
Annals of Pure and Applied Logic 169 (2018) 971–980
Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

On constructivity and the Rosser property:
a closer look at some Gödelean proofs ✩

Saeed Salehi a,b,∗, Payam Seraji c

a Research Institute for Fundamental Sciences, University of Tabriz, 29 Bahman Boulevard, P.O.Box 
51666-16471, Tabriz, Iran
b School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box 19395-5746, 
Tehran, Iran
c Department of Mathematical Sciences, University of Tabriz, 29 Bahman Boulevard, P.O.Box 
51666-16471, Tabriz, Iran

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 May 2017
Received in revised form 15 January 
2018
Accepted 23 April 2018
Available online 29 May 2018

MSC:
03F40
03F30
03D32
68Q30

Keywords:
Constructive proof
Rosser Property
Incompleteness
Kleene’s proof
Chaitin’s proof
Boolos’ proof

The proofs of Kleene, Chaitin and Boolos for Gödel’s First Incompleteness Theorem 
are studied from the perspectives of constructivity and the Rosser property. A proof 
of the incompleteness theorem has the Rosser property when the independence of 
the true but unprovable sentence can be shown by assuming only the (simple) 
consistency of the theory. It is known that Gödel’s own proof for his incompleteness 
theorem does not have the Rosser property, and we show that neither do Kleene’s 
or Boolos’ proofs. However, we show that a variant of Chaitin’s proof can have 
the Rosser property. The proofs of Gödel, Rosser and Kleene are constructive 
in the sense that they explicitly construct, by algorithmic ways, the independent 
sentence(s) from the theory. We show that the proofs of Chaitin and Boolos are not 
constructive, and they prove only the mere existence of the independent sentences.
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1. Introduction

A constructive proof provides an algorithm for constructing the claimed object; a non-constructive proof 
does not show the existence of that object algorithmically, even if sometimes an effective procedure might 
be hidden inside the details. A proof then is proved to be (essentially) non-constructive when one can 
show that there is no algorithm (computable function) which, given the assumptions (coded as input), 
produces the claimed object whose existence is demonstrated in the proof. Below, we will see one example 
of a (seemingly) non-constructive proof (namely, the proof of Kleene [12] for Gödel’s first incompleteness 
theorem, stated below) which can be made constructive by unpacking some details; we will also see a couple 
of proofs (namely, the proofs of Boolos [2] and Chaitin [4] for Gödel’s first incompleteness theorem) that 
are shown to be non-constructive, by proving the non-existence of any algorithm for computing the claimed 
object (namely, the true but unprovable sentence).

The (First) Incompleteness Theorem (of Gödel [6]) states that for a sufficiently strong re theory T there 
exists a sentence ψT in the language of T such that

1. the sentence ψT is true (in the standard model of natural numbers);
2. if T is consistent then T � ψT ;
3. if T is ω-consistent then T � ¬ψT .

By a proof of the incompleteness theorem we mean a demonstration of the existence of such a sentence 
(ψT ) for any given consistent and re theory T that is sufficiently strong (to be made precise later). Such a 
proof witnesses the Rosser property ([17]) when the condition of ω-consistency can be replaced with (simple) 
consistency; that is to say that the condition 3 above can be replaced with the following condition

3′. if T is consistent then T � ¬ψT .

Gödel’s original proof [6] for his incompleteness theorem is constructive, i.e., given a (finite) description of a 
consistent re theory (e.g. an input-free program which outputs the set of all the axioms of the theory) the 
proof exhibits, in an algorithmic way, a sentence which is true (in the standard model of natural numbers N) 
but unprovable in the theory. For the independence of this sentence from the theory (i.e., the unprovability of 
its negation in the theory) Gödel also assumes the theory to be ω-consistent; so if the theory is ω-consistent, 
then that (true) sentence is independent from the theory (see e.g. [22,21]). It turned out later that the simple 
consistency of the theory does not suffice for the independence of the Gödel sentence (from the theory) and 
the optimal condition (which is much weaker than ω-consistency) is the consistency of the theory with its own 
consistency statement ([8, Theorems 35,36]). Rosser’s proof [17] for Gödel’s first incompleteness theorem 
assumes only the simple consistency of the (re) theory and constructs (algorithmically) an independent 
(and true) sentence. So, one can say that Gödel’s proof does not have the Rosser property. Here, we will 
see that while a variant of the proof of Chaitin has the Rosser property (i.e., the independence of Chaitin’s 
sentence from the theory can be proved by assuming only the simple consistency of the theory), the proof 
of Boolos does not have the Rosser property (and the optimal condition for the independence of a Boolos 
sentence is the consistency of the theory with its own consistency statement).

