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Modal Dialogical Logic

Abstract

The Dialogical Logic is a research program that can be traced back to Greek tradition, when logic was
conceived as the study of dialogues, [1]. In a dialogue, two parties exchange arguments over a main claim. In
the modern term, it uses the concepts of game theory to provide semantics for different logical systems. As a
matter of fact, the modern approach begins with the works of Lorenzen (1955) [2], where he found a new
semantics for Intuitionistic Logic. Later, the dialogical approach yielded semantics for both intuitionistic and
classical logic. Modal dialogues are mainly developed by Rahman and Riickert in 1997, see [3]. In the last
decade, dialogical logic provided a conceptual framework for studying different non-classical logics. In this talk
we learn some basics of Modal Dialogical Logics.

References

[1] Ashworth, E. J. Obligationes Treatises: A Catalogue of Manuscripts, Editions and Studies, Bulletin de
Philosophie Médiévale 36, pp. 118-47, 1994.

[2] Lorenzen, P. Einfhrung in die operative Logik und Mathematik, Berlin: Springer, 1955.

[3] Rahman, S. and Riickert, H. (eds.) New Perspectives in Dialogical Logic, Synthese, Volume 127, 2001.
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Epistemic Learning Programs

Abstract

A computable function over strings of a finite alphabet is a function which can be computed by a Turing
machine. Recursion theory shows that all computable function can be obtained via some initial functions: zero,
successor, and projections through applying some basic operations as composition, primitive recursion and least
search. We aim to develop a similar scenario for epistemic functions. An epistemic function takes an epistemic
state of a multi_agent system and provides a new epistemic state as the output. Epistemic states are formalized
by Kripke models, and Baltag introduced epistemic action models to formalize the epistemic functions. The
question that we plan to answer is what are the initial functions and the basic operations which all epistemic
functions can be obtained through them? The basic source of information change in a multi-agent system is
learning an announcement by some agents together, privately, concurrently or even wrongly. So, the basic
operators should be different kinds of learning. We introduce a notion of learning program and prove that all
epistemic actions can be described by learning programs.
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Explicit Godel-Lob Provability Logic
Abstract

Artemov initiated the study of explicit modal logics (now known as justification logics) by introducing the
Logic of Proofs, LP, as explicit counterpart of modal logic S4. Correspondence between LP and S4 is stated by
the Realization Theorem: any theorem of S4 can be converted into a theorem of LP, and vice versa. In this
paper, we study the explicit counterpart of Godel-Lob provability logic GL, denoted by JGL. A semantics,
Mkrtychev-models, is given, and disjunction property of JGL is established. Using Mkrtychev-models we prove
that JGL is a conservative extension of JK4.
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Rice’s Theorem for First-Order R.E. Theories

Abstract

Rice’s theorem for recursively enumerable (R.E.) languages states that any non-trivial property of those
languages is not decidable. Or in other words, for any non-trivial property, there is no algorithm by which one
can decide if any R.E. language (given by the code of a Turing machine which recognizes it) has that property
or not. In this talk we state and prove an analogue of this theorem for R.E. first-order theories: any non-trivial
property of those theories (given by the code of a Turing machine which generates the axioms of the theory) is
not decidable. This corrects a claim of I. C. Oliveira and W. Carnielli (2008) for finitely axiomatizable theories,

which was turned out to be wrong (erratum published in 2009). :
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Trees in Set Theory

Abstract

In this lecture we will talk about Aronszajn, Suoslin and Kurepa trees that are playing very important role in
modern set theory. We will briefly discuss some classical independence results due to Tennenbaum, Solovay,
Mitchell and Jensen related to the above mentioned trees.
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Weak O-Minimality and Strongly Cell Decomposition

Abstract

Let M= (M, <, ...) be a first order expansion of a dense linear order (M, <). The Structure M is called (weakly)
o-minimal, if every definable set in J is the union of finitely many intervals (convex sets) in M. If M is an o-
minimal structure, then every definable subset X of M" can be decomposed into finitely many special definable
sets, cells (cf. [1]). This nice property cannot be extended to the weakly o-minimal structures (cf. [2]), but some
important classes of these structures have a strong cell decomposition property (cf. [3]). Here, following the
results of Roman Wencel in [3] and [4], we show that some special expansions of a weakly o-minimal structure (
M inherit its strong cell decomposition property.

References

[1] L. van den Dries, Tame topology and o-minimal structures, London Mathematical Society Lecture Note
Series, vol. 248, Cambridge: Cambridge University Press 1998.

[2] D. Macpherson, D. Marker, and C. Steinhorn, Weakly o-minimal structures and real closed fields, Trans.
Amer. Math. Soc. 352 (2000), 5435-5483.

[3] R. Wencel, Weakly o-minimal nonvaluational structures, Ann. Pure Appl. Logic 154 (2008), 139-162.

[4] R. Wencel, On expansions of weakly o-minimal non-valuational structures by convex predicates, Fund.
Math. 202 (2009), 147-159.
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On Kripke Models of Intuitionistic First-Order Logic

Abstract

There are several ways for defining the notion submodel for Kripke models of intuitionistic first-order logic. In
our approach a Kripke model & is a submodel of a Kripke model B if they have the same frame and for each
two corresponding worlds A, and B, of them, A, is a subset of B, and forcing of atomic formulas with ‘
parameters in the smaller one, in & and B, are the same. We introduce intuitionistic formula classes ?/and & of
intuitionistic universal and existential formula classes, and prove analogues of the well-known classical -
preservation theorems for them. We also define some other notions like elementary submodel, union of chain
and sandwich of Kripke models and investigate their properties.
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A Survey of Mathematical Fuzzy Predicate Logic

Abstract

In this talk we survey fuzzy predicate logic as a branch of mathematical logic. As a branch of mathematical
logic, fuzzy logic has model theory, proof theory and computability issues. We discuss some recent results.
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Deductive Filters on BL-Algebras

Abstract

We introduce the notion of deductive filters on BL-algebras and some types of deductive filters such as
intuitionistic deductive filters, classical deductive filters, Lukasiewicz deductive filters and Product deductive °
filters, and investigate some of their relationships to (Boolean, implicative, fantastic) filters on BL-algebras.
Furthermore, we show that for any BL-algebra 2{ and any product deductive filter F, the quotient algebra 2 /F
is a product algebra.
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An Algebraic Approach to Non-Classical Predicate Logics

Abstract

Completions of lattice-ordered algebras have been studied in many literatures on universal algebras. From a
logical point of view, regular completions of lattices will sometimes play an important role, as they often
provide us algebraic completeness of predicated logics. Here, we say that a completion is regular, when it is a
completion with a regular embedding, an embedding preserving all existing joins and meets. MacNeille
completions are examples of regular completions. By using them, we can show the algebraic completeness of
predicate logics. In this talk, we will discuss several ways of completing lattice expansions, and study which
properties of them, especially which forms of distributive laws are preserved under these completions. Then
these results are applied in showing algebraic completeness of non-classical predicate logics. MacNeille
completions are quite useful in this respect. But, as is well-known, MacNeille completions do not always
preserve the distributivity. Here, we will focus mainly on another type of completions, called "complete ideal
completions". It will be shown how these completions work well for such algebras that satisfy the join-infinite
distributivity. Algebraic completeness for Basic predicate logics is obtained as a consequence.
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Probability Logic and Applications

Abstract

We show that the complete (integral) theory of a structure (M, Ry, ..., R,) where M is a probability space and
Ry, ..., R, are (unary) independent random variables on JM is uniquely determined by the probability distributions

of R;’s and it admits quantifier elimination. Then we study some existence theorems in this logic.
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