Mathematical Interpretations of Non-Normal Modality

SAEED SALEHI

http://saeedsalehi.info/

Moscow 2008

- Non-Normal Modal Logics
- Why Non-Normal?
- Mathematical Interpretations
- Non-Normality Semantically

Propositional Modal Logics

Classical Propositional Calculus + Modality Axioms and Rules Axiom:

$$(\texttt{K}) \quad \Box(A \to B) \to (\Box A \to \Box B)$$

Rule:

(RN)
$$\frac{A}{\Box A}$$

This base logic is denoted **K**. Add more axioms, get stronger modal logics. (4) $\Box A \rightarrow \Box \Box A$; logic **K4**. (L) $\Box (\Box A \rightarrow A) \rightarrow \Box A$; Gödel-Löb logic **GL**.

$$(K) + (L) + (RN) = \mathbf{GL} \vdash (4).$$

Normal Modal Logics $\supseteq \mathbf{K}$

Modal Logics Weaker than ${\bf K}$

A semantics for modal logics: Lindenbaum-Tarski (Boolean) Algebras $\mathcal{B} = (B, \land, \lor, \, ', \leqslant, 0, 1, \square) \quad \square : B \to B$

Let T be a theory. $[\varphi]_T = \{\psi \mid T \vdash \varphi \leftrightarrow \psi\}.$

$$\begin{split} & [\varphi]_{\mathcal{T}} \wedge [\psi]_{\mathcal{T}} = [\varphi \wedge \psi]_{\mathcal{T}} & [\varphi]_{\mathcal{T}} \vee [\psi]_{\mathcal{T}} = [\varphi \vee \psi]_{\mathcal{T}} \\ & [\varphi]'_{\mathcal{T}} = [\neg \varphi]_{\mathcal{T}} & [\varphi]_{\mathcal{T}} \leqslant [\psi]_{\mathcal{T}} \text{ iff } \mathcal{T} \vdash \varphi \to \psi; \\ & 0 = [\bot]_{\mathcal{T}} & 1 = [\top]_{\mathcal{T}} & \Box [\varphi]_{\mathcal{T}} = [\Box \varphi]_{\mathcal{T}}. \end{split}$$

Well-defined iff
$$\frac{T \vdash \varphi \leftrightarrow \psi}{T \vdash \Box \varphi \leftrightarrow \Box \psi}$$
.

Minimal Modal Logic E

CPC + Rule of Inference

$$(\texttt{RE}) \ \frac{\varphi \leftrightarrow \psi}{\Box \varphi \leftrightarrow \Box \psi}.$$

Monotone Modal Logic ${\bf M}$

 $\mathsf{CPC} + \mathsf{Monotonicity} \; \mathsf{Rule}$

(RM)
$$\frac{\varphi \to \psi}{\Box \varphi \to \Box \psi}$$

(or equivalently) \mathbf{E} + the Axiom

$$(\mathtt{M}) \Box (A \land B) \to \Box A \land \Box B.$$

Necessitation Modal Logic ${\bf N}$

 $\mathsf{CPC} + \mathsf{Necessitation} \ \mathsf{Rule}$

$$(\texttt{RN}) \ \frac{\varphi}{\Box \varphi}$$

(or equivalently) \mathbf{E} + the Axiom (N) $\Box \top$.

Axiom (C) $\Box A \land \Box B \rightarrow \Box (A \land B)$ converse of monotonicity

$$\mathbf{K} = \mathbf{E} + (\mathbf{N}) + (\mathbf{M}) + (\mathbf{C}) = \mathbf{M} + \mathbf{N} + \mathbf{C}$$

Literature: B. Chellas, *Modal Logic: An Introduction*, CUP 1990. Philosophically ...?

No (explicit) mention in the Handbook of Modal Logic?

Proof-Theoretic Aspects [e.g. cut elimination] Different Systems

Let $\Box \varphi$ mean

- happening of φ with high probability
- \blacktriangleright having a strategy to force φ
- \blacktriangleright the set of consequences of φ
- \blacktriangleright cut-free provability of φ in weak arithmetics

then \Box does not satisfy (K).

High Probability

Fix a threshold r < 1 and let $\Box \varphi$ mean happening of φ with probability $\geq r$.