2. The proof of Kleene for Gödel’s incompleteness theorem

A very cute proof for Gödel’s incompleteness theorem is that of Kleene (see e.g. [12,21]) which deserves 
more recognition.
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Notation 2.1 (Computability). Let ϕ0, ϕ1, ϕ2, · · · be a list of all unary computable (partial recursive) func-
tions (in a way that ϕi(j), if it exists, can be computed from i and j). A recursively enumerable set (re for 
short) is the domain of ϕi, for some i ∈ N, which is denoted by Wi. The notation ϕi(j)↑ means that the 
function ϕi is not defined at j, or j /∈ Wi; and ϕi(j)↓ means that ϕi is defined at j or j ∈ Wi. Needless to 
say, ϕi(j) = k means that ϕi is defined at j and is equal to k. ⊕⊗

Robinson’s Arithmetic is denoted by Q (see [24] or [21]). In all the results of this paper, the theory Q can 
be replaced with a (much) weaker theory called R (see [24]). The theory Q is finitely axiomatizable, while 
R is not.

Theorem 2.2 (Kleene’s Theorem). For a given consistent and re theory T that contains Q there exists some 
t ∈ N such that ϕt(t)↑ but T � “ϕt(t)↑”.

Non-Constructive Proof. Let KT = {n ∈ N | T � “ϕn(n)↑”}; then we have KT ⊆ K = {n ∈ N | ϕn(n)↑}
since if T � “ϕn(n)↑” but ϕn(n)↓ then the true Σ1-sentence “ϕn(n)↓” is provable in (the Σ1-complete 
theory) Q (⊆ T ) contradicting the consistency of T . Now, since T is re then so is KT , while K is not an
re set because for any n we have n ∈ K ⇐⇒ n /∈ Wn and so n ∈ K�Wn, thus K �= Wn for all n. So, 
KT � K; therefore, there must exist some t ∈ K −KT . For this t we have ϕt(t)↑ but T � “ϕt(t)↑”. ��

Of course if T is sound (i.e., N |= T ) or even Σ1-sound (i.e., if σ ∈ Σ1 and T � σ then N |= σ, cf. [8]) 
then also T � “ϕt(t)↓”, i.e., the sentence “ϕt(t)↑” is (true and) independent from T . Let us note that the 
above proof did not explicitly specify t ∈ N.

Constructive Proof. Since KT = {n ∈ N | T � “ϕn(n)↑”} is re then KT = Wt for some t ∈ N which can 
be algorithmically computed from a description of the re theory T . Now we show the truth of “ϕt(t)↑” as 
follows:

ϕt(t)↓ =⇒ T � “ϕt(t)↓” (by the Σ1-completeness of Q ⊆ T )

=⇒ T � “ϕt(t)↑” (by the consistency of T )

=⇒ t /∈ KT (by the definition of KT )

=⇒ t /∈ Wt (by KT = Wt)

=⇒ ϕt(t)↑ (by the definition of Wt)

Thus, t /∈ Wt and so t /∈ KT whence T � “ϕt(t)↑”. ��

Indeed, for any re and consistent theory T (⊇ Q) and any t with Wt = KT we have (by the above proof) 
that ϕt(t)↑ and T � “ϕt(t)↑”. Below we show that Kleene’s (constructive) proof does not have the Rosser 
property.

