, . . . , pm ∈ CΣ is also called a substitution function defined by t.
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Similarly, the substitution function (TΣ)n × (CΣ)m → CΣ defined by a context
q[x1, . . . , xn, 	1, . . . , 	m] maps (s1, . . . , sn, p1, . . . , pm) to q[s1, . . . , sn, p1, . . . , pm] for
all s1, . . . , sn ∈ TΣ and p1, . . . , pm ∈ CΣ. (See also the definition of tree substitution
operation on page 61 of [3].)

Example 3.4. The composition function of contexts CΣ × CΣ → CΣ defined by
(p1, p2) 	→ p1(p2) is a substitution function defined by 	1(	2(ξ)) ∈ CΣ{�1,�2}. Also,
the evaluation function TΣ × CΣ → TΣ, (t, p) 	→ p(t), is a substitution function
defined by 	1(x1) ∈ T (Σ{	1}, {x1}).

The following is a classical lemma in universal algebra.

Lemma 3.5. All substitution functions are congruence preserving.

The rest of this section is devoted to the proof of the following Theorem:

Theorem 3.6. Let Σ = Σ0 ∪ Σ2 be a ranked alphabet such that |Σ0|, |Σ2| ≥ 7.

(1) Every congruence preserving function F : (TΣ)n × (CΣ)m → TΣ is a sub-
stitution function, i.e., there is a term t[x1, . . . , xn, 	1, . . . , 	m] in the set
T (Σ{	1, . . . , 	m}, {x1, . . . , xn}) such that for all s1, . . . , sn ∈ TΣ and for all
p1, . . . , pm ∈ CΣ, F (s1, . . . , sn, p1, . . . , pm) = t[s1, . . . , sn, p1, . . . , pm].

(2) Every congruence preserving function F : (TΣ)n × (CΣ)m → CΣ is a sub-
stitution function, i.e., there is a context q[x1, . . . , xn, 	1, . . . , 	m] in the set
C(Σ{	1, . . . , 	m}, {x1, . . . , xn}) such that for all s1, . . . , sn ∈ TΣ and for all
p1, . . . , pm ∈ CΣ, F (s1, . . . , sn, p1, . . . , pm) = q[s1, . . . , sn, p1, . . . , pm].

Remark 3.7. In [9], it was shown by an example that when Σ = Σ0 ∪ Σ1 with
|Σ0| = |Σ1| = 1, there is a congruence preserving function TΣ → TΣ which is not a
substitution function. So, some lower bound must be set on |Σ0| in Theorem 3.6,
although it is not yet known whether the bound 7 is the best possible. Here we
show that the theorem does not hold for Σ = Σ0 ∪Σ1, with |Σ1| = 1. For such a Σ
suppose Σ1 = {α} (note that no condition is set on |Σ0|). So, CΣ = {αn(ξ) | n ∈ N},
and TΣ{�1} = {αn1	m1 · · ·αnk	mk(c) | n1, m1, . . . , nk, mk ∈ N, c ∈ Σ0}. Hence,
all the substitution functions CΣ → TΣ are of the form αm(ξ) 	→ αkm+n(c) for
some fixed k,n ∈ N and c ∈ Σ0. Let, for a fixed c0 ∈ Σ0, F : CΣ → TΣ be
defined by F (αm(ξ)) = αm2

(c0) for all m ∈ N. Obviously F is not a substitution
function, however we show that it is congruence preserving: for any subset L ⊆
TΣ and m, n ∈ N, if αm(ξ) ∼L αn(ξ), then by induction on j it can be shown
that αj+m(c0) ≈L αj+n(c0). By putting j = m and once again j = n, we can
conclude that α2m(c0) ≈L α2n(c0). From this and αm(ξ) ∼L αn(ξ) we infer that
αm(α2m(c0)) ≈L αn(α2n(c0)), and so on. By induction on j, it can be shown that
αjm(c0) ≈l αjn(c0). Again by putting j = m and once again j = n, we can infer
that αm2

(c0) ≈L αn2
(c0), or in other words, F (αm(ξ)) ≈L F (αn(ξ)).
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A conference paper ([9]) was devoted to the proof of Theorem 3.6 for the functions
of the form (TΣ)n → TΣ. The next subsection contains a detailed proof of the
theorem for the functions of the form (CΣ)n → TΣ. In the last subsection we give
a proof of the theorem in its claimed generality.

3.1. Congruence preserving functions (CΣ)n → TΣ. In this rather technical
subsection, we provide the necessary definitions and lemmas for proving Theorem
3.18 below, which are generalizations of Definition 6 through Theorem 2 of [9].

Definition 3.8. A function δ : {	1, . . . , 	m} → CΣ is called a C-interpretation.
The extension δ∗ : TΣ{�1,...,�m} → TΣ of such a C-interpretation is defined by

• δ∗(c) = c for c ∈ Σ0,
• δ∗(	i(t)) = δ(	i)(δ∗(t)) for t ∈ TΣ{�1,�2,...,�m}, and
• δ∗(f(t1, . . . , tn)) = f(δ∗(t1), . . . , δ∗(tn)) for f ∈ Σn, t1, . . . , tn ∈ TΣ{�1,�2,...,�m}.

In other words δ∗(t) = t[δ(	1), . . . , δ(	m)] for any t[	1, . . . , 	m] ∈ TΣ{�1,...,�m}.
A function F : CΣ → TΣ{�1,...,�m} is said to be congruence preserving, if for every

C-interpretation δ, δ∗ ◦ F : CΣ → TΣ is congruence preserving.

The notion of subtree is the same as of subterm in Universal Algebra.

Definition 3.9. Let p and q be non-unit contexts, and t be a term.

