Rice's Theorem for First-Order R.E. Theories

Saeed Salehi

University of Tabriz

http://SaeedSalehi.ir/

Tabriz Seminar on Mathematical Logic

27 & 28 October 2010

Saeed Salehi

http://SaeedSalehi.ir/

Rice's Theorem for First-Order R.E. Theories

Undecidability of the HALTING PROBLEM

It is undecidable whether

for a Given Turing Machine and a Given Input The Turing Machine Ever Halts With The Input.

```
Language of a TM = Words with which the TM halts.

R.E. Language
```

Halting Problem \equiv Membership Problem of an R.E. Language.

http://SaeedSalehi.ir/

Rice's Theorem for First-Order R.E. Theories

Some Other Undecidable Problems

Whether a Given R.E. Language

- · has at least two distinct elements
- is empty
- has no word containing the letter \$
- contains the fixed language £
- is disjoint from the fixed language $\mathfrak L$

Property of R.E. Languages = A Class \mathcal{P} of R.E. Languages. Non-Trivial Property $\equiv (\mathcal{P} \neq \emptyset)\&(\mathcal{P} \neq AII R.E. Languages).$

Saeed Salehi

http://SaeedSalehi.ir/

Rice's Theorem for First-Order R.E. Theories

Non-Trivial Properties of R.E. Languages

A Set $\emptyset \subset \mathcal{Q} \subset \mathbb{N}$ such that if $L(\mathbb{TM}_n) = L(\mathbb{TM}_m)$ then $n \in \mathcal{Q} \iff m \in \mathcal{Q}$.

Thus for example for $\mathcal{E} = \{k \in \mathbb{N} \mid L(\mathbb{TM}_k) = \emptyset\}$ we have either $\mathcal{E} \subseteq \mathcal{P}$ or $\mathcal{E} \cap \mathcal{P} = \emptyset$.

Rice's Theorem

Every Non-Trivial Property of R.E. Languages is UNDECIDABLE.

Saeed Salehi

http://SaeedSalehi.ir/

Rice's Theorem for First-Order R.E. Theories

The Ricean Objection: An Analogue of Rice's Theorem for First-order Theories – Igor Carboni Oliveira and Walter Carnielli (State University of Campinas, Brazil) –

Logic Journal of the IGPL (2008) 16 (6): 585-590.

Erratum to The Ricean Objection: An Analogue of Rice's Theorem for First-Order Theories –

Logic Journal of the IGPL (2009) 17 (6): 803-804.

First-Order R.E. (and FINITELY AXIOMATIZABLE) Theories...?

Saeed Salehi

http://SaeedSalehi.ir/

Rice's Theorem for First-Order R.E. Theories

Logical Properties

A First Order Axiomatizable (R.E.) Theory T

- Is Consistent: $T \not\vdash \bot$
- Is Finitely Axiomatizable: $T \vdash \dashv \varphi$ for a sentence φ
- Implies Goldbach's Conjecture: $T \vdash GC$
- Is Universally Axiomatizable: $T \vdash \dashv T_{\forall}$
- Has a Truth Predicate: $T \vdash \Psi(\overline{\varphi}) \leftrightarrow \varphi$ for a formula Ψ
- Is Complete: $T \vdash \theta$ or $T \vdash \neg \theta$ for any formula θ
- Is Σ_1 -Complete: $T \vdash \phi$ for any TRUE Σ_1 -formula ϕ
- Has a Finite Model: ····

Saeed Salehi

http://SaeedSalehi.ir/

Rice's Theorem for First-Order R.E. Theories

Non-Trivial and Logical Properties of First-Order R.E. Theories A Class \mathcal{P} of Theories s.t. $\emptyset \neq \mathcal{P} \neq All$ Theories, and is Logical.

 T_n = Theory (Set of Sentences) Generated by TM_n [[T_n = Theory (Set of Sentences) Recognized by TM_n]]

A Set $\emptyset \subset Q \subset \mathbb{N}$ Such That If $T_n \equiv T_m(T_n \vdash \dashv T_m)$ Then $n \in Q \iff m \in Q$.

True Analogue of Rice's Theorem for First-Order R.E. Theories: Any Non-Trivial Logical Property of First-Order R.E. Theories is Undecidable.

Saeed Salehi

http://SaeedSalehi.ir/

Rice's Theorem for First-Order R.E. Theories

A Theorem of Church: First-Order Logic is UNDECIDABLE. Thus the CONSISTENCY of A Given Theory is UNDECIDABLE.

A Proof of Rice's Theorem for First-Order R.E. Theories goes by Reducing the CONSISTENCY to Non-Trivial Logical PROPERTY.

Without Loss of Generality We CAN Assume That \mathcal{P} Contains NO Inconsistent Theory. (Otherwise Take $\mathcal{P}^{\complement}$).

Recall That \mathcal{P} Either (i) Contains All Inconsistent Theory Or (ii) Has No Inconsistent Theory.

Saeed Salehi

http://SaeedSalehi.ir/

Rice's Theorem for First-Order R.E. Theories

A Proof for Ricean Objection for First-Order R.E. Theories Take a consistent theory $S \in \mathcal{P}$ with $S = \{S_{(0)}, S_{(1)}, S_{(2)}, \dots \}$. For a given Theory T define the theory f(T) by $f(T)_{(k)} = S_{(k)}$ if $\neg \operatorname{Proof}_T(k, \bot)$; $f(T)_{(k)} = \bot$ if $\operatorname{Proof}_T(k, \overline{\bot})$. If CON(T) then $f(T) = S \in \mathcal{P}$. If $\neg CON(T)$ then $\neg CON(f(T))$, thus $f(T) \notin \mathcal{P}$. Whence, $CON(T) \iff f(T) \in \mathcal{P}$. Thus \mathcal{P} cannot be Decidable, since CON is not Decidable. QED

Saeed Salehi

http://SaeedSalehi.ir/

Rice's Theorem for First-Order R.E. Theories

Corollary

The Property of Finitely Axiomatizability of a given First-Order R.E. Theory is NOT Decidable!?

Some Non-Trivial Property of Finitely Axiomatizable Theories (\equiv Sentences) is Decidable: Whether it is Derivable (Included) in a Decidable Theory (like *Presburger Arithmetic* or *Skolem Arithmetic* or *Theory of Real Closed Fields* or ...).

Thank You All for Participating and for Listening!

Saeed Salehi

http://SaeedSalehi.ir/

Rice's Theorem for First-Order R.E. Theories