Theorem 2.3 (Kleene’s Proof is not Rosserian). For any given consistent and re theory T ⊇ Q there exists 
an re and consistent theory U ⊇ T such that U � “ϕu(u)↓” for some u ∈ N which satisfies Wu = {n ∈ N |
U � “ϕn(n)↑”} (and ϕu(u)↑).

Proof. There exists a computable (and total) function � such that for any sentence ψ we have

W�(ψ) = {n ∈ N | T + ψ � “ϕn(n)↑”}.

By the Diagonal Lemma there exists a sentence λ such that Q � λ ↔ “ϕ�(λ)
(
�(λ)

)
↓”. Clearly, for the theory 

U = T + λ and u = �(λ) we have U � “ϕu(u)↓” and Wu = {n ∈ N | U � “ϕn(n)↑”}. It remains to show 
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that U is consistent: Otherwise, T � ¬λ and so T � “ϕu(u)↑” which implies that T + λ � “ϕu(u)↑” whence 
u ∈ W�(λ) = Wu. On the other hand T � “ϕu(u)↑” implies that ϕu(u)↑ holds (since otherwise ϕu(u)↓
by the Σ1-completeness would imply T � “ϕu(u)↓” contradicting the consistency of T ) and so u /∈ Wu; a 
contradiction. ��

Summing up, for any consistent and re extension T of Q we have ϕt(t)↑ and T � “ϕt(t)↑” for any t
which satisfies Wt = {n ∈ N | T � “ϕn(n)↑”}. Moreover, if T is Σ1-sound then ϕt(t)↑ is independent 
from T (i.e., we also have T � “ϕt(t)↓”). However, if the theory T is not Σ1-sound then for some e with 
We = {n ∈ N | T � “ϕn(n)↑”} the sentence ϕe(e)↑ might not be independent from T (and its negation 
could be provable in T , that is T � “ϕe(e)↓”).

Albert Visser pointed out that for any re and consistent theory T which is sufficiently strong (see e.g. 
the explanations before Theorem 4.6 below) there exists some ϑ with Wϑ = {n ∈ N | T � “ϕn(n)↑”} such 
that (beside ϕϑ(ϑ)↑ and T � “ϕϑ(ϑ)↑” we also have) T � “ϕϑ(ϑ)↓”, or in the other words the sentence 
ϕϑ(ϑ)↑ is independent from T ; moreover ϑ can be algorithmically computed from a given description of the
re theory T . The proof of this Rosserian version of Kleene’s proof is rather involved and will appear in a 
future paper. Let us note that a Rosserian version of this beautiful theorem of Kleene appeared in [13] (see 
also [14]) where Kleene calls it “a symmetric form” of Gödel’s (incompleteness) theorem (also see [19] for a 
modern treatment).

3. The proof of Chaitin for Gödel’s incompleteness theorem

There are various versions of Chaitin’s proof for the incompleteness theorem [4], which is sometimes 
called “Chaitin’s incompleteness theorem”; this proof appears in e.g. [5,16,1,23]. We consider the version 
presented in [1].

Definition 3.1 (Kolmogorov–Chaitin Complexity). For any natural number m let K (m) be the number 
min{i ∈ N | ϕi(0)↓ = m}. ⊕⊗

The function K is total and for any e ∈ N there are finitely many m’s which satisfy K (m) � e. The 
following is Lemma 7 of [1].

Lemma 3.2 (Uncomputability of Complexity). There is no computable function f which satisfies the inequality 
K

(
f(m)

)
> m for all m ∈ N.

Proof. If there were such a computable function f , then by Kleene’s second recursion theorem there would 
exist some e such that ϕe(x) = f(e) and so, in particular, ϕe(0) = f(e) which implies K

(
f(e)

)
� e; 

a contradiction. ��

So, K is not computable, since otherwise f(x) = min{y | K (y) > x}, which satisfies ∀x : K
(
f(x)

)
> x, 

would be computable.

Theorem 3.3 (Chaitin’s Theorem). For any consistent re theory T which contains Q there exists a constant 
cT ∈ N such that for any e � cT and any w ∈ N we have T � “K (w) > e”.