(1) p is a subcontext of t, if p(s) is a subtree of t for some tree s.
(2) p is a subcontext of q, if either p is a subtree of q or p(s) is a subtree of q for

some tree s.
(3) q is independent from p if for every context r and every tree or context s, if q

is a subcontext of r(p(s)), then q is a subcontext of either r or s.
(4) q is non-overlapping, if for every context r and tree or context s such that q is

not a subcontext of r or s, q occurs only once as a subcontext of r(q(s)).
(5) q is independent from t, if for every context r, if q is a subcontext of r(t), then

q is a subcontext of r.
(6) t is independent from q, if for every context r and every tree or context s, if t

is a subtree of r(q(s)), then t is a subtree of either r or s.

Example 3.10. Suppose f ∈ Σ2, and a, b ∈ Σ0.

(1) q = f(f(a, f(ξ, a)), a) is not independent from p = f(b, f(f(a, ξ), a)), since
q is a subcontext of p(f(a, a)) = f(b, f(f(a, f(a, a)), a)), and that is because
q(a) = f(f(a, f(a, a)), a) is a subtree of p(f(a, a)).

(2) f(a, f(a, f(ξ, a))) and f(b, f(b, f(ξ, b))) are non-overlapping and independent
from each other.

(3) q = f(f(ξ, a), a) is not non-overlapping, since f(ξ, a)(q) = f(f(f(ξ, a), a), a)
has two q subcontexts.
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Lemma 3.11. For p, q ∈ CΣ and t ∈ TΣ, q is independent from p iff p is indepen-
dent from q, and q is independent from t iff t is independent from q.

Proof. (1): Assume q is independent from p and p is a subcontext of r(q(s)) for a
context r and a term or context s such that p is not a subcontext of r or s. We
note that p can not be a subcontext of q, since otherwise there would have been
a subcontext u of q, and a tree or context v such that u(p(v)) = q, and hence
by the independence of q from p, q should have been a subcontext of either u or
v, a contradiction. Hence by the above assumptions we can infer the existence
of a subcontext of q, call it u, and a context v such that either u(p) = q(v) or
p(u) = v(q). Both of these possibilities lead to contradictions since they imply
that q must be a subcontext of u. Hence, independence is a symmetric relation on
contexts.

(2): Assume q is independent from t and t is a subtree of r(q(s)) for contexts r, s

such that t is not a subtree of r or s. We note that q can not be a subcontext of t

by the independence of q from t. Hence, there must exist a subcontext u of q and
a term s′ such that u(t) = q(s′). Then by the independence of q from t, q must be
a subcontext of u as well, a contradiction.

(3): Assume t is independent from q and q is a subcontext of u(t) for a context
u such that q is not a subcontext of u. Then either q is a subcontext of t or t is a
subtree of q. Apparently, t can not be a subtree of q because by the assumption t is
independent from q. Also, q can not be a subcontext of t since from the existence
of a subcontext u of t and a subtree s of t such that t = u(q(s)) and from the
independence of t from q we must have that t is a subtree of either u or s, both of
which lead to contradiction. �

Being independent from a set of trees or contexts, means being independent from
each member of the set.

Proposition 3.12. Let Σ and Σ′ be ranked alphabets such that Σ′ = Σ′
0 ∪ Σ′

2,
Σ ⊆ Σ′, and |Σ2|, |Σ0| ≥ m for some m ≥ 1. Then for any D ⊂ CΣ′ ∪ TΣ′ such
that |D| < m, there exist a non-overlapping context in CΣ and a term in TΣ which
are independent from D.

Proof. For every f ∈ Σ2, and c ∈ Σ0, define pf,c
n by induction on n:

pf,c
1 = f(c, ξ), pf,c

n+1 = f(pf,c
n , c), and let tf,c

n = pf,c
n (c).

Obviously every pf,c
n is non-overlapping. We show that there are n ∈ N and f ∈ Σ2,

c ∈ Σ0 such that pf,c
n and tf,c

n are independent from D:
Take n to be a natural number greater than the height of all the members of D.

Take a f ∈ Σ2 that does not appear as the root symbol of any member of D, the
assumption |Σ2| > |D| enables us to pick such a symbol. For a tree t, denote the
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leftmost leaf of t by lf(t). For a context q in CΣ′ , we note that there is a unique
subtree of q in the form g(t1, t2) where g ∈ (Σ′)2 and one of the ti’s is ξ. Let lf(q)
be lf(t1) if t1 �= ξ, and lf(q) =lf(t2) otherwise. By |Σ0| > |D|, there is a c ∈ Σ0

which is not equal to lf(u) for any u ∈ D.
Assume for some context q ∈ D, a context r and a tree or context s, that pf,c

n is
a subcontext of r(q(s)), but not of r or s. Since the height of pf,c

n is greater than
the height of q, then either the root of q must appear in pf,c

n or lf(q) must be a
subtree of pf,c

n , and both of these are in contradiction with the choice of f and c.
A very similar argument shows that pf,c

n is also independent from all trees in D.
This also implies that tf,c

n = pf,c
n (c) is independent from D. �

For contexts u and v, the rewriting rule u(x) → v(x) when applied to a term
t, changes some subtree u(t′) of t, for a term t′, to v(t′). Recall that (cf. [5])
∆∗

{u(x)→v(x)}(t), for a term t, is the set of descendants of t under the rewriting rule
u(x) → v(x).

Lemma 3.13. Let F : CΣ → TΣ be congruence preserving. If for u, v ∈ CΣ, v is
non-overlapping and independent from {u, F (u)}, then F (v) ∈ ∆∗

{u(x)→v(x)}(F (u)).
Moreover, F (v) results from F (u) by replacing some subcontexts u with v.

Proof. Denote the closure of {F (u)} under the rewriting rule u(x) → v(x) by L,
i.e., L = ∆∗

{u(x)→v(x)}(F (u)). Since v is non-overlapping and independent from
{u, F (u)}, no application of the rule u(x) → v(x) results in a new subcontext
of the form u, and all the v’s appearing in the members of L (as subcontexts)
are obtained by applying the rewriting rule u(x) → v(x). So u ≈L v, and then
F (u) ≈L F (v) which implies that F (v) ∈ L since F (u) ∈ L. The second statement
is straightforward. �

In what follows, we suppose Σ = Σ0 ∪ Σ2 and |Σ2|, |Σ0| ≥ 7.

