On Herbrand Consistency of Bounded Arithmetics

Saeed Salehi

University of Tabriz

http://SaeedSalehi.ir/

Logic Colloquium 2011June 2011 – Barcelona, Spain

Saeed Salehi $\underline{ t http://SaeedSalehi.ir/}$ $\underline{ t http://SaeedSalehi.ir/}$

Glad To Be Back

My Last Talk in Logic Colloquium:

2001, Vienna, Austria "Unprovability of Herbrand Consistency in Weak Arithmetics"

LC'2000, Paris, France - "A Generalized Realizability for Constructive Arithmetics"

LC'1999, Utrecht, Holland - "Intuitionistic Axiomatization of End-Extension Kripke Models"

Saeed Salehi $\frac{\texttt{http://SaeedSalehi.ir/}}{\$\Sigma\alpha\epsilon\epsilon\delta}$

Bounded Quantifiers

- All $\exists x$ are in the form $\exists x \leqslant t$
- All $\forall y$ are in the form $\forall y \leqslant s$

t, s are \cdots terms

Bounded Formula: all quantifiers are bounded.

- Relations definable by bounded formulas are
 - Decidable
 - Primitive Recursive
 - Recognizable in Linear Space [LinSpace \equiv Space $\in \mathcal{O}(n)$]
 - Recognizable in the Linear Time Hierarchy

Saeed Salehi ${\tt \underline{http://SaeedSalehi.ir/}} \qquad \qquad \oint_{\Sigma \alpha \ell \epsilon \hbar \iota}^{\Sigma \alpha \epsilon \epsilon \partial}$

Peano Arithmetic

Robinson's Arithmetic Q:

•
$$S(x) = S(y) \Rightarrow x = y$$

$$\bullet \ x + 0 = x$$

$$\bullet \ x \cdot 0 = 0$$

•
$$x \leqslant y \iff \exists z(z+x=y)$$

•
$$S(x) \neq 0$$

$$\bullet x + S(y) = S(x+y)$$

$$\bullet \ x \cdot \mathsf{S}(y) = (x \cdot y) + x$$

•
$$x \neq 0 \Rightarrow \exists y[x = S(y)]$$

Plus the Induction Axioms:

$$\varphi(0) \land \forall x [\varphi(x) \to \varphi(S(x))] \Longrightarrow \forall y \varphi(y)$$

Saeed Salehi $\underline{ thetatttp:// text{SaeedSalehi.ir}/}$ $\oint rac{\Sigma lpha \epsilon \delta}{\Sigma lpha \ell \epsilon \hbar t}$

Bounded Arithmetic

Definition

Q+ Induction Axiom for Bounded Formulas $= I\Delta_0$

Theorem (R.J. Parikh 1971)

$$I\Delta_0 \vdash \forall \overline{x} \exists y \ \eta(\overline{x}, y) \ \& \ \eta \in \Delta_0 \Longrightarrow I\Delta_0 \vdash \forall \overline{x} \ \exists y \leqslant t(\overline{x}) \ \eta(\overline{x}, y) \\ t-\textit{term}$$

Provably Recursive Functions of $I\Delta_0$ are Polynomially Bounded $I\Delta_0 \vdash \forall \overline{x} \exists u \ n(\overline{x}, u) \Longrightarrow I\Delta_0 \vdash \forall \overline{x} \exists u < t(\overline{x})n(\overline{x}, u)$

$$\mathrm{I}\Delta_0 \vdash \forall \overline{x}\exists y \ \underbrace{\eta(\overline{x},y)}_{\Delta_0} \Longrightarrow \mathrm{I}\Delta_0 \vdash \forall \overline{x} \underbrace{\exists y \leqslant t(\overline{x})\eta(\overline{x},y)}_{\Delta_0}$$

Saeed Salehi http://SaeedSalehi.ir/ $\oint rac{\Sigma lpha \epsilon heta}{\Sigma lpha \ell \hbar \iota}$

Why Bounded Arithmetic?

$$x \mid y \equiv \exists z (x \cdot z = y)$$

$$\text{Prime}(x) \equiv \forall y(y \mid x \Rightarrow y = 1 \lor y = x)$$

PA=Peano Arithmetic

$$\mathbf{PA} \vdash \forall x \exists y \Big(y > x \land \mathtt{Prime}(y) \Big)$$

Open Problem:

$$\mathrm{I}\Delta_0 \vdash^? \forall x \exists y \Big(y > x \land \mathrm{Prime}(y) \Big)$$

$$\operatorname{Exp} = \forall x \exists y [y = 2^x]$$

 $\operatorname{EA} = \operatorname{I}\Delta_0 + \operatorname{Exp}$
Elementary Arithmetic