Proof. If not, then for any given m ∈ N there exists some e � m and some w such that T � “K (w) > e”. 
Let us note that if T � “K (w) > e” for a consistent T ⊇ Q then K (w) > e, since otherwise, if K (w) � e, 
the true Σ1-sentence “K (w) � e” would be provable in Q (and so in T ) which contradicts the consistency 
of T . Now, for a given m we can, by an algorithmic proof search in T , find some e � m and w such 
that T � “K (w) > e” (and so K (w) > e); our assumption guarantees the termination of this algorithm 



S. Salehi, P. Seraji / Annals of Pure and Applied Logic 169 (2018) 971–980 975
for any input m. Let f(m) be one of those w’s; then we have K
(
f(m)

)
> e � m which contradicts

Lemma 3.2. ��

This is an incompleteness theorem since for any c there are cofinitely many w’s with K (w) > c. So, 
for a given T which is consistent and re and contains Q there are cofinitely many w’s such that the true 
sentences “K (w) > cT ” are unprovable in T . As for the constructivity of this proof, the good news is that 
a constant cT which satisfies Chaitin’s Theorem 3.3 can be algorithmically constructed from T .

Theorem 3.4 (Computing a Chaitin Constant). For a given consistent and re extension T of Q one can 
algorithmically construct a constant cT such that for all e � cT and all w, we have T � “K (w) > e”.

Proof. Given a description of a consistent, Σ1-complete and re theory T the following can be done algo-
rithmically. Define �(x) to be the first ordered pair 〈a, b〉 such that the proof search algorithm of T shows 
up (a proof of) the sentence “K (a) > b � x” (so, T � “K (a) > b � x”). This is (a partially) computable 
(function) and an index of it can be calculated from (a description of) T . By Kleene’s second recursion 
theorem there exists a constant c such that ϕc(y) = �1(c), where �1(x) is the first component of the or-
dered pair �(x). The constant c can be computed from T (since Kleene’s second recursion theorem is itself 
constructive); let us denote it by cT . Now, we show that for no b � cT and no a can T � “K (a) > b” hold. 
If there exists such a and b then we have T � “K (a) > b � cT ”. If 〈a, b〉 is the first ordered pair such that 
“K (a) > b � cT ” appears in the above mentioned proof search algorithm of T , then �(cT ) = 〈a, b〉 and so 
ϕcT (0) = �1(cT ) = a. Thus, K (a) � cT , and by the Σ1-completeness of T we have T � “K (a) � cT ”. But 
from T � “K (a) > b � cT ” we have T � “K (a) > cT ”, contradicting the consistency of T . ��

Unfortunately, by Lemma 3.2 one cannot calculate a w with K (w) > cT given cT for a theory T . 
Otherwise one could get a constructive version of Chaitin’s proof: Given a consistent and re theory T ⊇ Q
one calculates cT and finds some w with K (w) > cT ; then “K (w) > cT ” is a true sentence which is not 
provable in T . It is actually known that Chaitin’s proof is not constructive; see e.g. [16, page 1394] or [23, 
page 95].

Theorem 3.5 (Non-Constructivity of Chaitin’s Proof). There is no algorithm such that for a given consistent 
and re extension T of Q can compute some wT such that K (wT ) > cT holds, where cT is a Chaitin constant 
as in Theorem 3.4.

Proof. If such a wT were computable from T , then the theory T∞ =
⋃

i∈N
Ti would be re where T0 = Q and 

inductively Ti+1 = Ti + “K (wTi
) > cTi

” are defined by iterating the computation procedure. The theory 
T∞ is also consistent (indeed, sound) and contains Q, so by Chaitin’s Theorem 3.3 there should exist some 
constant cT∞ such that for no w can we have the deduction T∞ � “K (w) > cT∞”. But this is a contradiction 
because we have cTi

< cTi+1 and also cTi
< cT∞ for all i ∈ N. ��

An Alternative Proof. Albert Visser suggested the following argument as another proof of Theorem 3.5: 
Since the sequence {cTi