Lemma 3.14. Let F : CΣ → TΣ{�1,...,�k} be congruence preserving (for a k ∈ N)
and u, v ∈ CΣ. If v is non-overlapping and independent from {u, F (u)}, then F (v)
results from F (u) by replacing some of its subcontexts u with v.

Proof. By Proposition 3.12, there are non-overlapping w, w′ ∈ CΣ such that w is in-
dependent from {u, F (u), v, F (v)}, and w′ is independent from {w, u, F (u), v, F (v)}.

Define the C-interpretation δ : {	1, 	2, . . . , 	k} → CΣ by setting δ(	i) = w for
all i ∈ {1, . . . , k}. By the choice of w, v is independent from {u, δ∗(F (u))}. So we
can apply Lemma 3.13 to infer that δ∗(F (v)) results from δ∗(F (u)) by replacing
some subcontexts u with v. Note that F (v) is obtained by substituting all w’s in
δ∗(F (v)) by members of {	1, . . . , 	k}. The same is true about F (u) and δ∗(F (u)).

The positions of δ∗(F (v)) in which w appears are exactly the same positions of
δ∗(F (u)) in which w appears (by the choice of w). So, the positions of F (v) in
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which a member of {	1, . . . , 	k} appears are exactly the same positions of F (u) in
which a member of {	1, . . . , 	k} appears. We claim that members of {	1, . . . , 	k}
that appear in identical positions of F (u) and F (v) are identical: if not, there are
non-identical i, j ∈ {1, . . . , k} such that 	i appears in F (v) at some position and 	j

appears in F (u) at the same position (of F (u) and F (v)).
Define the C-interpretation γ : {	1, . . . , 	k} → CΣ by γ(	i) = w, and γ(	l) = w′

for all l �= i. Then w appears in γ∗(F (v)) at a position, call it p, and w′ appears in
γ∗(F (u)) at the same position p. On the other hand, since v is non-overlapping and
independent from {u, γ∗(F (u))}, by Lemma 3.13, γ∗(F (v)) results from γ∗(F (u)) by
replacing some subcontexts u with v. By the choice of w and w′, such a replacement
can not affect the occurrences of w or w′, and hence the subcontexts of γ∗(F (v))
and γ∗(F (u)) at the position p must be identical, a contradiction. This proves the
claim which implies that F (v) results from F (u) by replacing some subcontexts u

with v. �

Lemma 3.15. Let F : CΣ → TΣ{�1,...,�k} be congruence preserving. Then for any
u, v ∈ CΣ, F (v) results from F (u) by replacing some subcontexts u with v.

Proof. By Proposition 3.12, there exists a non-overlapping w ∈ CΣ independent
from {u, F (u), v, F (v)}. By Lemma 3.14, F (w) is obtained from F (u) by replac-
ing some subcontexts u with w, and also it results from F (v) by replacing some
subcontexts v with w. By the choice of w, all w’s appearing in F (w) have been
obtained either by replacing u with w in F (u) or by replacing v with w in F (v).
Since the only difference between F (v) and F (w) is in the positions of F (w) where
w appears, and the same is true for the difference between F (u) and F (w), then
F (v) can be obtained from F (u) by replacing some of its subcontexts u (the same
u’s which have been replaced by w to get F (w)) with v. �

Lemma 3.16. Every congruence preserving function F : CΣ → TΣ{�1,...,�k} is a
substitution function, i.e., there exists a term t[	1, . . . , 	k, 	k+1] ∈ TΣ{�1,...,�k,�k+1}
such that F (u) = t[	1, . . . , 	k, u] for all u ∈ CΣ.

Proof. Fix a u0 ∈ CΣ, and choose a non-overlapping v ∈ CΣ independent from
{u0, F (u0)}. By Proposition 3.12 such a v exists. Then by Lemma 3.15, F (v) results
from F (u0) by replacing some subcontexts u0 with v. Let t ∈ TΣ{�1,...,�k,�k+1} result
from F (u0) by putting 	k+1 exactly at the same positions in which u0’s are replaced
with v’s to get F (v). By the independence of v from {u0, F (u0)} such a t can
be uniquely found. So, F (u0) = t[	1, . . . , 	k, u0] and also F (v) = t[	1, . . . , 	k, v],
moreover all v’s in F (v) are obtained from t by substituting all 	k+1’s by v. We show
that for any u ∈ CΣ, F (u) = t[	1, . . . , 	k, u] holds: By Proposition 3.12, there exists
a non-overlapping w which is independent from the set {u0, F (u0), v, F (v), u, F (u)}.
By Lemma 3.15, F (w) results from F (v) by replacing some subcontexts v with w.
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We claim that all v’s are replaced with w’s in F (v) to get F (w). If not, then v must
be a subcontext of F (w). By Lemma 3.15, F (u0) results from F (w) by replacing
some subcontexts w with u0, and so by the choice of w, we can infer that v is a
subcontext of F (u0) which is in contradiction with the choice of v. So the claim
is proved and then we can write F (w) = t[	1, . . . , 	k, w]. Moreover all w’s in F (w)
are obtained from t by substituting 	k+1 by w. Again by Lemma 3.15, F (u) results
from F (w) by replacing some w subcontexts with u. We can claim that all w’s
appearing in F (w) are replaced with u to get F (u). Since otherwise w would have
been a subcontext of F (u) which is in contradiction with the choice of w. This
shows that F (u) = t[	1, . . . , 	k, u]. �

The following example illustrates obtaining such a tree t in the above lemma.

