The Fundamental Theorem of Algebra - Logically

Saeed Salehi

University of Tabriz and $\mathbb{C P M}$
 http://SaeedSalehi.ir/

30 October 2014
Institute for Research in Fundamental Sciences

The Theorem

Every (non-trivial) Polynomial Has a Complex Root.

Coefficients can be real or complex.

Logically

a first-order scheme

$\forall \mathbf{a}_{\mathbf{1}}, \mathbf{a}_{\mathbf{2}}, \cdots, \mathbf{a}_{\mathbf{n}-\mathbf{1}}, \mathbf{a}_{\mathbf{n}} \exists x\left(x^{n}+\mathbf{a}_{\mathbf{n}} x^{n-1}+\mathbf{a}_{\mathbf{n}-\mathbf{1}} x^{n-2}+\cdots+\mathbf{a}_{\mathbf{2}} x+\mathbf{a}_{\mathbf{1}}=0\right)$ $\mathbf{n}=1,2,3, \cdots$

More Logically

(1) $\forall a_{1} \exists x\left(x+a_{1}=0\right)$
(2) $\forall a_{1}, a_{2} \exists x\left(x^{2}+a_{2} x+a_{1}=0\right)$
(3) $\forall a_{1}, a_{2}, a_{3} \exists x\left(x^{3}+a_{3} x^{2}+a_{2} x+a_{1}=0\right)$
(4) $\forall a_{1}, a_{2}, a_{3}, a_{4} \exists x\left(x^{4}+a_{4} x^{3}+a_{3} x^{2}+a_{2} x++a_{1}=0\right)$
(5) $\forall a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \exists x\left(x^{5}+a_{5} x^{4}+a_{4} x^{3}+a_{3} x^{2}+a_{2} x+a_{1}=0\right)$
\vdots
(n) $\forall \bar{a} \exists x\left(x^{n}+\sum_{i=1}^{i=n} a_{i} x^{i-1}=0\right)$
\vdots

Axiom / Axiomatic / Axiomaitzation

Merriam-Webster: www.merriam-webster.com

Axiom:

a statement accepted as true as the basis for argument or inference Postulate

Axiomatic:
based on or involving an axiom or system of axioms
Axiomatization:
the act or process of reducing to a system of axioms

Axiom / Axiomatic / Axiomaitze

Oxford:

```
www.oxforddictionaries.com
```


Axiom:

a statement or proposition which is regarded as being established, accepted, or self-evidently true the axiom that sport builds character Math: a statement or proposition on which an abstractly defined structure is based Origin: late 15th century: from French axiome or Latin axioma, from Greek axio-ma 'what is thought fitting', from axios 'worthy'

AXIOMATIC: self-evident or unquestionable
it is axiomatic that good athletes have a strong mental attitude Math: relating to or containing axioms

AXIOMATIZE: express (a theory) as a set of axioms the attempts that are made to axiomatize linguistics

Axiomatizing Mathematical Structures

Addition and Multiplication of the Complex Numbers $\langle\mathbb{C},+, \cdot\rangle$
Tarski: The (First-Order Logical) Theory of the Structure $\left\langle\mathbb{C}, 0,1,-,{ }^{-1},+, \cdot\right\rangle$ is Decidable and Can Be Axiomatized As an Algebraically Closed Field with zero characteristic.

- $x+(y+z)=(x+y)+z \quad$ - $x \cdot(y \cdot z)=(x \cdot y) \cdot z$
- $x+y=y+x$
- $x \cdot y=y \cdot x$
- $x+0=x$
- $x \cdot 1=x$
- $x+(-x)=0 \quad \bullet x \neq 0 \rightarrow x \cdot x^{-1}=1$
- $x \cdot(y+z)=(x \cdot y)+(x \cdot z) \quad \bullet 0 \neq 1+\cdots+1=n$
- $\forall a_{1}, \cdots, a_{n} \exists x\left(x^{n}+\sum_{i=1}^{i=n} a_{i} x^{i-1}=0\right) \quad n=1,2, \cdots$

Some References

- G. Kreisel, J. L. Krivine, Elements of Mathematical Logic: model theory, North Holland 1967.
- Z. Adamowicz, P. Zbierski, Logic of Mathematics: a modern course of classical logic, Wiley 1997.
- J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, Springer 1998.
- S. Basu, R. Pollack, M.-F. Coste-Roy, Algorithms in Real Algebraic Geometry, 2nd ed. Springer 2006.