}i∈N is strictly increasing, we have cTm
� m for any m ∈ N. Now, ∀m ∈ N :

K (wTm
) > cTm

� m would contradict Lemma 3.2 if wT were computable from T . ��

Remark 3.6. Albert Visser noted that Theorems 3.4 and 3.5 amusingly imply Lemma 3.2, since if there were 
a computable (total) function f with ∀m ∈ N : K

(
f(m)

)
> m then one could take wT as f(cT ). ⊕⊗

The true unprovable sentences “K (w) > e” (for e � cT ) are also independent when T is a (Σ1-)sound 
theory: If T � “K (w) � e” then the Σ1-sentence K (w) � e has to be true, a contradiction. So, we restate 
Chaitin’s Theorem as
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Corollary 3.7 (Chaitin’s Theorem, restated). Let T be a Σ1-sound and re theory such that T ⊇ Q. There 
exists some cT (which is computable from T ) such that for any e � cT there are cofinitely many w’s such 
that “K (w) > e” is independent from T . ��

For having a Rosserian version of Chaitin’s Theorem we will replace the assumption of the “Σ1-soundness” 
(of T ) in Corollary 3.7 with (its simple) “consistency”. For doing that we need the following version of the 
Pigeonhole Principle in Q (which holds in R as well).

Lemma 3.8 (A Pigeonhole Principle). For any k ∈ N we have

Q � ∀z0, · · · , zk
( ∧∧

0�i�k

zi < k −→
i�=j∨∨

0�i,j�k

zi = zj

)
.

Proof. This can be proved by induction (in the metalanguage) on k: for k = 0 it suffices to note that 
Q � ∀z¬(z < 0) and for the induction step it suffices to use the derivation Q � ∀z(z < k + 1 → z < k∨z = k); 
cf. [21, page 73]. ��

Theorem 3.9 (Rosserian form of Chaitin’s Theorem). For any consistent re extension T of Q there is a 
constant cT (which is computable from T ) such that for any e � cT there are cofinitely many w’s such that 
“K (w) > e” is independent from T .

Proof. By Chaitin’s Theorem 3.3 there exists a constant cT (which is computable from T ) such that for 
any e � cT there are cofinitely many w’s such that “K (w) > e” is true but unprovable in T . Fix an 
e � cT . For no w can T � “K (w) > e” hold, and T � “K (w) � e” can hold for at most (e + 1)-many 
w’s: if for some distinct w0, w1, . . . , we+1, the derivations T � “K (wi) � e” hold (i = 0, 1, . . . , e + 1) then 
T � ∃z0, z1, . . . , ze+1

(∧∧e+1
i=0 [zi � e ∧ϕzi(0)↓ = wi]

)
and so

T � ∃z0, z1, . . . , ze+1
(∧∧

0�i�e+1
[zi < e + 1] ∧

∧∧i�=j

0�i,j�e+1
[zi �= zj ]

)

which contradicts Lemma 3.8 (for k = e + 1). Thus, for cofinitely many w’s we have both T � “K (w) > e”
and T � “K (w) � e”. ��

Martin Davis [5] calls Chaitin’s Theorem “a dramatic extension of Gödel’s incompleteness theorem”. 
We saw that this theorem as presented in Corollary 3.7 can be hardly considered an extension of Gödel’s 
incompleteness theorem, as Gödel’s proof is constructive while Chaitin’s is not (Theorem 3.5). The Rosserian 
form of Chaitin’s Theorem as presented in Theorem 3.9 could be considered as an extension of Gödel’s and 
Chaitin’s theorems in a sense, even though, it is not any more extension than Rosser’s own [17]; let us also 
note that Rosser’s proof is constructive (while the proof of Theorem 3.9 is not).

4. The proof of Boolos for Gödel’s incompleteness theorem

Jon Barwise calls it “a very lovely proof of Gödel’s Incompleteness Theorem, probably the deepest single 
result about the relationship between computers and mathematics”, and mentions that it is “the most 
straightforward proof of this result that I have ever seen”.1 After its first appearance in [2] this proof was 
discussed, extended and studied in e.g. [9,10,18,15,20,11].