Example 3.17. For a ranked alphabet Σ suppose f ∈ Σ2 and c ∈ Σ0. Define the
function F : CΣ → TΣ{�1} by F (p) = f

(
	1(p(c)), p(p(	1(c)))

)
for all p ∈ CΣ. It

can be easily seen that F is congruence preserving. Moreover, F is a substitution
function defined by t[	1, 	2] = f

(
	1(	2(c)), 	2(	2(	1(c)))

)
∈ TΣ{�1,�2}. Indeed,

F (p) = t[	1, p] for all p ∈ CΣ.

Theorem 3.18. Every congruence preserving F : (CΣ)n → TΣ (n ∈ N) is a substi-
tution function (recall that Σ = Σ0 ∪ Σ2 and |Σ2|, |Σ0| ≥ 7).

Proof. We proceed by induction on n. For n = 1 the theorem is Lemma 3.16
with k = 0. For the induction step let F : (CΣ)n+1 → TΣ be a congruence pre-
serving function. For any u ∈ CΣ define Fu : (CΣ)n → TΣ by Fu(u1, . . . , un) =
F (u1, . . . , un, u). By the induction hypothesis every Fu is a substitution func-
tion, i.e., there is an tu[	1, . . . , 	n] in TΣ{�1,...,�n} such that Fu(u1, . . . , un) =
tu[u1, . . . , un] for all u1, . . . , un ∈ CΣ. Note that such a term tu is unique for every
u. The mapping CΣ → TΣ{�1,...,�n} defined by u 	→ tu is also congruence preserving.
Hence by Lemma 3.15, it is a substitution function. So there is a t[	1, . . . , 	n, 	n+1]
in TΣ{�1,...,�n,�n+1} such that tu = t[	1, . . . , 	n, u], hence F (u1, . . . , un, un+1) =
Fun+1(u1, . . . , un) = tun+1 [u1, . . . , un] = t[	1, . . . , 	n, un+1][u1, . . . , un]. It follows
that F (u1, . . . , un, un+1) = t[u1, . . . , un, un+1] is a substitution function. �

3.2. Proof of Theorem 3.6. Here, we generalize Theorem 3.18 for the functions
of the form (TΣ)n × (CΣ)m → TΣ or (TΣ)n × (CΣ)m → CΣ (Theorem 3.6 below.)
We recall the following definition from [9]:

Definition 3.19. An interpretation of X in TΣ is a function ε : X → TΣ. Its unique
extension to a Σ-homomorphism TΣ(X) → TΣ is denoted by ε∗.

Definition 3.20. A function F : CΣ → T (Σ{	1, . . . , 	m}, X) is congruence preserv-
ing if ε∗ ◦ F : CΣ → TΣ{�1,...,�m} is congruence preserving for every interpretation
ε : X → TΣ (recall Definition 3.8).
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Lemma 3.21. Every congruence preserving function CΣ → T (Σ{	1, . . . , 	k}, {x}),
where x is a variable, is a substitution function.

Proof. Let F : CΣ → T (Σ{	1, . . . , 	k}, {x}) be congruence preserving and take a
p0 ∈ CΣ, and an s ∈ TΣ independent from {p0, F (p0)}, by Proposition 3.12.
Let the interpretation ε : {x} → TΣ be defined by ε(x) = s. By Lemma 3.16,
ε∗◦F is a substitution function, defined by an r[	1, . . . , 	k, 	k+1] in TΣ{�1,...,�k,�k+1},
i.e., ε∗F (u) = r[	1, . . . , 	k, u] for all u ∈ CΣ. By the choice of s, all the oc-
currences of s in ε∗F (p0) result from ε (by replacing x with s) so we can write
F (p0) = ε∗F (p0)[s ← x] (all s’s are replaced with x). Let t = r[s ← x] be
the term in T (Σ{	1, . . . , 	k, 	k+1}, {x}) which results from r by replacing all sub-
trees s with x. Then F (p0) = t[x, 	1, . . . , 	k, p0]. We show that F is defined by
t, i.e., F (q) = t[x, 	1, . . . , 	k, q], for all q ∈ CΣ. Let a q ∈ CΣ be given. By
Proposition 3.12, there is an s′ ∈ TΣ independent from {p0, F (p0), F (q0), s}. De-
fine the interpretation δ : {x} → TΣ by δ(x) = s′. By Lemma 3.16, δ∗ ◦ F is
a substitution function defined by an r′[	1, . . . , 	k, 	k+1] in TΣ{�1,...,�k,�k+1}. In
particular δ∗F (p0) = r′[	1, . . . , 	k, , p0], and δ∗F (q) = r′[	1, . . . , 	k, q]. Choose
a non-overlapping q0 independent from {r, r′, s, s′} by Proposition 3.12. From
r′[	1, . . . , 	k, q0] = δ∗F (q0) = ε∗F (q0)[s ← s′] = r[	1, . . . , 	k, q0][s ← s′], and by
the the choice of q0, it follows that r′ results from r by replacing all the sub-
trees s with s′. On the other hand, by the independence of s′ from {q, F (q)},
F (q) = δ∗F (q)[s′ ← x], so F (q) = r′[	1, . . . , 	k, q][s′ ← x] which implies F (q) =
r[s ← x][	1, . . . , 	k, q], hence F (q) = t[	1, . . . , 	k, q]. �
Lemma 3.22. For any set of variables X, every congruence preserving function
F : CΣ → T (Σ{	1, . . . , 	k}, X) is a substitution function.

