Mathematical Interpretations of Non-Normal Modality

Saeed Salehi
http://saeedsalehi.info/

\mathfrak{M} Loscow 2008

- Non-Normal Modal Logics

- Why Non-Normal?
- Mathematical Interpretations
- Non-Normality - Semantically

Propositional Modal Logics

Classical Propositional Calculus + Modality Axioms and Rules Axiom:

$$
\text { (K) } \square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)
$$

Rule:

$$
\text { (RN) } \frac{A}{\square A}
$$

This base logic is denoted \mathbf{K}.
Add more axioms, get stronger modal logics. (4) $\square A \rightarrow \square \square A$; logic K4.
(L) $\square(\square A \rightarrow A) \rightarrow \square A$; Gödel-Löb logic GL.

$$
(\mathrm{K})+(\mathrm{L})+(\mathrm{RN})=\mathbf{G L} \vdash(4)
$$

Normal Modal Logics $\supseteq \mathbf{K}$

Modal Logics Weaker than K

A semantics for modal logics:
Lindenbaum-Tarski (Boolean) Algebras
$\mathcal{B}=\left(B, \wedge, \vee,^{\prime}, \leqslant, 0,1, \square\right) \quad \square: B \rightarrow B$
Let T be a theory. $[\varphi]_{T}=\{\psi \mid T \vdash \varphi \leftrightarrow \psi\}$.
$[\varphi]_{T} \wedge[\psi]_{T}=[\varphi \wedge \psi]_{T}$
$[\varphi]_{T}^{\prime}=[\neg \varphi]_{T}$
$0=[\perp]_{T} \quad 1=[T]_{T}$
Well-defined iff $\quad \frac{T \vdash \varphi \leftrightarrow \psi}{T \vdash \square \varphi \leftrightarrow \square \psi}$.

Minimal Modal Logic E

CPC + Rule of Inference

$$
\text { (RE) } \frac{\varphi \leftrightarrow \psi}{\square \varphi \leftrightarrow \square \psi} .
$$

Monotone Modal Logic M

CPC + Monotonicity Rule

$$
\text { (RM) } \frac{\varphi \rightarrow \psi}{\square \varphi \rightarrow \square \psi}
$$

(or equivalently) $\mathbf{E}+$ the Axiom

$$
\text { (M) } \square(A \wedge B) \rightarrow \square A \wedge \square B .
$$

Necessitation Modal Logic \mathbf{N}
CPC + Necessitation Rule

$$
\text { (RN) } \frac{\varphi}{\square \varphi}
$$

(or equivalently) $\mathbf{E}+$ the Axiom

$$
\text { (N) } \square \mathrm{T} .
$$

Axiom (C) $\square A \wedge \square B \rightarrow \square(A \wedge B) \quad$ converse of monotonicity

$$
\mathbf{K}=\mathbf{E}+(\mathrm{N})+(\mathrm{M})+(\mathrm{C})=\mathbf{M}+\mathbf{N}+\mathbf{C}
$$

Non-Normal Modal Logics

Literature:
B. Chellas, Modal Logic: An Introduction, CUP 1990. Philosophically ...?

No (explicit) mention in the Handbook of Modal Logic?
Proof-Theoretic Aspects [e.g. cut elimination] Different Systems

Let $\square \varphi$ mean

- happening of φ with high probability
- having a strategy to force φ
- the set of consequences of φ
- cut-free provability of φ in weak arithmetics
then \square does not satisfy (K).

High Probability

Fix a threshold $r<1$ and let $\square \varphi$ mean

$$
\text { happening of } \varphi \text { with probability } \geq r \text {. }
$$

Take an $1 \leq x<1 / \sqrt{r}$, and assume ϕ and ψ are independent with probability $x \cdot r$.

Then $\square \phi \wedge \square \psi$. But $\square(\phi \wedge \psi)$ does not hold, because the probability of $\phi \wedge \psi$ is $x^{2} \cdot r^{2}<(1 / r) \cdot r^{2}=r$.
Thus (C) : $\square \phi \wedge \square \psi \nrightarrow \square(\phi \wedge \psi)$ under this interpretation.
Though (RE) : $A \leftrightarrow B / \square A \leftrightarrow \square B,(\mathrm{M}): \square(A \wedge B) \rightarrow \square A \wedge \square B$, and (N): $\square \top$ are valid.