1 J. Barwise, “Editorial Notes: This Month’s Column”, Notices of the American Mathematical Society, vol 36, no. 4 (1989), 
page 388.
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Notation 4.1 (Arithmetization). For an re theory T denote the provability predicate of T by PrT (x); so 
Con(T ) = ¬PrT (⊥) is the consistency statement of T . Suppose that the variables are x, x′, x′′, x′′′, · · · whose 
lengths are 1, 2, 3, 4, · · · , respectively. ⊕⊗

So, for any k ∈ N there are at most finitely many formulas with length k.

Definition 4.2 (Formalizing Berry’s Paradox). For a formula ψ(x1, · · · , xm) with the shown (possibly empty) 
set of free variables (m � 0) and number n, let D(ψ, n) be the (Gödel code of) ∀x[ψ(x, · · · , x) ↔ x = n]. 
The number n is definable in T by the formula ψ when PrT

(
D(ψ, n)

)
holds.

Let Def <z
T (y) = ∃x

[
len(x) < z ∧ PrT

(
D(x, y)

)]
, where len(x) denotes the length of (the formula with 

Gödel code) x. The formula Def <z
T (y) states that “there exists a formula ψ(x1, · · · , xm) whose length is 

smaller than z such that the deduction T � ∀x[ψ(x, · · · , x) ↔ x = y] holds”, or informally “the number y
is definable in T by a formula with length less than z”.

Let Berry <v
T (u) = ¬Def <v

T (u) ∧ ∀y < u Def <v
T (y), meaning that “u is the least number not definable by 

a formula with length less than v”.
Let �T be the length of the formula Berry <x′

T (x) and let BoolosT (x) be the formula

∃x′[x′ = 5 · �T ∧ Berry <x′

T (x)
]
.

Let bT be the least number not definable by a formula with length less than 5�T . ⊕⊗

Theorem 4.3 (Boolos’ Theorem). For any consistent and re extension T of Q, the sentence BoolosT (bT ) is
(true but) unprovable in T .

Proof. First we show that Q � ∀u, v[Berry <v
T (n) ∧Berry <v

T (u) → n = u] holds for any n ∈ N. Reason inside 
Q: if for some u, v we have (a) Berry <v

T (n) and (b) Berry <v
T (u) then (a’) ¬Def <v

T (n), (a”) ∀y < nDef <v
T (y), 

(b’) ¬Def <v
T (u) and (b”) ∀y < uDef <v

T (y) hold. Now, by u � n∨n � u, if u �= n then either u < n or n < u

holds. In the former case we have a contradiction between (a”) and (b’), and in the latter case we have a 
contradiction between (a’) and (b”). Therefore, n = u. Now, assume (for the sake of contradiction) that 
T � BoolosT (bT ). Then T � ∀u, v[Berry <v

T (n) ∧ Berry <v
T (u) → n = u], shown above, implies the deduction 

T � ∀x[BoolosT (x) ↔ x = bT ]. Thus, bT is definable in T by the formula BoolosT (x) whose length is less 
than �T + len(5 · �T ) + 9 = 4�T + 26 < 5�T (since, for any m, the term m = s(· · · (s(0)) . . .) [m-times s] has 
length 3m + 1). So, the Σ1-sentence Def <5·�T

T (bT ) is true, thus provable in Q; whence T � Def <5·�T
T (bT ). 

On the other hand T � BoolosT (bT ) implies that T � ¬Def <5·�T
T (bT ), contradicting the consistency

of T . ��

The formula BoolosT (bT ) is not Π1; however, the following modification from [9] proves a Π1-incom-
pleteness.

Theorem 4.4 (Boolos’ Theorem, modified). For any consistent and re extension T of Q, the true Π1-sentence 
¬Def <5·�T

T (bT ) is unprovable in T .