Algebraic Geometry

\mathbb{R} and \mathbb{C} with + and.
Tarski \& Chevalley:
The projection of a constructible set (in \mathbb{C}) is constructible.
Constructible:
Boolean ($\left.{ }^{\complement}, \cap, \cup\right)$ Combinations of $\{\bar{x} \mid \mathbf{P}(\bar{x})=0\}$'s.
Tarski \& Seidenberg:
The projection of a semi-algebraic set (in \mathbb{R}) is semialgebraic.
Semi-Algebraic:
Boolean Combinations of $\{\bar{x} \mid \mathrm{p}(\bar{x})=0\}$'s and $\{\bar{x} \mid \mathrm{p}(\bar{x})>0\}$'s.

Axiomatizing Mathematical Structures

Addition, Multiplication and Order of the Reals $\langle\mathbb{R},+, \cdot,<\rangle$
Tarski: The (First-Order Logical) Theory of the Structure $\left\langle\mathbb{R}, 0,1,-,{ }^{-1},+, \cdot,<\right\rangle$ is Decidable and Can Be Axiomatized
As a Real Closed (Ordered) Field.

- $x+(y+z)=(x+y)+z$
- $x \cdot(y \cdot z)=(x \cdot y) \cdot z$
- $x+y=y+x$
- $x \cdot y=y \cdot x$
- $x+0=x$
- $x \cdot 1=x$
- $x+(-x)=0$
- $x \neq 0 \rightarrow x \cdot x^{-1}=1$
- $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$
- $0<1$
- $x<y<z \rightarrow x<z$
- $x<y \vee x=y \vee y<x$
- $x<y \rightarrow x+z<y+z$
- $x \nless x$
- $x<y \wedge 0<z \rightarrow x \cdot z<y \cdot z$
- $0<z \rightarrow \exists y(z=y \cdot y)$
$\bullet \forall a_{1}, \cdots, a_{2 n+1} \exists x\left(x^{2 n+1}+\sum_{i=1}^{i=2 n+1} a_{i} x^{i-1}=0\right)$

Axiomatizing Mathematical Structures

Addition and Multiplication of the Real Numbers $\langle\mathbb{R},+, \cdot\rangle$
Tarski: The (First-Order Logical) Theory of the Structure $\left\langle\mathbb{R}, 0,1,-,^{-1},+, \cdot\right\rangle$ is Decidable and Can Be Axiomatized By:

- $x+(y+z)=(x+y)+z$
- $x+y=y+x$
- $x+0=x$
- $x+(-x)=0$
- $x \cdot(y+z)=(x \cdot y)+(x \cdot z)$
- $x^{2}+y^{2}+z^{2}=0 \rightarrow x=y=z=0$
- $x \cdot(y \cdot z)=(x \cdot y) \cdot z$
- $x \cdot y=y \cdot x$
- $x \cdot 1=x$
- $x \neq 0 \rightarrow x \cdot x^{-1}=1$
- $0 \neq 1$
- $\exists y\left(x=y^{2} \vee x+y^{2}=0\right)$
$\bullet \forall a_{1}, \cdots, a_{2 n+1} \exists x\left(x^{2 n+1}+\sum_{i=1}^{i=2 n+1} a_{i} x^{i-1}=0\right)$ $n \in \mathbb{N}$

Axiomatizing Mathematical Structures

Addition and Multiplication of Naturals, Integers and Rationals
Can We Axiomatize $\langle\mathbb{N},+, \cdot\rangle,\langle\mathbb{Z},+, \cdot\rangle$ or $\langle\mathbb{Q},+, \cdot\rangle$?

$$
\begin{aligned}
& \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}_{\text {Geom.Const. }} \subset \mathbb{R}_{\alpha l g} \subset \mathbb{R} \subset \mathbb{C} \\
& \bigcap \bigcap \\
& \bigcap \bigcap \\
& \mathbb{Z}[i] \subset \mathbb{Q}[i] \subset \mathbb{C}_{\text {Geom.Const. }} \subset \mathbb{C}_{\alpha \text { lg }} \subset \mathbb{C}
\end{aligned}
$$

Any Set of Sentences Can Be Regarded As A Set of Axioms Only When
It Is A Recursively (Computably) Enumerable Set Of Sentences!
Computably Enumerable set A : an (input-free) algorithm \mathcal{P} lists all members of A; i.e., $A=\operatorname{output}(\mathcal{P})$.