Deductive Closure

For Σ a set of sentences in CPC, a Σ-valuation is a mapping $*$ $(A \wedge B)^{*}=A^{*} \cap B^{*}, \quad(\neg A)^{*}=\Sigma-A^{*}$, and $(\square A)^{*}=\left\{\alpha \in \Sigma \mid A^{*} \vdash_{C P C} \alpha\right\}$.

This modal logic can be axiomatized by

$$
\begin{aligned}
& \triangleright A \rightarrow \square A \\
& \triangleright \square(A \vee \square A) \rightarrow \square A \\
& \triangleright A \rightarrow B / \square A \rightarrow \square B
\end{aligned}
$$

reflexivity
transitivity
monotonicity
because
$\triangleleft A^{*} \subseteq(\square A)^{*}$
$\triangleleft(\square(A \vee \square A))^{*} \subseteq(\square A)^{*}$
\triangleleft if $A^{*} \subseteq B^{*}$ then $(\square A)^{*} \subseteq(\square B)^{*}$

Deductive Closure

Proof of Completeness in
[P. Naumov, "On modal logic of deductive closure", APAL (2006)]
For (C) : $\square A \wedge \square B \rightarrow \square(A \wedge B)$ we should have
$(\square A)^{*} \cap(\square B)^{*} \subseteq(\square(A \wedge B))^{*}$ which is not true:
$A^{*} \vdash \alpha \quad \& \quad B^{*} \vdash \alpha \nmid \quad A^{*} \cap B^{*} \vdash \alpha$
(put $A^{*}=\{\mathfrak{p}\}, B^{*}=\{\mathfrak{q}\}$, and $\alpha=\mathfrak{p} \vee \mathfrak{q}$).
Thus $\square A \wedge \square B \nrightarrow \square(A \wedge B)$.
Also (N) : $\square \mathrm{T}$, because $\{\alpha \in \Sigma \mid \Sigma \vdash \alpha\}=\Sigma$.

Cut-Free Provability

An example of a non-normal incompleteness:

$$
\mathrm{e}: \frac{\varphi \leftrightarrow \square \psi}{\diamond \varphi \leftrightarrow \Delta \square \psi} ; \quad \mathrm{m}: \frac{\varphi \rightarrow \square \psi}{\diamond \varphi \rightarrow \Delta \square \psi} ;
$$

$\mathrm{s}: \diamond \varphi \wedge \square \psi \rightarrow \diamond(\varphi \wedge \square \psi) ; \mathrm{m}^{\prime}: \diamond(\varphi \wedge \psi) \rightarrow \diamond \psi ; \quad \mathrm{f}: \mathbb{G} \leftrightarrow \neg \square \mathbb{G} ;$
where \mathbb{G} is a propositional constant.
Note that s follows from (and does not imply) K4.
We can show a formalized second incompleteness theorem
$\vdash \nabla \varphi \rightarrow \neg \square \diamond \varphi:$

Mathematical Interpretations

Cut-Free Provability

From e, f: $\frac{\neg \mathbb{G} \leftrightarrow \square \mathbb{G}}{\diamond \neg \mathbb{G} \leftrightarrow \diamond \square \mathbb{G}}$, thus $\vdash \mathbb{G} \leftrightarrow \neg \square \mathbb{G} \leftrightarrow \diamond \neg \mathbb{G} \leftrightarrow \diamond \square \mathbb{G}$.
Now, $\Delta \varphi \wedge \neg \mathbb{G} \vdash^{\mathrm{f}} \diamond \varphi \wedge \square \mathbb{G} \vdash^{\mathrm{s}} \diamond(\varphi \wedge \square \mathbb{G}) \vdash^{\mathrm{m}^{\prime}} \diamond \square \mathbb{G} \vdash^{\uparrow} \mathbb{G}$.
So $\vdash \diamond \varphi \rightarrow \mathbb{G}$. Then $\vdash \neg \mathbb{G} \rightarrow \square \neg \varphi$, and by $\mathrm{m}^{\prime}: \vdash \diamond \neg \mathbb{G} \rightarrow \diamond \square \neg \varphi$.
Whence $\vdash \diamond \varphi \rightarrow \mathbb{G} \rightarrow \diamond \neg \mathbb{G} \rightarrow \diamond \square \neg \varphi \rightarrow \neg \square \diamond \varphi$.

By adding N: $A / \square A$, we can also show $\forall \diamond \psi$.