Proof. Assume, to the contrary, that T � ¬Def <5·�T
T (bT ). Since any number y less than bT is definable by a 

formula with length less than 5�T then the Σ1-sentence ∀y < bT Def <5·�T
T (y) is true and thus provable in T . 

Therefore, ¬Def <5·�T
T (bT ) ∧ ∀y < bT Def <5·�T

T (y) is provable in T and so T � BoolosT (bT ), contradicting 
Theorem 4.3. ��

Even though �T is computable from T , below we show that one cannot calculate bT .
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Theorem 4.5 (Non-Constructivity of Boolos’ Proof). There is no algorithm such that for a given consistent 
and re extension T of Q can compute bT .

Proof. Assume that bT is computable from T , and let T0 = Q and inductively Tj+1 = Tj +¬Def
<5·�Tj

Tj
(bTj

). 
Define the function �(n), for any n ∈ N, to be the greatest m with ∀j < m : len(“ϕj(0)↓ = x”) < n. 
This is a computable and non-decreasing function; also limn �(n) = ∞. So, from limj �Tj

= ∞ we have 
limj �(5�Tj

) = ∞. Therefore, for any (given) x one can compute some ι(x) such that �(5�Tι(x)) > x. The 
proof will be complete when we show that K (bTj

) � �(5�Tj
) holds for any j: Because, by the computability 

of bTj
from j, we will have a computable function x �→ bTι(x) which satisfies ∀x : K

(
bTι(x)

)
� �(5�Tι(x)) > x

contradicting Lemma 3.2. For showing that K (bTj
) � �(5�Tj

) holds for any j, we show more generally that 
for any u, v if ¬Def <v

T (u) holds, for some consistent T ⊇ Q, then K (u) � �(v): If, to the contrary, we have 
K (u) < �(v) then there exists some j such that (1) j < �(v) and (2) ϕj(0)↓ = u. By (2) the number u is 
definable by the formula “ϕj(0)↓ = x” in Q (and so in T ), and by (1) the length of the formula “ϕj(0)↓ = x”
is less than v; so Def <v

T (u) should hold, a contradiction. ��

Of course, when T is Σ1-sound then ¬Def <5·�T
T (bT ) is independent from T . Also BoolosT (bT ) is indepen-

dent from T : Because if T � ¬BoolosT (bT ) then T � ¬Berry <5·�T
T (bT ) and so T � ∀y < bT Def <5·�T

T (y) →
Def <5·�T

T (bT ). But ∀y < bT Def <5·�T
T (y), being a true Σ1-sentence, is provable in T . Whence, we have 

T � Def <5·�T
T (bT ), a contradiction. However, we show in the following theorem that if T is not Σ1-sound 

then Def <5·�T
T (bT ), and so ¬BoolosT (bT ), could be provable in T . For the following theorem to make sense 

we note that for any theory U satisfying the following conditions

(i) U � Con(U), i.e., Gödel’s Second Incompleteness Theorem holds for U ;
(ii) U � Con(U + ψ) → Con(U), for any ψ;

there exists a consistent theory S ⊇ U such that S+Con(S) is not consistent: The theory S = U+¬Con(U) is 
consistent by (i), and S � ¬Con(S) because S � ¬Con(U) by the definition of S and S � ¬Con(U) → ¬Con(S)
by (ii).

One example for a theory that satisfies the conditions (i) and (ii) above, and also (iii) in Theorem 4.6
and (iv) in Theorem 4.7 below, is Peano’s Arithmetic. This arithmetic is indeed too strong and the finitely 
axiomatizable theory IΣ1 (see [7]) satisfies the conditions (i), (ii), (iii) and (iv). Even the weaker theories 
IΔ0 + Ω1 (see [25]) and S1

2 (see [3]) are strong enough to satisfy them.

Theorem 4.6 (Boolos’ Proof is not Rosserian). Suppose that a consistent and re extension T of Q satisfies 
the following condition for any formula ψ:

(iii) T � PrT (⊥) → PrT (ψ).