Computably Enumerable vs. Computably Decidable

- Computably Enumerable set A : an (input-free) algorithm \mathcal{P} lists all members of A; i.e., $A=\operatorname{output}(\mathcal{P})$.
- Computably Decidable set A : an algorithm \mathcal{P} decides on any input x whether $x \in A$ (outputs YES) or $x \notin A$ (outputs NO).
. Post-Kleene's Theorem: A Set is Computably Decidable if and only if Both it and its Complement are Computably Enumerable.
\therefore So, if the theory of a structure $\operatorname{Th}(\mathfrak{A})=\{\psi \mid \mathfrak{A} \models \psi\}$ is computably enumerable then so is its complement: $\operatorname{Th}(\mathfrak{A})^{\complement}=\{\theta|\mathfrak{A}| \neq \theta\}=\{\theta \mid \mathfrak{A} \models \neg \theta\}=\{\neg \varphi \mid \varphi \in \operatorname{Th}(\mathfrak{A})\}$, whence it is decidable. Thus
$\operatorname{Th}(\mathfrak{A})$ is decidable $\Longleftrightarrow \mathfrak{A}$ is axiomatizable (in a c.e. way)

Axiomatizability of Mathematical Structures

Addition and Multiplication $\langle\mathbb{N},+, \cdot\rangle,\langle\mathbb{Z},+, \cdot\rangle,\langle\mathbb{Q},+, \cdot\rangle$
Gödel's First Incompleteness Theorem:
$\operatorname{Th}(\mathbb{N},+, \cdot)$ is Not Computably Enumerable.
An Immediate Corollary:
$\operatorname{Th}(\mathbb{Z},+, \cdot)$ is Not Computably Enumerable.
Because \mathbb{N} is definable in it: for $m \in \mathbb{Z}$ we have

$$
m \in \mathbb{N} \Longleftrightarrow \exists a, b, c, d(\in \mathbb{Z})\left(m=a^{2}+b^{2}+c^{2}+d^{2}\right),
$$

by Lagrange's Four Square Theorem.
Neither is $\operatorname{Th}(\mathbb{Q},+, \cdot)$.
Since, $\langle\mathbb{Q},+, \cdot\rangle$ can define \mathbb{Z} :
J. Robinson, Definability and Decision Problems in Arithmetic, JSL 14 (1949) 98-114.
B. POONEN, Characterizing integers among rational numbers with a universal-existential formula, American Journal of Mathematics 131 (2009) 675-682.
J. Koenigsmann, Defining \mathbb{Z} in \mathbb{Q}, arXiv:1011.3424 [math.NT] (Nov. 2010) (Nov. 2013)

Axiomatizability of Mathematical Structures Addition and Multiplication

$$
\begin{aligned}
& \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}_{\text {Geom.Const. }} \subset \mathbb{R}_{\alpha \ell g} \subset \mathbb{R} \\
& \bigcap_{\mathbb{R}} \bigcap_{i i]} \subset \mathbb{Q}[i] \subset \mathbb{C}_{\text {Geom.Const. }} \subset \bigcap_{\alpha \ell g} \subset \mathbb{C}
\end{aligned}
$$

	\mathbb{N}	\mathbb{Z}	\mathbb{Q}	\mathbb{R}_{G}	$\mathbb{R}_{\alpha \ell g}$	\mathbb{R}
$\{+, \cdot\}$	X_{1}	x_{1}	x_{1}	$\dot{c} ?$	Δ_{1}	Δ_{1}
		$\mathbb{Z}[i]$	$\mathbb{Q}[i]$	$\mathbb{R}_{\mathrm{G}}[i]$	$\mathbb{R}_{\alpha \ell g}[i]$	$\mathbb{R}[i]$
$\{+, \cdot\}$		x_{1}	x_{1}	$\dot{c} ?$	Δ_{1}	Δ_{1}

Axiomatizability of Mathematical Structures

Addition and Multiplication of the Complex Numbers $\langle\mathbb{C},+, \cdot\rangle$