Proof. Let x �∈ X , and let g : X → {x} be the constant function which maps every
member of X to x. It can be uniquely extended to a Σ{	1, . . . , 	k}-homomorphism
g∗ : T (Σ{	1, . . . , 	k}, X) → T (Σ{	1, . . . , 	k}, {x}). By Lemma 3.21, g∗ ◦F is a sub-
stitution function, defined by a r[x, 	1, . . . , 	k, 	k+1 ] in T (Σ{	1, . . . , 	k, 	k+1}, {x}).
So, for every u ∈ CΣ, F (u) can be obtained from r[x, 	1, . . . , 	k, u] by replac-
ing x’s with some appropriate members of X . For any p, q ∈ CΣ, take some
t, t′ in T (Σ{	1, . . . , 	k, 	k+1}, X) such that F (p) = t[X, 	1, . . . , 	k, p] and F (q) =
t′[X, 	1, . . . , 	k, q]. All we have to show is that t = t′ which immediately implies
that F (u) = t[X, 	1, . . . , 	k, u] for all u ∈ CΣ. If not, there are x1, x2 ∈ X such that
for a position z of t and t′, x1 appears in t at position z, and x2 appears in t′ at
the same position, note that the only difference of t and t′ could be the appearance
of the members of X . Take an s ∈ TΣ independent from {p, F (p), t, q, F (q)}, and
an s′ ∈ TΣ independent from {p, F (p), t, q, F (q), s}, by Proposition 3.12. Note that
s and s′ are independent from t′ as well. Define the interpretation ε : X → TΣ

by ε(x1) = s and ε(y) = s′ for all y ∈ X \ {x1}. Then s appears at the position
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z of ε∗F (p) and s′ appears at the same position of ε∗F (q). On the other hand,
we know from Lemma 3.16 that ε∗ ◦ F is a substitution function. This leads to a
contradiction by the choice of s and s′. �

Definition 3.23. For a t ∈ TΣ, ηt : CΣ → TΣ is defined by ηt(p) = p(t) for every
p ∈ CΣ. A function F : CΣ → C(Σ{	1, . . . , 	m}, X) is congruence preserving, if
ηt ◦F : CΣ → T (Σ{	1, . . . , 	m}, X) is congruence preserving for every t ∈ TΣ (recall
Definition 3.20).

Lemma 3.24. For any set of variables X, every congruence preserving F : CΣ →
C(Σ{	1, . . . , 	k}, X) is a substitution function.

Proof. Let ı : C(Σ{	1, . . . , 	k}, X) → T (Σ{	1, . . . , 	k}, X ∪ {ξ}) be the inclusion
function. The lemma immediately follows from Lemma 3.22 once we note that F

is congruence preserving iff ı ◦ F is congruence preserving. �

With an argument very similar to the proofs of Lemmas 3.21, 3.22, and 3.24, the
following lemma can be proved:

Lemma 3.25. For any set of variables X, all congruence preserving functions of
the form TΣ → T (Σ{	1, . . . , 	k}, X), or TΣ → C(Σ{	1, . . . , 	k}, X) are substitution
functions.

Finally, we can prove the main theorem of this section.

Theorem 3.6. If Σ = Σ0∪Σ2 and |Σ0|, |Σ2| ≥ 7, then every congruence preserving
function (TΣ)n × (CΣ)m → TΣ or (TΣ)n × (CΣ)m → CΣ is a substitution function.

Proof. Let F : (TΣ)n × (CΣ)m → TΣ be congruence preserving. For m = 0 the the-
orem follows from Theorem 2 of [9]. Suppose m �= 0. For any (p1, . . . , pm) ∈
(CΣ)m define the function F(p1,...,pm) : (TΣ)n → TΣ by F(p1,...,pm)(t1, . . . , tn) =
F (t1, . . . , tn, p1, . . . , pm). By Theorem 2 of [9], F(p1,...,pm) is a substitution func-
tion, i.e., there is a t(p1,...,pm)[x1, . . . , xn] ∈ T (Σ, {x1, . . . , xn}) such that for all
s1, . . . , sn ∈ TΣ, F(p1,...,pm)(s1, . . . , sn) = t(p1,...,pm)[s1, . . . , sn]. Now, the function
F ′ : (CΣ)m → T (Σ, {x1, . . . , xn}), F ′(p1, . . . , pm) = t(p1,...,pm) is congruence pre-
serving. By induction on m with an argument similar to the proof of Theorem 3.18
(and the proof of Theorem 2 in [9]) using Lemma 3.22, it can be shown that F ′ is
a substitution function as well, i.e., there is a term t[x1, . . . , xn, 	1, . . . , 	m] in the
set T (Σ{	1, . . . , 	m}, {x1, . . . , xn}) such that F ′(p1, . . . , pm) = t[p1, . . . , pm]. So,
F (s1, . . . , sn, p1, . . . , pm) = F(p1,...,pm)(s1, . . . , sn) = F ′(p1, . . . , pm)[s1, . . . , sn] =
t[s1, . . . , sn][p1, . . . , pm] = t[s1, . . . , sn, p1, . . . , pm] is a substitution function defined
by t[x1, . . . , xn, 	1, . . . , 	m].
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Now let F : (TΣ)n × (CΣ)m → CΣ be congruence preserving. For m = 0, the
theorem follows from Lemma 3.25. And for m �= 0, the claim (that F is a substi-
tution function) can be proved by an argument very similar to the one used in the
previous case and making use of Lemma 3.24. �

4. Congruence preserving functions of tree algebras

In this final section we prove the main theorems of the paper. Note that as a
direct consequence of Theorem 3.6, we have that for |A| ≥ 7, every congruence
preserving function of the form T

m

A ×C
k

A → TA or T
m

A ×C
k

A → CA is a substitution
function, where TΣA = TA and CΣA = CA.

4.1. Congruence preserving functions A
n ×T

m

A ×C
k

A → A. First we note that
the condition |A| ≥ 3, in Theorem 2.6 can not be improved.

Remark 4.1. The Theorem does not hold for |A| = 2. For A = {a, b}, let F : A →
A be defined by F (a) = b and F (b) = a. The function F is obviously congruence
preserving but is not a constant or projection function (cf. Remark 3 of [9]).

We aim at showing that every congruence preserving function An → A is either
a constant or projection function, if |A| ≥ 3. For A′ ⊆ A, the subset TA′ ⊆ TA is
defined in a natural way.

Lemma 4.2. Let F : A → A be a congruence preserving function and a, b ∈ A. If
F (a) ∈ {a, b}, then F (b) ∈ {a, b}.

