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From the introduction: “This paper is a contribution to bounded reverse mathematics,
that part of proof complexity concerned with determining the computational complexity
of concepts needed to prove theorems of interest in computer science. We are specifically
interested in theorems of linear algebra over finite fields and the integers. The relevant
complexity classes for each case have been well-studied in the computational complexity
literature. The classes are ⊕L and DET , associated with linear algebra over Z2 and
Z, respectively. We introduce formal theories V ⊕L and V #L for ⊕L and DET , each
intended to capture reasoning in the corresponding class. Each theory allows induction
over any relation in the associated complexity class, and the functions definable in each
theory are exactly the functions in the class. In particular determinants and coefficients
of the characteristic polynomial of a matrix can be defined.

“To study the question of which results from linear algebra can be proved in the
theories we take advantage of Soltys’s theory LAP for formalizing linear algebra over an
arbitrary field or integral domain. We present two interpretations of LAP: one into V ⊕
L and one into V #L. Both interpretations translate theorems of LAP to theorems in the
corresponding theory, but the meaning of the theorems differs in the two translations
since the ring elements range over Z2 in one and over Z in the other. We show that
the theories prove some interesting properties of determinants, but leave open the
question of whether the proofs of some basic theorems such as the Ca[y]ley-Hamilton
Theorem can be formalized in the theories. We also leave open the question of whether
the theories prove simple matrix identities such as AB = I → BA = I. An affirmative
answer would shed light on interesting questions in propositional proof complexity
concerning the lengths of proofs required in various proof systems to prove tautology
families corresponding to the identities.” Saeed Salehi
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