Take an $1 \le x < 1/\sqrt{r}$, and assume ϕ and ψ are independent with probability $x \cdot r$. Then $\Box \phi \land \Box \psi$. But $\Box (\phi \land \psi)$ does not hold, because the probability of $\phi \land \psi$ is $x^2 \cdot r^2 < (1/r) \cdot r^2 = r$. Thus (C) : $\Box \phi \land \Box \psi \not\rightarrow \Box (\phi \land \psi)$ under this interpretation.

Though (RE): $A \leftrightarrow B/\Box A \leftrightarrow \Box B$, (M): $\Box(A \wedge B) \rightarrow \Box A \wedge \Box B$, and (N): $\Box \top$ are valid.

Deductive Closure

For Σ a set of sentences in CPC, a Σ -valuation is a mapping * $(A \wedge B)^* = A^* \cap B^*$, $(\neg A)^* = \Sigma - A^*$, and $(\Box A)^* = \{ \alpha \in \Sigma \mid A^* \vdash_{CPC} \alpha \}.$

This modal logic can be axiomatized by

 $\begin{array}{l} \triangleright \ A \to \Box A & \text{reflexivity} \\ \triangleright \ \Box (A \lor \Box A) \to \Box A & \text{transitivity} \\ \triangleright \ A \to B / \Box A \to \Box B & \text{monotonicity} \end{array}$

because

Deductive Closure

Proof of Completeness in

[P. Naumov, "On modal logic of deductive closure", APAL (2006)]

For (C): $\Box A \land \Box B \rightarrow \Box (A \land B)$ we should have $(\Box A)^* \cap (\Box B)^* \subseteq (\Box (A \land B))^*$ which is not true: $A^* \vdash \alpha \& B^* \vdash \alpha \not\rightarrow A^* \cap B^* \vdash \alpha$ (put $A^* = \{\mathfrak{p}\}, B^* = \{\mathfrak{q}\}, \text{ and } \alpha = \mathfrak{p} \lor \mathfrak{q}$). Thus $\Box A \land \Box B \not\rightarrow \Box (A \land B)$.

Also (N) : $\Box \top$, because $\{\alpha \in \Sigma \mid \Sigma \vdash \alpha\} = \Sigma$.

Cut-Free Provability

An example of a non-normal incompleteness:

$$\mathbf{e} \colon \frac{\varphi \leftrightarrow \Box \psi}{\Diamond \varphi \leftrightarrow \Diamond \Box \psi}; \qquad \mathbf{m} \colon \frac{\varphi \to \Box \psi}{\Diamond \varphi \to \Diamond \Box \psi};$$

$$\mathbf{s} \colon \Diamond \varphi \land \Box \psi \to \Diamond (\varphi \land \Box \psi); \quad \mathbf{m}' \colon \Diamond (\varphi \land \psi) \to \Diamond \psi; \quad \mathbf{f} \colon \ \mathbb{G} \leftrightarrow \neg \Box \mathbb{G};$$

where \mathbb{G} is a propositional constant. Note that s follows from (and does not imply) K4.

We can show a formalized second incompleteness theorem $\vdash \Diamond \varphi \rightarrow \neg \Box \Diamond \varphi$:

Cut-Free Provability

From e, f: $\frac{\neg \mathbb{G} \leftrightarrow \square \mathbb{G}}{\Diamond \neg \mathbb{G} \leftrightarrow \Diamond \square \mathbb{G}}$, thus $\vdash \mathbb{G} \leftrightarrow \neg \square \mathbb{G} \leftrightarrow \Diamond \neg \mathbb{G} \leftrightarrow \Diamond \square \mathbb{G}$. Now, $\Diamond \varphi \land \neg \mathbb{G} \vdash^{f} \Diamond \varphi \land \square \mathbb{G} \vdash^{s} \Diamond (\varphi \land \square \mathbb{G}) \vdash^{m'} \Diamond \square \mathbb{G} \vdash^{\uparrow} \mathbb{G}$. So $\vdash \Diamond \varphi \rightarrow \mathbb{G}$. Then $\vdash \neg \mathbb{G} \rightarrow \square \neg \varphi$, and by m': $\vdash \Diamond \neg \mathbb{G} \rightarrow \Diamond \square \neg \varphi$. Whence $\vdash \Diamond \varphi \rightarrow \mathbb{G} \rightarrow \Diamond \neg \mathbb{G} \rightarrow \Diamond \square \neg \varphi \rightarrow \neg \square \Diamond \varphi$.