Theory of Fields with zero characteristic

```
- \(x+(y+z)=(x+y)+z\)
- \(x \cdot(y \cdot z)=(x \cdot y) \cdot z\)
- \(x+y=y+x\)
- \(x \cdot y=y \cdot x\)
- \(x+0=x\)
- \(x \cdot 1=x\)
- \(x+(-x)=0\)
- \(x \neq 0 \rightarrow x \cdot x^{-1}=1\)
- \(x \cdot(y+z)=(x \cdot y)+(x \cdot z) \quad \bullet 0 \neq 1+\cdots+1=n\)
``` + SOMETHing Else ...
which should also prove
\(\bullet \forall a_{1}, \cdots, a_{n} \exists x\left(x^{n}+\sum_{i=1}^{i=n} a_{i} x^{i-1}=0\right)\)

\section*{Axiomatizing the Field of Complex Numbers Another Way ...}

Fields \({ }_{0}+\Psi=\operatorname{Th}(\mathbb{C},+, \cdot)\)
\[
\text { Fields }_{0}+\Psi \vdash \mathrm{FTA}
\]
\[
\text { Fields }_{0}+\text { FTA } \vdash \Psi
\]

So,
\[
\Psi \equiv_{\text {Fields }_{0}} \text { FTA }
\]

One Man's Axiom is Another Man's Theorem.
One Man's Theorem is Another Man's Axiom.
story of the Parallel Postulate equivalents

\section*{Axiomatizing or Theoremizing}

One Man's Meat is Another Man's Poison.
http://idioms.thefreedictionary.com/
One Man's Loss is Another Man's Gain.
http://dictionary.cambridge.org/
One Man's Trash is Another Man's Treasure.
http://idioms.thefreedictionary.com/
One Man's Ceiling is Another Man's Floor.
http://vimeo.com/55169787
One Man's Magic is Another Man's Engineering.
—Robert A. Heinlein

\section*{Axiomatizing or Theoremizing}

One Man's Mistake is Another Man's Opportunity.

One Man's Home is Another Man's Uranium Dump.
http://mg.co.za/
One Man's Hate is Another Man's Faith.
http://fullcomment.nationalpost.com/
One Man's Terrorist is Another Man's Freedom Fighter. ...
—Kayode Olatunbosun (Author House 2011)
One Man's Tall is Another Man's Small: ...
Health Economics 23:7 (2014) 776-791

\section*{Algebraic Geometry vs. Mathematical Logic}

\section*{One Man's Theorem is Another Man's Principle.}

Tarski \& Chevalley:
\[
\begin{aligned}
\exists x\left(\bigwedge_{i} p_{i}(x, \bar{y})=0\right. & \left.\wedge \bigwedge_{j} q_{j}(x, \bar{y}) \neq 0\right) \equiv_{\mathbb{C}} \\
& \equiv \mathbb{C} \mathbb{V}_{l, n}\left(\bigwedge_{k} P_{k, l}(\bar{y})=0 \wedge \bigwedge_{m} Q_{m, n}(\bar{y}) \neq 0\right)
\end{aligned}
\]

Tarski \& Seidenberg:
\[
\begin{aligned}
\exists x\left(\bigwedge_{i} p_{i}(x, \bar{y})=0\right. & \left.\wedge \bigwedge_{j} q_{j}(x, \bar{y})>0\right) \equiv_{\mathbb{R}} \\
& \equiv_{\mathbb{R}} \mathbb{V}_{l, n}\left(\bigwedge_{k} P_{k, l}(\bar{y})=0 \wedge \bigwedge_{m} Q_{m, n}(\bar{y})>0\right)
\end{aligned}
\]

\section*{Axiomatizing the Field of Real Numbers}

\section*{Another Way ...}

So, any proof of \(\operatorname{Fields} \mathrm{s}_{0} \vdash_{\mathbb{C}}\) FTA should give away another axiomatization of \(\langle\mathbb{C},+, \cdot\rangle\). But most of the proofs are in \(\mathbb{R}\).

Another Way of Axiomatizing the Real Field?
Theory of Formally Real Fields with Square Roots
- \(x+(y+z)=(x+y)+z\)
- \(x \cdot(y \cdot z)=(x \cdot y) \cdot z\)
- \(x+y=y+x\)
- \(x \cdot y=y \cdot x\)
- \(x+0=x\)
- \(x \cdot 1=x\)
- \(x+(-x)=0\)
- \(x \neq 0 \rightarrow x \cdot x^{-1}=1\)
- \(x \cdot(y+z)=(x \cdot y)+(x \cdot z)\)
- \(0 \neq 1\)
- \(x^{2}+y^{2}+z^{2}=0 \rightarrow x=y=z=0\)
- \(\exists y\left(x=y^{2} \vee x+y^{2}=0\right)\)
+ SomeThing Else ...