"
$$y=2^x$$
 " $\in \Delta_0$ EA $\vdash \forall x \exists y \Big(y>x \land \mathtt{Prime}(y)\Big)$

Saeed Salehi http://SaeedSalehi.ir/ $\oint_{\Sigma lpha \epsilon h}^{\Sigma lpha \epsilon \delta}$

More Bounded Arithmetic

Definition

$$\begin{cases} \omega_0(x) = x^2 \\ \omega_{n+1}(x) = 2^{\omega_n(\log x)} \end{cases} \qquad \omega_1(x) = 2^{\log x \cdot \log x} \sim x^{\log x}$$

$$\omega_m(x) = \exp^m([\log^m x]^2) \qquad f^m(x) = \underbrace{f \dots f}_{m-\text{times}}(x)$$

$$\mathsf{polynomial}(x) \ll \omega_1(x) \ll \omega_2(x) \ll \cdots \ll 2^x$$

Definition

$$\Omega_m = \forall x \exists y [y = \omega_m(x)] \qquad "y = \omega_m(x) " \in \Delta_0$$

$$I\Delta_0 \subseteq I\Delta_0 + \Omega_1 \subseteq I\Delta_0 + \Omega_2 \subseteq \cdots \subseteq I\Delta_0 + \bigwedge_i \Omega_j \subseteq I\Delta_0 + \operatorname{Exp}$$

Saeed Salehi $\frac{\text{http://SaeedSalehi.ir/}}{\sum_{\alpha \ell \in \hbar}} \cdot \frac{\sum_{\alpha \ell \in \partial}}{\sum_{\alpha \ell \in \hbar}} \cdot$

Unprovabilty of Consistency

$$\mathcal{C} \mathfrak{on}(\mathbf{T}) \ = \ \text{``T is consistent''} \ = \forall z \neg \underbrace{\mathtt{Proof}_{\mathbf{T}}}_{\Delta_0}(z, \ulcorner 0 = 1 \urcorner) \in \Pi_1$$

Gödel's Second Incompleteness Theorem

 $PA \not\vdash Con(PA)$

 $ZFC \vdash Con(PA)$

 $I\Delta_0 \not\vdash \mathcal{C}\mathfrak{on}(I\Delta_0)$

 $PA \vdash Con(I\Delta_0)$

But $I\Delta_0 + Exp \not\vdash Con(I\Delta_0)!$

How $I\Delta_0 + \operatorname{Exp} \supseteq \Pi_1 I\Delta_0$?

Open Problem: Π_1 -Separating the Hierarchy $\{I\Delta_0 + \Omega_m\}_m$

Herbrand Consistency 1

Skolemizing: $\exists y \leadsto \underline{\text{eliminate}} \ \exists \ \& \ [\mathfrak{f}(\overline{x}) \hookleftarrow y] \qquad \mathfrak{f} \ \text{new symbol}$ \overline{x} all the universal variables before y then eliminating the remaining \forall quantifiers

Examples:

- $\forall x \exists y \ \varphi(x,y) \longrightarrow^{\operatorname{Sk}} \longrightarrow \ \varphi(x,\mathfrak{f}(x))$
- $\exists y \forall u \exists z \ \varphi(y, u, z) \longrightarrow^{\operatorname{Sk}} \longrightarrow \ \varphi\left(\mathfrak{c}, u, \mathfrak{f}(u)\right)$
 - ▶ T is Consistent \iff T^{Sk} is Consistent First-Order \iff Propositional

Saeed Salehi http://SaeedSalehi.ir/ $\oint_{\Sigma \alpha \ell \epsilon \partial}^{\Sigma \alpha \epsilon \epsilon \partial}$

Herbrand Consistency 2

Definition

Herbrand Consistency of T = Propositional Satisfiability of every finite set of (Skolem) instances of <math>T

$$I\Delta_0 + \operatorname{SupExp} \vdash \mathcal{HCon}(T) \longleftrightarrow \mathcal{Con}(T)$$
$$I\Delta_0 + \operatorname{Exp} \not\vdash \mathcal{HCon}(T) \longleftrightarrow \mathcal{Con}(T)$$

$$I\Delta_0 + Exp \vdash \mathcal{HCon}(I\Delta_0)$$

Presumably ... $I\Delta_0 \not\vdash \mathcal{HCon}(I\Delta_0)$

Unprovability of Herbrand Consistency 1

Theorem (Z. Adamowicz 2001,2002)