By adding N: $A/\Box A$, we can also show $\not\vdash \Diamond \psi$.

Löb's Axiom – Formalized Gödel's 2nd Incompltns Thm.

$$\begin{split} & \Diamond \psi \to \neg \Box (\psi \to \Diamond \psi) \\ & \Diamond \psi \to \Diamond (\psi \& \neg \Diamond \psi) \\ & \neg \Box \neg \psi \to \neg \Box (\neg \psi \lor \Diamond \psi) \\ & \varphi = \neg \psi \colon \neg \Box \varphi \to \neg \Box (\varphi \lor \neg \Box \varphi) \\ & \Box (\Box \varphi \to \varphi) \to \Box \varphi \ ! \end{split}$$

By non-normal bi-modal methods we can show

$$I\Delta_0 + \Omega_1 \not\vdash HCon(I\Delta_0 + \Omega_1)$$

even stronger

$$\mathrm{I}\Delta_0 + \Omega_1 \vdash \mathrm{HCon}(\mathrm{I}\Delta_0 + \Omega_1) \rightarrow \neg \mathrm{HPr}^* \Big(\mathrm{HCon}(\mathrm{I}\Delta_0 + \Omega_1)\Big)$$

where $HCon(I\Delta_0 + \Omega_1) =$ Herbrand Consistency of $I\Delta_0 + \Omega_1$ $HPr^*(\phi) =$ Herbrand Provability of ϕ in the cut log^2 $log^2 = \{x \mid 2^{2^x} \text{ exists}\}$ **Kripke (Relational) Models**: $\mathcal{M} = (W, R, \vDash)$ where $R \subseteq W \times W$ and $\vDash \subseteq W \times \text{Atomic Formulae}$; then $w \vDash \phi$ iff $(w, \phi) \in \vDash$ for atomic ϕ and by satisfiability conditions for more complex formulae; $w \vDash \Box \varphi$ iff $v \vDash \varphi$ for every v with wRv.

Then K and N are valid in every Kripke model. The Logic of Kripke Models is $\mathbf{K} (\subseteq \text{Normal})$. **Neighborhood Models**: $\mathcal{M} = (W, N, \mathscr{V})$ where $N : W \to \mathscr{PP}(W)$ - neighborhood function; and $\mathscr{V} : \operatorname{Atomic} \to \mathscr{P}(W)$ which can be extended to all formulae: $\mathscr{V}(\neg \phi) = W - \mathscr{V}(\phi); \ \mathscr{V}(\phi \land \psi) = \mathscr{V}(\phi) \cap \mathscr{V}(\psi);$ and $\mathscr{V}(\Box \phi) = \{w \in W \mid \mathscr{V}(\phi) \in N(w)\}.$ I.O.W. $w \models \Box \phi \iff \{v \in W \mid v \models \phi\} \in N(\phi).$

Then RE: $A \leftrightarrow B/\Box A \leftrightarrow \Box B$ is valid in every Neighborhood model. The Logic of Neighborhood Models is **E** (\subseteq Classical). $M \langle \overline{\text{sound}\&\text{complete}} \rangle$ each N(w) closed under superset

N
$$\langle \overline{sound\&complete} \rangle$$
 each $N(w) \ni W$

- **C** $\langle \overline{sound\&complete} \rangle$ each N(w) closed under intersection
- **K** $\langle \overline{\text{sound}\&\text{complete}} \rangle$ each N(w) is a filter

Neighborhood Models

There is more ...

For a Kripke Model (W, R, \vDash) let (W, \aleph, \mathscr{V}) be defined: $\aleph(w) = \left\{ X \subseteq W \mid X \supseteq \{v \in W \mid wRv\} \right\}$ and $\mathscr{V}(\phi) = \{w \in W \mid w \vDash \phi\}.$

Then each $\aleph(w)$ is a [principal] filter.

Eric Pacuit: Neighborhood Semantics for Modal Logic An Introduction Course at ESSLLI 2007