\section*{Axiomatizing the Field of Real Numbers}

\section*{Another Way ...}

Fields \({ }_{\sqrt{+}}+\Psi=\operatorname{Th}(\mathbb{R},+, \cdot) \quad\) So,
\[
\Psi \equiv_{\text {Fields }_{\sqrt{ }+}} \mathrm{FTA}_{\circ \mathrm{odd}}=\left\{\forall \bar{a} \exists x\left(x^{2 n+1}+\sum_{i=1}^{2 n+1} a_{i} x^{i-1}=0\right)\right\}_{n}
\]

Suggestions:
\(\mathrm{FTA}_{\mathbb{R}}=\forall \bar{a} \exists \bar{b}, \bar{c} \forall x\left(\left(x^{2 n}+\sum_{i=1}^{2 n} a_{i} x^{i-1}\right)=\prod_{j=1}^{n}\left(x^{2}+b_{j} x+c_{j}\right)\right)\)
IVT \(=\forall P \forall u, v \exists x[u<v \wedge P(u) \cdot P(v)<0 \longrightarrow u<x<v \wedge P(x)=0]\)
Intermediate Value Theorem \(\forall P=\forall \bar{a}, P(y)=y^{m}+\sum_{i=1}^{m} a_{i} y^{i-1}\)

\section*{Alternative Axiomatizations for the Field of Real Numbers Three Beautiful Proofs}

\section*{Theorem}
```

Fields}\sqrt{}{+}+\mp@subsup{\textrm{FTA}}{\mathbb{R}}{}\vdash\mp@subsup{\textrm{FTA}}{\mathrm{ odd }}{

```

\section*{Proof.}
\(\forall \bar{a} \exists \bar{b} \exists \bar{c}\left[\left(x^{2 n+2}+\sum_{i=1}^{2 n+1} a_{i} x^{i}\right)=\prod_{j=1}^{n+1}\left(x^{2}+b_{j} x+c_{j}\right)\right]\). Since,
\(\prod_{j=1}^{n+1} c_{j}=0\), for some \(j, c_{j}=0\). Put \(c_{n+1}=0\). Whence
\(x \cdot\left(x^{2 n+1}+\sum_{i=1}^{2 n+1} a_{i} x^{i-1}\right)=x \cdot\left(x+b_{n+1}\right) \cdot \prod_{j=1}^{n}\left(x^{2}+b_{j} x+c_{j}\right)\).
Thus \(\left(-b_{n+1}\right)^{2 n+1}+\sum_{i=1}^{2 n+1} a_{i}\left(-b_{n+1}\right)^{i-1}=0\).

\section*{Question}

A Nice (First-Order) Proof For Fields \(\sqrt{+}+\mathrm{FTA}_{\text {odd }} \vdash \mathrm{FTA}_{\mathbb{R}}\) ?

\section*{Theorem}

\section*{Fields \(_{\sqrt{+}}+\mathrm{FTA}_{\mathbb{R}} \vdash \mathrm{IVT}\)}

\section*{Proof.}

For \(P(y)=\sum_{i=1}^{m} a_{i} y^{i-1}\) with \(u<v\) and \(P(u) \cdot P(v)<0\), put \(Q(y)=\frac{1}{P(u)}\left(1+y^{2}\right)^{m} P\left(u+\frac{v-u}{1+y^{2}}\right)\). Then \(Q(y)=y^{2 m}+R\left(y^{2}\right)\) with \(\operatorname{deg}(R)<m\) and \(Q(0)=\frac{P(v)}{P(u)}=\frac{P(u) P(v)}{P(u)^{2}}<0\). For some \(\bar{b}\) and \(\bar{c}\) we have \(Q(y)=\prod_{j=1}^{m}\left(y^{2}+b_{j} y+c_{j}\right)\). Then \(\prod_{j=1}^{m} c_{j}<0\) and so some \(c_{j}<0\). Whence, \(Q(\mathfrak{z})=0\) for \(\mathfrak{z}=\frac{1}{2}\left(-b_{j}+\sqrt{b_{j}^{2}-4 c_{j}}\right)\) and for \(\mathfrak{x}=u+\frac{v-u}{1+\mathfrak{z}^{2}}\) we have \(u<\mathfrak{x}<v\) and \(P(\mathfrak{x})=0\).

