MR2332718 (2008h:68064) 68Q45
Gyurica, György (H-SZEG-C)
On monotone languages and their characterization by regular expressions. (English summary)
Acta Cybernet. 18 (2007), no. 1, 117-134.
For an alphabet A, the automaton $\mathcal{A}=(S, A, \delta, i, F)$ with set of states S, transition function δ, initial state i, and final set of states F, is called monotone if there exists a partial ordering \preceq on S such that $s \preceq \delta(s, a)$ for any $s \in S, a \in A$. A seminormal chain language is a subset $L \subseteq A^{*}$ which can be written in the form $L=L_{0} a_{1} L_{1} a_{2} \ldots a_{k-1} L_{k-1} a_{k} L_{k}$ where $a_{i} \in A$, each L_{i} is a product of fundamental languages (i.e., languages in the form B^{*} for some $B \subseteq A$), and $a_{i} \notin L_{i-1}$ for any $1 \leq i \leq k$. A main result of [F. Gécseg and B. Imreh, J. Autom. Lang. Comb. 7 (2002), no. 1, 71-82; MR1915291 (2003d:68140)] is that a language is monotone (can be recognized by a monotone automaton) if and only if it is a union of finitely many seminormal chain languages.
In the paper under review, the author generalizes the above result to DR (deterministic root-tofrontier) tree languages by giving a description for regular expressions of DR tree languages that can be recognized by monotone tree automata.
The reader should be familiar with the paper referred to above [op. cit.] and the notions in [F. Gécseg and M. Steinby, Tree automata, Akad. Kiadó, Budapest, 1984; MR0735615 (86c:68061)] to be able to follow the paper's arguments.

Reviewed by Saeed Salehi
(C) Copyright American Mathematical Society 2008, 2009