If T + Con(T ) is inconsistent then for any b ∈ N we have T � Def <5·�T
T (b), and so T � ¬BoolosT (b).

Proof. If T � ¬Con(T ) then T � PrT (⊥) and so T � PrT (ψ), for any ψ, by the condition (iii). In particular, 
if ψ is a formula with length less than 5�T (for example Berry <x′

(x)) then T � PrT
(
D(ψ, b)

)
and so for 

any arbitrary number b we have T � ∃x
[
len(x) < 5 · �T ∧ PrT

(
D(x, b)

)]
. Thus T � Def <5·�T

T (b), whence 

T � ¬Berry <5·�T
T (b) and T � ¬BoolosT (b). ��

So, if T + Con(T ) is not consistent, then ¬Def <5·�T
T (b) is not independent from the theory T (neither is 

BoolosT (b)) for any b. However, if T + Con(T ) is consistent, then a variant of Boolos’ proof can go through 
(cf. [10, Theorem 7.2]) as is shown in the following theorem.
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Theorem 4.7 (Boolos’ Theorem, restated). If an re extension T of Q satisfies the following condition for 
any m, n, k ∈ N,

(iv) T � PrT
(
D(k, m)

)
∧ PrT

(
D(k, n)

)
∧m �= n → ¬Con(T ),

and the theory T + Con(T ) is consistent, then there exists some b ∈ N such that ¬Def <5·�T
T (b), and also 

BoolosT (b), is independent from T .

Proof. First we show that there exists some a such that T � Def <5·�T
T (a). If not, then for any i we have 

T � Def <5·�T
T (i). Let k be a fixed number greater than the maximum Gödel codes of formulas φ with 

len(φ) < 5�T . So, for any i � k we have T � ∃z < k PrT
(
D(z, i)

)
. By Lemma 3.8 there exists some 

i < j � k and some � < k such that T � PrT
(
D(�, i)

)
∧ PrT

(
D(�, j)

)
. Now (iv) implies that T � ¬Con(T ), 

a contradiction. Let b be the minimum of those a’s with T � Def <5·�T
T (a). So, T � ∀z < bDef <5·�T

T (z). 
Now we show that T � ¬Def <5·�T

T (b): If not (T � ¬Def <5·�T
T (b)) then T � Berry <5·�T

T (b) or equivalently, 
T � BoolosT (b). So, b is definable in T by a formula with length less than 5�T (see the proof of Theorem 4.3) 
whence Def <5·�T

T (b) is true thus provable in T ; a contradiction. Therefore, we showed that T � Def <5·�T
T (b)

and T � ¬Def <5·�T
T (b) (also T � BoolosT (b) and T � ¬BoolosT (b)). ��

Thus, the consistency of T + Con(T ) is an optimal (indeed, necessary and sufficient) condition for the 
independence of a Boolos sentence from T .

5. Concluding remarks

The following table summarizes some of the new and old results in this paper:

Proof Constructive Rosser Property
Gödel (1931) [6] � X [8]
Rosser (1936) [17] � �
Kleene1 (1936) [12] � X Theorem 2.3
Kleene2 (1950) [13] � �
Chaitin (1971) [4] X [16,23], Theorem 3.5 � Theorem 3.9
Boolos (1989) [2] X Theorem 4.5 X Theorem 4.6

Let us note that for the constructivity of a proof, usually, no new argument is needed as a computational 
procedure could often be seen from the proof. But the non-constructivity of a proof (as in the case of Chaitin’s 
and Boolos’ proofs) should be proved; proving the non-constructivity (the non-existence of any algorithm) 
is usually harder than showing the constructivity (the existence of an algorithm). So is having the Rosser 
property of a proof. Other than Rosser’s proof and Kleene’s symmetric theorem (1950) Chaitin’s proof has 
the Rosser property. The non-Rosserian proofs of Gödel and Boolos need the consistency of T + Con(T ) for 
the independence of their true but unprovable sentences, and this condition, Con

(
T + Con(T )

)
, is optimal 

(for the independence of that sentences).
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