\section*{Question}

A Nice (First-Order) Proof For Fields \(\sqrt{+}+\mathrm{IVT}_{\vdash} \vdash \mathrm{FTA}_{\mathbb{R}}\) ?

\section*{Indeed, we have the following classical result:}

\section*{Theorem}

Fields \(\sqrt{+}+\) IVT \(\vdash\) FTA \(_{\text {odd }}\)

\section*{Proof.}

For \(P(x)=x^{2 n+1}+\sum_{i=1}^{2 n+1} a_{i} x^{i-1}\) let \(v=1+\sum_{i}\left|a_{i}\right|\) and \(u=-v\). Then \(u \leqslant-1<0<1 \leqslant v\), so \(|u|,|v| \geqslant 1\) and by \(u+\sum_{i}\left|a_{i}\right|=-1\),
\(P(u)=u^{2 n+1}+\sum_{i} a_{i} u^{i-1} \leqslant u^{2 n+1}+\sum_{i}\left|a_{i}\right||u|^{i-1} \leqslant\)
\(u^{2 n+1}+\sum_{i}\left|a_{i}\right| u^{2 n}=u^{2 n}\left(u+\sum_{i}\left|a_{i}\right|\right)=-u^{2 n}<0\); also
\(P(v)=v^{2 n+1}+\sum_{i} a_{i} v^{i-1} \geqslant v^{2 n+1}-\sum_{i}\left|a_{i}\right||v|^{i-1} \geqslant\)
\(v^{2 n+1}-\sum_{i}\left|a_{i}\right| v^{2 n}=v^{2 n}\left(v-\sum_{i}\left|a_{i}\right|\right)=v^{2 n}>0\).

\section*{Question}

A Nice (First-Order) Proof For Fields \(\sqrt{+}+\) FTA \(_{\text {odd }} \vdash\) IVT?

\section*{The Fundamental Theorem of Algebra} is then really FUNDAMENTAL

For Algebra, Analysis on Polynomials, Algebraic Geometry, First-Order Logical Axiomatization of Addition and Multiplication in Real (algebraic) and (algebraic) Complex Numbers, etc.

\section*{The Fundamental Theorem of Algebra} equivalent of other axiomatizations for reals
- Order Completeness of \(\mathbb{R}\)
- Induction on \(\mathbb{R}\)
- etc.

\section*{Axiomatizing the Field of Real Numbers}

\section*{Another Way ... ?}

Order Completeness of \(\mathbb{R}\) :
(in second order logic)
For any \(X \subseteq \mathbb{R}\), if \(X \neq \emptyset\) and \(\exists u[\forall x \in X: x \leqslant u]\) then \(\exists s[s=\sup X]\)
i.e., \(\forall y[(\forall x \in X: x \leqslant y) \longleftrightarrow s \leqslant y]\).

First-Order Scheme: (OrdCom)
\(\exists x \varphi(x) \wedge \exists u[\forall x(\varphi(x) \rightarrow x \leqslant u)] \longrightarrow \exists s \forall y[\forall x(\varphi(x) \rightarrow x \leqslant y) \leftrightarrow s \leqslant y]\)
Classical Real Analysis:
OrderedFields + OrdCom \(\vdash\) Fields \(\sqrt{+}\left(\forall x \exists y\left[0<x \rightarrow x=y^{2}\right]\right)\).
\[
\varphi(z) \equiv z^{2}<x
\]

OrderedFields + IVT \(\vdash\) Fields \(_{\sqrt{+}}\)
\[
\left(\forall x \exists y\left[0<x \rightarrow x=y^{2}\right]\right) .
\]
\[
P(z)=z^{2}-x
\]

OrderedFields + OrdCom \(\vdash\) IVT.
\[
\varphi(z) \equiv u<z<v \wedge P(z) P(v)<0
\]