Proof. Suppose F (a) is a or b. Let L = T{a,b}. Then a ≈L
A b, hence F (a) ≈L

A F (b).
Since cF (a) ∈ L, then cF (b) ∈ L. The fact that the only trees with height one in L

are ca and cb, implies that F (b) is either a or b. �

Lemma 4.3. Let F : A → A be a congruence preserving function and a ∈ A. Then

(1) F (F (a)) ∈ {a, F (a)}, and
(2) if F (a) = a, then for every b ∈ A, F (b) ∈ {a, b}.

Proof. Immediate from Lemma 4.2. �

Lemma 4.4. If |A| ≥ 3, then every congruence preserving function F : A → A has
a fixed point, i.e., there is an a ∈ A such that F (a) = a.

Proof. Take an arbitray b ∈ A and assume that neither b nor F (b) are fixed points
of F , i.e., F (b) �= b, and F (F (b)) �= F (b). By Lemma 4.3 (1), F (F (b)) ∈ {b, F (b)},
so F (F (b)) = b. By |A| ≥ 3, there is an a ∈ A non-identical to b and F (b). Since
F (b) �∈ {a, b}, then by Lemma 4.2, F (a) �∈ {a, b}. Similarly from F (F (b)) = b �∈
{a, F (b)} and Lemma 4.2, one gets F (a) �∈ {a, F (b)}. Hence F (a) �∈ {a, b, F (b)}.
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Now, let L = T{a,b,F (b)}. Since a ≈L
A F (b), then F (a) ≈L

A F (F (b)) = b. From
cb ∈ L one can infer that cF (a) ∈ L, which implies that F (a) ∈ {a, b, F (a)}, a
contradiction. �

Lemma 4.5. For |A| ≥ 3, every congruence preserving function F : A → A is
either a constant function or the identity function over A.

Proof. By Lemma 4.4, there is an a ∈ A such that F (a) = a. Take an arbitrary
b ∈ A. By Lemma 4.3 (2), F (b) ∈ {a, b}. We distinguish two cases:

(1) F (b) = b. We show that F is the identity function. For every c ∈ A (other
than a or b) by using Lemma 4.3 (2) twice, we get F (c) ∈ {a, c} and F (c) ∈ {b, c},
which implies that F (c) = c, or in other words, F is the identity function.

(2) F (b) = a. We show that F is the constant function that maps every member
of A to a. For every c ∈ A \ {a, b}, by Lemma 4.3 (2), F (c) ∈ {a, c}. If F (c) = c,
then again by Lemma 4.3 (2), F (b) ∈ {c, b}, that is in contradiction with F (b) = a.
So, F (c) = a. �

By an argument very similar to the proof of Lemma 4.2, we can show the fol-
lowing lemma.

Lemma 4.6. Let F : A
n+1 → A be congruence preserving and a, b, d1, . . . , dn ∈ A.

If F (a, d1, . . . , dn) ∈ {a, b}, then F (b, d1, . . . , dn) ∈ {a, b}.

Theorem 4.7. For |A| ≥ 3, every congruence preserving function F : A
n → A, for

every n ∈ N, is either a constant function or a projection function over A.

Proof. By induction on n. For n = 1 the theorem is Lemma 4.5. For the induction
step (n + 1), suppose F : A

n+1 → A is congruence preserving. For each a ∈ A, let
Fa : A

n → A be defined by Fa(a1, . . . , an) = F (a, a1, . . . , an). Since each such Fa is
congruence preserving, by the induction hypothesis it is either a constant function
or a projection function over A.

We show that either all Fa’s (a ∈ A), are constant functions or all Fa’s are
projection functions over A. Assume this is not the case. So, there are a, b ∈ A

such that Fa is a constant function, say Fa(a1, . . . , an) = d for a d ∈ A, and Fb is
a projection function, say Fb(a1, . . . , an) = ai. We distinguish two cases:

(1) d ∈ {a, b}, or Fa(a1, . . . , an) ∈ {a, b}. There is an e ∈ A such that a �= e �= b,
since |A| ≥ 3. Since F (a, e, . . . , e) = Fa(e, . . . , e) = d ∈ {a, b}, then by Lemma 4.6,
e = Fb(e, . . . , e) = F (b, e, . . . , e) ∈ {a, b}, a contradiction.

(2) d �∈ {a, b}. In this case the relations F (b, a, . . . , a) = Fb(a, . . . , a) = a ∈ {a, b},
and F (a, a, . . . , a) = Fa(a, . . . , a) = d �∈ {a, b} are in contradiction with Lemma 4.6.

Hence, the claim is proved: either for every a ∈ A, Fa is a constant function, or
for every a ∈ A, Fa is a projection function. We treat each case separately:
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(1) All Fa’s are projection functions. We show that they are all equal as well.
If not, there are a, b ∈ A such that Fa(a1, . . . , an) = ai and Fb(a1, . . . , an) = aj

for all a1, . . . , an ∈ A where i �= j. Choose a d ∈ A non-identical to a and b.
Let (a1, . . . , an) ∈ An be ak = d for k �= j, and aj = a. Then F (a, a1, . . . , an) =
Fa(a1, . . . , an) = ai = d �∈ {a, b}, and F (b, a1, . . . , an) = Fb(a1, . . . , an) = aj =
a ∈ {a, b}. We get a contradiction by Lemma 4.6. So the claim is proved: all Fa’s
are equal, say to πn

i , and hence F equals to πn+1
i+1 , that is F (a1, a2, . . . , an+1) =

Fa1(a2, . . . , an+1) = ai+1.
(2) All Fa’s are constant functions. So for every a ∈ A, there is a (unique)

da ∈ A such that Fa(a1, . . . , an) = da. Now the mapping F ′ : A → A defined
by a 	→ da is congruence preserving as well, hence by Lemma 4.5, F ′ is either a
constant function or the identity function over A. If F ′ is a constant function,
then clearly F is also a constant function: F (a1, a2, . . . , an, an+1) = F ′(a1). If F ′

is the identity function over A, then F is the projection function πn+1
1 , that is

F (a1, a2, . . . , an+1) = F ′(a1) = a1. �

In the following lemma we show that every congruence preserving CA → A is a
constant function, when |A| ≥ 2. A very similar proof can be applied for showing
that every congruence preserving TA → A, if |A| ≥ 2, is a constant function as well.
Theorem 2.6 follows from these observations.

