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A key technical observation of this paper is that the Higman embedding theorem (that
every recursively presented group embeds into a finitely presented group) can preserve
the set of orders of torsion elements; this is stated as the following theorem, in which

Tor(G) = {g ∈G | g is torsion} and

Tord(G) = {n ∈ N | ∃g ∈ Tor(G) with o(g) = n≥ 2}.

Theorem 2.2. There is a uniform algorithm that, on input of a countably generated
recursive presentation P = 〈X |R〉, constructs a finite presentation T(P ) such that P ↪→
T(P ) and Tord(P ) = Tord(T(P )), along with an explicit embedding φ:P ↪→ T(P ).

The author notes that every group has a unique torsion-free quotient through which
all other torsion-free quotients factor:

Corollary 3.4. If G is a group, then G/Tor∞(G) = Gtf , which is the torsion-free
universal quotient for G.

Here, Tor0(G) = {e}, Torn+1 = 〈〈{g ∈ G | gTorn(G) ∈ Tor(G/Torn(G))}〉〉G, and
Tor∞(G) =

⋃
i∈N Tori(G). “By standard techniques in combinatorial group theory, we

show . . . the existence of an algorithm that takes any finite presentation P and outputs
a recursive presentation P tf of the torsion-free universal quotient of P”:

Proposition 3.8. There is a uniform algorithm that, on input of a countably generated
recursive presentation P = 〈X |R〉 of a group P , outputs a countably generated recursive
presentation P tf = 〈X |R′〉 (on the same generating set X, and with R ⊆ R′ as sets)

such that P tf is the torsion-free universal quotient of P , with associated surjection given
by extending idX :X →X.

Then the main result of the paper “follows by combining Theorem 2.2 and Proposition
3.8, in a similar way to Higman’s original construction of a universal finitely presented
group”:

Theorem 3.10. There is a universal finitely presented torsion-free group G. That is,
G is torsion-free, and for any finitely presented group H, we have that H ↪→ G if (and
only if) H is torsion-free. Saeed Salehi
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