\section*{Question}

A Nice \(1^{\text {st }}\) Order Proof of \(\quad\) OrderedFields + OrdCom \(\vdash \mathrm{FTA}_{\mathbb{R}}\) ?
A Nice \(1^{\text {st }}\) Order Proof of \(\quad\) Fields \(\sqrt{+}+\mathrm{FTA}_{\mathbb{R}} \vdash\) OrdCom?
A Nice \(1^{\text {st }}\) Order Proof of OrderedFields + IVTト OrdCom?
Dedekind Completeness of \(\mathbb{R}\) : (in second order logic)
For any \(\emptyset \neq X, Y \subseteq \mathbb{R}\), if \(X \prec Y\) then \(\exists \nu[X \preccurlyeq \nu \preccurlyeq Y]\)
First-Order Scheme: (Ddk-Com)
\(\exists x \varphi(x) \wedge \exists y \psi(y) \wedge \forall x, y(\varphi(x) \wedge \psi(y) \rightarrow x<y) \longrightarrow\) \(\longrightarrow \exists \nu \forall x, y([\varphi(x) \rightarrow x \leqslant \nu] \wedge[\psi(y) \rightarrow \nu \leqslant y])\)

OrderedFields + Ddk-Com \(\vdash\) OrdCom
\[
\psi(y) \equiv \forall x[\varphi(x) \rightarrow x \leqslant y]
\]

OrderedFields + OrdCom \(\vdash\) Ddk-Com
\[
\sup _{x} \varphi(x) \preccurlyeq \psi
\]

\section*{Axiomatizing the Field of Real Numbers}

\section*{Continuous Induction}

\section*{Pete L. Clark, The Instructor's Guide to Real Induction}
http://www.math.uga.edu/~pete/instructors_guide_shorter.pdf
"The earliest instance ... 1919 note of Y.R. Chao ..."
Y.R. Chao, A note on "Continuous mathematical induction", Bull Amer Math Soc 26:1.
"A literature search turned up the following papers, each of which introduces some form of 'continuous induction', in many cases with no reference to past precedent:" http://www.math.uga.edu/~pete/Kalantari07.pdf
\[
\begin{aligned}
& \exists x \varphi(x) \wedge \forall x, y[y<x \wedge \varphi(x) \rightarrow \varphi(y)] \wedge \forall x \exists y[\varphi(x) \rightarrow x<y \wedge \varphi(y)] \longrightarrow \\
& \operatorname{Ind}_{\mathbb{R}}
\end{aligned}
\]
and the story goes on ...

\section*{Axiomatizing the Field of Real Numbers} after constructing it

A Fast(er) Way of Constructing Reals (and short proving its completeness):
- Build \(\mathbb{N}^{+}=\{1,2,3, \cdots\}\) by Induction \(\langle 1, \mathfrak{s}\rangle \quad \mathbb{N}^{+}=\langle 1\rangle_{\mathfrak{s}}\)
\(x+1=\mathfrak{s}(x), x+\mathfrak{s}(y)=(x+y) ; \quad x \cdot 1=x, x \cdot \mathfrak{s}(y)=(x \cdot y)+y\).
- Build \(\mathbb{Q}^{+}\)by \(\left[\mathbb{N}^{+} / \mathbb{N}^{+}\right]_{\approx}\) where \((a / b) \approx(p / q) \Longleftrightarrow a \cdot q=b \cdot p\)
\((a / b)+(p / q)=(a \cdot q+b \cdot p) /(p \cdot q) \quad(a / b) \cdot(p / q)=(a \cdot p) /(b \cdot q)\)
- \(x<y \Longleftrightarrow \exists z[z+x=y]\)
- Build \(\mathbb{R}^{+}\)as nonempty, downward closed, and bounded above subsets of \(\mathbb{Q}^{+}\)without maximum elements:
Iwase ZJuñcl, Rapid (Quick) [Fast] Construction of Real Numbers by Half-Cuts http://www5a.biglobe.ne.jp/~iwase47/HalfCuts4.pdf (HalfCuts5.pdf) [HalfCuts6.pdf]
- Adding 0 is easy and adding negatives can be done either by
(i) introducing the minus function - or (ii) constructing the equivalence classes of subtractions (the usual way of constructing \(\mathbb{Z}\) from \(\mathbb{N}\)).

\section*{Thank Wou!}

Thanks to

The Participants For Listening...

The Organizers For Taking Care of Everything...

SAEEDSALEHI.ir
頱```