 $I\Delta_0 + \Omega_m \not\vdash \mathcal{HCon}(I\Delta_0 + \Omega_m) \text{ for } m \geqslant 2.$

Theorem (S. Salehi 2002)

 $I\Delta_0 + \Omega_1 \not\vdash \mathcal{HCon}(I\Delta_0 + \Omega_1).$

Theorem (D.E. Willard 2002)

 $I\Delta_0 \not\vdash \mathcal{HCon}(I\Delta_0 + \Omega_0).$

 $\Omega_0 = \forall x \exists y [y = x^2]$

Theorem (L.A. Kołodziejczyk 2006)

 $\bigcup_{n} (\mathrm{I}\Delta_{0} + \Omega_{\mathrm{n}}) \not\vdash \mathcal{HCon} (\mathrm{I}\Delta_{0} + \Omega_{\mathrm{m}}) \text{ for } \mathrm{m} \geqslant 1.$

Unprobabilty of Herbrand Consistency 2

Theorem (Z. Adamowicz 1996)

 $I\Delta_0 + \Omega_1 \not\vdash TableauCon(I\Delta_0 + \Omega_1).$

Theorem (S. Salehi 2002)

 $U \not\vdash \mathcal{HCon}(U)$.

 $U \in \Pi_2(\mathrm{I}\Delta_0)$

Theorem (D.E. Willard 2002)

 $\mathrm{I}\Delta_0 \not\vdash \mathcal{T}\!\mathit{ableau}\mathcal{C}\!\mathit{on}(\mathrm{I}\Delta_0). \qquad V\not\vdash \mathcal{H}\mathcal{C}\!\mathit{on}(V) \text{ for some } V \in \Pi_1(\mathrm{I}\Delta_0).$

Theorem (L.A. Kołodziejczyk 2006)

 $I\Delta_0 + \bigwedge_i \Omega_j \not\vdash \mathcal{HCon}(T).$

 $T \subseteq_{\text{finite}} I\Delta_0 + \Omega_1$

Saeed Salehi <u>http://SaeedSalehi.ir/</u> $\oint \sum \alpha \epsilon \epsilon \partial \sum \alpha \ell \epsilon \hbar$

Pi₁—Separation?

- So, $I\Delta_0 + \operatorname{Exp}$ is NOT Π_1 —conservative over $I\Delta_0$ and \mathcal{HCon} can Π_1 —separate them.
- ▶ $I\Delta_0 + \text{Exp}$ is NOT Π_1 -conservative over even $I\Delta_0 + \bigwedge_j \Omega_j$ but can \mathcal{HC} on Π_1 -separate them?
- ▶ However, \mathcal{HC} on cannot Π_1 -separate $I\Delta_0 + \bigwedge_j \Omega_j$ from $I\Delta_0!$

Saeed Salehi $\underline{ ext{http://SaeedSalehi.ir/}}$ $\oint_{\Sigma lpha \ell \epsilon h_i}^{\Sigma lpha \epsilon \epsilon \partial_i} i$

New Results 1

Theorem (S. Salehi 2010+)

 $I\Delta_0 \not\vdash \mathcal{HCon}(I\Delta_0).$

Theorem (S. Salehi 2010+)

$$(\mathrm{I}\Delta_0 + \bigwedge_j \Omega_j) \not\vdash \mathcal{HCon}(\mathrm{I}\Delta_0).$$

New Results 2

Theorem (S. Salehi 2011+)

 $I\Delta_0 \not\vdash \mathcal{HCon}(S)$.

 $S \subseteq_{\text{finite}} I\Delta_0$

Corollary

 $I\Delta_0 \not\vdash \mathcal{HCon}(U)$, for some $U \in \Pi_1(I\Delta_0)$.

Theorem (S. Salehi 2011+)

 $I\Delta_0 + \bigwedge_j \Omega_j \not\vdash \mathcal{HCon}(S).$

 $S \subseteq_{\text{finite}} I\Delta_0$

Corollary $I\Delta_0 + \bigwedge_j \Omega_j \not\vdash \mathcal{HCon}(U)$, for some $U \in \Pi_1(I\Delta_0)$.

Saeed Salehi $\frac{\text{http://SaeedSalehi.ir/}}{\text{$\int_{\Sigma\alpha}(\epsilon\partial_{t})}}$

Thank You!

Thanks to

The ParticipantsFor Listening...

and

The Organizers ... For Taking Care of Everything...

SAEEDSALEHI.ir