Mathematical Interpretations

Löb's Axiom - Formalized Gödel's 2nd Incompltns Thm.

$$
\begin{gathered}
\diamond \psi \rightarrow \neg \square(\psi \rightarrow \diamond \psi) \\
\diamond \psi \rightarrow \diamond(\psi \& \neg \diamond \psi) \\
\neg \square \neg \psi \rightarrow \neg \square(\neg \psi \vee \Delta \psi) \\
\varphi=\neg \psi: \quad \neg \square \varphi \rightarrow \neg \square(\varphi \vee \neg \square \varphi) \\
\square(\square \varphi \rightarrow \varphi) \rightarrow \square \varphi!
\end{gathered}
$$

By non-normal bi-modal methods we can show

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \nvdash \operatorname{HCon}\left(\mathrm{I} \Delta_{0}+\Omega_{1}\right)
$$

even stronger

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \vdash \operatorname{HCon}\left(\mathrm{I} \Delta_{0}+\Omega_{1}\right) \rightarrow \neg \operatorname{HPr}^{*}\left(\operatorname{HCon}\left(\mathrm{I} \Delta_{0}+\Omega_{1}\right)\right)
$$

where
$\mathrm{HCon}\left(\mathrm{I} \Delta_{0}+\Omega_{1}\right)=$ Herbrand Consistency of $\mathrm{I} \Delta_{0}+\Omega_{1}$
$\operatorname{HPr}^{*}(\phi)=$ Herbrand Provability of ϕ in the cut $\log ^{2}$
$\boldsymbol{\operatorname { l o g }}^{2}=\left\{x \mid 2^{2^{x}}\right.$ exists $\}$

Kripke (Relational) Models: $\mathcal{M}=(W, R, \vDash)$

 where $R \subseteq W \times W$ and $\vDash \subseteq W \times$ Atomic Formulae; then $w \vDash \phi$ iff $(w, \phi) \in \vDash$ for atomic ϕ and by satisfiability conditions for more complex formulae; $w \vDash \square \varphi$ iff $v \vDash \varphi$ for every v with $w R v$.Then K and N are valid in every Kripke model. The Logic of Kripke Models is \mathbf{K} (\subseteq Normal).

Neighborhood Models: $\mathcal{M}=(W, \mathrm{~N}, \mathscr{V})$

where $\mathrm{N}: W \rightarrow \mathscr{P} \mathscr{P}(W)$ - neighborhood function; and $\mathscr{V}:$ Atomic $\rightarrow \mathscr{P}(W)$ which can be extended to all formulae:
$\mathscr{V}(\neg \phi)=W-\mathscr{V}(\phi) ; \mathscr{V}(\phi \wedge \psi)=\mathscr{V}(\phi) \cap \mathscr{V}(\psi)$; and
$\mathscr{V}(\square \phi)=\{w \in W \mid \mathscr{V}(\phi) \in \mathrm{N}(w)\}$.
I.O.W. $w \models \square \phi \quad \Leftrightarrow \quad\{v \in W \mid v \vDash \phi\} \in \mathrm{N}(\phi)$.

Then RE: $A \leftrightarrow B / \square A \leftrightarrow \square B$ is valid in every Neighborhood model. The Logic of Neighborhood Models is \mathbf{E} (\subseteq Classical).
$\mathbf{M}\langle\overline{\text { sound\&complete }}\rangle$ each $\mathrm{N}(w)$ closed under superset
$\mathbf{N}\langle\overline{\text { sound\&complete }}\rangle$ each $\mathrm{N}(w) \ni W$

C $\langle\overline{\text { sound\&complete }}\rangle$ each $\mathrm{N}(w)$ closed under intersection
$\mathbf{K}\langle\overline{\text { sound\&complete }}\rangle$ each $\mathrm{N}(w)$ is a filter

Neighborhood Models

There is more ...
For a Kripke Model (W, R, \models) let (W, \aleph, \mathscr{V}) be defined:
$\aleph(w)=\{X \subseteq W \mid X \supseteq\{v \in W \mid w R v\}\}$ and
$\mathscr{V}(\phi)=\{w \in W \mid w \vDash \phi\}$.
Then each $\aleph(w)$ is a [principal] filter.

Eric Pacuit:
Neighborhood Semantics for Modal Logic
An Introduction
Course at ESSLLI 2007