Lemma 4.8. If |A| ≥ 2, then every congruence preserving F : CA → A is a constant
function.

Proof. Recall that ξ �∈ CA. For every a ∈ A, define the sequence {pa
n}n ⊂ CA

inductively by pa
1 = fa(ξ, ca), and pa

n+1 = fa(pa
n, ca). We note that for any

distinct a, b ∈ A, pa
m is independent from pb

n for all m, n.
Firstly, we show that there is an a ∈ A such that F (pa

1) = a. Take an arbitrary
a ∈ A. If F (pa

1) = b �= a, then for L = {pa
1(ca), pb

1(ca)}, the relation pa
1 ≈L

C pb
1 holds,

and so F (pa
1) ≈L

A F (pb
1) or b ≈L

A F (pb
1) holds too. This implies that F (pb

1) = b,
since if F (pb

1) = d �= b, then by d ≈L
A b, the set L would have had more than two

elements, like fd(cb, ca), fd(cd, ca), fb(cd, ca), etc., a contradiction. So, we showed
that if F (pa

1) = b �= a, then F (pb
1) = b.

Secondly, we note that there is an a ∈ A such that F (pb
n) = a for every b ∈ A and

every natural n. Take the above claimed a with F (pa
1) = a and take a n ∈ N and

b ∈ A with b �= a. Then for L = {pa
1(ca), pb

n(ca)}, no x ∈ A\{a} can satisfy x ≈L
A a,

since otherwise, with an argument similar to the previous case, L would have had
more than two elements. In particular, since pa

1 ≈L
C pb

n and hence a = F (pa
1) ≈L

A

F (pb
n), so F (pb

n) = a. Now the same argument with L′ = {pa
n(ca), pb

1(ca)} shows
that F (pa

n) = F (pb
1) = a.

Finally, we show that there is an a ∈ A such that F (p) = a for every p ∈ CA.
Take the above a with F (pb

n) = a (for every b ∈ A and natural n). Take an arbitrary
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p ∈ CA and suppose its height is m. There is a b ∈ A such that p is independent
from pb

2m (cf. Proposition 3.12). So, for L = {pb
2m(ca), p(ca)} we have p ≈L pb

2m,
and thus F (p) ≈L F (pb

2m) = a, and this implies that F (p) = a, since otherwise if
F (p) = d �= a, then d ≈L a implies that pb

2m(cd) ∈ L which means that L has at
least two elements of height 2m (namely pb

2m(cd) and pb
2m(ca)), a contradiction. �

We have now completed providing the necessary tools for proving the main the-
orem of this subsection.

Theorem 2.6. If |A| ≥ 3, then every congruence preserving A
n × C

k

A × T
m

A → A

is either a constant function or a projection function over A.

Proof. Suppose |A| ≥ 3. An argument similar to the one used in the proof of
the previous lemmas shows that every congruence preserving TA → A is a constant
function. By induction on m and k it can be shown that every congruence preserving
(TA)m × (CA)k → A is a constant function as well. Combining this with Theorem
4.7 gives a proof for Theorem 2.6. �

4.2. Congruence preserving functions A
n ×T

m

A ×C
k

A → TA/CA. In what fol-
lows we take A to be an alphabet containing at least seven letters. By Theorem
3.6, every congruence preserving function T

m

A ×C
k

A → TA is a substitution function
defined by a term t[x1, . . . , xm, 	1, . . . , 	k] in T (ΣA{	1, . . . , 	k}, {x1, . . . , xm}), simi-
larly every congruence preserving function T

m

A ×C
k

A → CA is a substitution function
defined by a context q[x1, . . . , xm, 	1, . . . , 	k] in C(ΣA{	1, . . . , 	k}, {x1, . . . , xm}).

By the techniques elaborated in subsection 4.1 this result can be generalized
to show that every congruence preserving function F : A

n × T
m

A × C
k

A → TA is a
substitution function. That is to say, for a fixed set of new symbols {z1, z2, . . . }
disjoint from A ∪ {x1, x2, . . . , 	1, 	2, . . . }, there is a term

t[z1, . . . , zn, x1, . . . , xm, 	1, . . . , 	k] ∈ T (ΣA∪{z1,...,zn}{	1, . . . , 	k}, {x1, . . . , xm}),
such that

F (a1, . . . , an, s1, . . . , sm, p1, . . . , pk) = t[a1, . . . , an, s1, . . . , sm, p1, . . . , pk],

for every a1, . . . , an ∈ A, s1, . . . , sm ∈ TA, and p1, . . . , pk ∈ CA. Similarly every
congruence preserving function F ′ : A

n ×T
m

A ×C
k

A → CA is a substitution function
defined by a context

q[z1, . . . , zn, x1, . . . , xm, 	1, . . . , 	k] ∈ C(ΣA∪{z1,...,zn}{	1, . . . , 	k}, {x1, . . . , xm}),
such that

F ′(a1, . . . , an, s1, . . . , sm, p1, . . . , pk) = q[a1, . . . , an, s1, . . . , sm, p1, . . . , pk].

Obviously, the term t[a1, . . . , an, s1, . . . , sm, p1, . . . , pk] results from t by replacing
all czj ’s with caj ’s, by replacing fzj (s, r)’s with faj (s, r)’s, and by replacing 	j(r)’s
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with pj(r)’s and xj ’s with sj ’s, for every possible j and terms r, s. By similar
replacements, the context q[a1, . . . , an, s1, . . . , sm, p1, . . . , pk] results from q.

Theorems 2.7 and 2.8, follow from the above observations.

Remark 4.9. For an alphabet A, Wilke’s functions over A (Definition 2.2) are
substitution functions: ιA, κA, and ηA are defined by cz1 , fz1(x1, x2), and 	1(x1)
in T (ΣA∪{z1}{	1}, {x1, x2}), respectively. Also λA, ρA, and σA are defined by
fz1(ξ, x1), fz1(x1, ξ), and 	1(	2(ξ)) in C(ΣA∪{z1}{	1, 	2}, {x1}), respectively.

Recall that the alphabet A satisfies |A| ≥ 7.

Theorem 2.7. Every congruence preserving function A
n × C

k

A × T
m

A → TA, is in
Pclone〈{ιA, κA, ηA}〉.

Proof. We show that the substitution function defined by any term

t[z1, . . . , zn, x1, . . . , xm, 	1, . . . , 	k] ∈ T (ΣA∪{z1,...,zn}{	1, . . . , 	k}, {x1, . . . , xm}),

is in Pclone〈{ιA, κA, ηA}〉.
For such a t, let t̂ be the substitution function defined by t. The proof is by the

induction on the complexity of t.
First we note that for a ∈ A, i ∈ {1, . . . , n}, and j ∈ {1, . . . , m}, and for all

letters a1, . . . , an ∈ A, trees s1, . . . , sm ∈ TA, and contexts p1, . . . , pk ∈ CA,

• x̂j is the projection function (a1, . . . , an, s1, . . . , sm, p1, . . . , pk) 	→ sj ,
• ĉa is the constant function (a1, . . . , an, s1, . . . , sm, p1, . . . , pk) 	→ ιA(a), and
• ĉzi is a combination of ιA and a projection function, satisfying

(a1, . . . , an, s1, . . . , sm, p1, . . . , pk) 	→ ιA(ai).

For the induction step, suppose for terms t and r the functions t̂ and r̂ are in
Pclone〈{ιA, κA, ηA}〉. For simplicity write (a1, . . . , an) = a, (s1, . . . , sm) = s, and
(p1, . . . , pk) = p. Then for a ∈ A, i ∈ {1, . . . , n}, and j ∈ {1, . . . , k},
• 	̂j(t) maps (a, s,p) to ηA

(
pj , t̂(a, s,p)

)
,

• f̂a(t, r) maps (a, s,p) to κA
(
a, t̂(a, s,p), r̂(a, s,p)

)
, and

• ̂fzi(t, r) maps (a, s,p) to κA
(
ai, t̂(a, s,p), r̂(a, s,p)

)
.

Hence, 	̂j(t), f̂a(t, r), and ̂fzi(t, r) are in Pclone〈{ιA, κA, ηA}〉 too. �

Theorem 2.8. Every congruence preserving function A
n × C

k

A × T
m

A → CA, is in
Pclone〈{ιA, κA, ηA, λA, ρA, σA}〉.

Proof. Let P = Pclone〈{ιA, κA, ηA, λA, ρA, σA}〉. Keeping the notation of the proof
of Theorem 2.7, we show that for any context q the substitution function defined
by q, denoted by q̂, is in P . Note that for any term t, the function t̂ belongs to P
as well. For a ∈ A, i ∈ {1, . . . , n}, j ∈ {1, . . . , k}, and term t,
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• 	̂j(ξ) is the projection function (a1, . . . , an, s1, . . . , sm, p1, . . . , pk) 	→ pj ,
• f̂a(ξ, t) maps (a, s,p) to λA

(
a, t̂(a, s,p)

)
,

• ̂fzi(ξ, t) maps (a, s,p) to λA
(
ai, t̂(a, s,p)

)
,

• f̂a(t, ξ) maps (a, s,p) to ρA
(
a, t̂(a, s,p)

)
, and

• ̂fzi(t, ξ) maps (a, s,p) to ρA
(
ai, t̂(a, s,p)

)
.

So, for every elementary context q, q̂ ∈ P . For the induction step, suppose for a
context p, p̂ ∈ P . Then for a ∈ A, i ∈ {1, . . . , n}, j ∈ {1, . . . , k}, and term t,

• 	̂j(p) maps (a, s,p) to σA
(
pj , p̂(a, s,p)

)
,

• f̂a(p, t) maps (a, s,p) to σA
(
λA

(
a, t̂(a, s,p)

)
, p̂(a, s,p)

)
,

• ̂fzi(p, t) maps (a, s,p) to σA
(
λA

(
ai, t̂(a, s,p)

)
, p̂(a, s,p)

)
,

• f̂a(t, p) maps (a, s,p) to σA
(
ρA

(
a, t̂(a, s,p)

)
, p̂(a, s,p)

)
, and

• ̂fzi(t, p) maps (a, s,p) to σA
(
ρA

(
ai, t̂(a, s,p)

)
, p̂(a, s,p)

)
.

Hence, 	̂j(p), f̂a(p, t), ̂fzi(p, t), f̂a(t, p), and ̂fzi(t, p) are in P too. �

We close the paper with an example (cf. Example 1 of [9]).

Example 4.10. Let A = {a, b}. The function F : A × TA × CA → CA defined by

F (a1, t1, p1) = fa

(
fa1

(
fb(ca, ca), ξ

)
, p1

(
fb(t1, ca1)

))
for a1 ∈ A, t1 ∈ TA and p1 ∈ CA, is a substitution function defined by

r = fa

(
fz1

(
fb(ca, ca), ξ

)
, 	1

(
fb(x1, cz1)

))
∈ T (ΣA∪{z1}{	1}, {x1}).

That is to say F (a1, t1, p1) = r̂(a1, t1, p1).
Moreover, F ∈ Pclone〈{ιA, κA, ηA, λA, ρA, σA}〉, since

r̂(a1, t1, p1) = σA
(
λA

(
a, ηA

(
p1, κ

A(b, t1, ιA(a1))
))

, ρA
(
a1, κ

A(b, ιA(a), ιA(a))
))

.
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