A Quick Introduction to MATHEMATICAL LOGIC

SAEED SALEHI

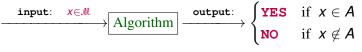
Frontiers Summer School in Mathematics

Theory of Computation, 30 August 2021

Computably Decidable (& Enumerable) Sets

Definition (Computably Decidable Set)

Set *A* is computably decidable where there is an algorithm \mathcal{P} decides on any input *x* whether $x \in A$ (outputs **YES**) or $x \notin A$ (outputs **NO**). \diamond



Algorithm: single-input, Boolean-output (1, 0).

Definition (Computably Enumerable Set)

Set A is computably enumerable where there is an (input-free) algorithm \mathcal{P} lists all members of A; i.e., $A = \mathsf{output}(\mathcal{P})$.

Algorithm
$$\longrightarrow$$
 $\{a_0, a_1, a_2, \cdots\} = A$

Algorithm: input-free, outputs a set.

 \diamond

Syllogism & Propositional, Equality, and Predicate Logics

- Propositional Logic is decidable Truth-Tables.
- Aristotle's Syllogism is decidable Venn Diagrams.
- Equational Logic is enumerable rules.
- Predicate Logic is enumerable axioms & rule.

Automated Theorem Proving

4/10

Decidable vs. Enumerable

```
Theorem (Decidable \Rightarrow Enumerable)
```

Every decidable set is enumerable.

Proof.

If $\mathcal{P}[x] = \mathbf{yES}$ for $x \in A$ and $\mathcal{P}[x] = \mathbf{NO}$ for $x \in A^{\complement}$, then let n := 0; run $\mathcal{P}[n]$; if \mathbf{yES} then PRINT "n"; let n := n+1 and repeat.

Theorem (Decidable \equiv Enumerable & Enumerable^C) A set is decidable iff it and its complement are enumerable.

Proof.

If $output(\mathcal{P}) = A$ and $output(\mathcal{P}') = A^{\complement}$, then on input x, let n := 1; run n steps of $\mathcal{P}, \mathcal{P}'$; if $x \in output(\mathcal{P})$ then PRINT "**YES**" & STOP, and if $x \in output(\mathcal{P}')$ then PRINT "**NO**" & STOP; if not stopped yet, let n := n+1 and repeat.

– SAEED SALEHI, Frontiers Summer School in Mathematics, 30 August 2021.

Computability Theory

```
Theorem (Church & Turing 1936)
```

Predicate Logic is not decidable.

Theorem Equational Logic is *not* decidable.

Modern Computers

► A Good Outcome: Introducing Turing Machines the grand grandfather of today's modern computers.

Every computable object can be "coded" by a natural number, since Each ASCII code can be written by a string of 0's and 1's:

 $(b_i \in \{0,1\}) \ b_1 b_2 \cdots b_n \mapsto (1b_1 b_2 \cdots b_n)_2 - 1 \ (\in \mathbb{N})$ $(m \in \mathbb{N}) \ m \mapsto (1^{-1}) \operatorname{bin}(m+1)$

https://www.ascii-code.com/

Coding

 It is customary to consider computable functions in the form Nⁿ → N.

• Finite Sequences of Natural Numbers can be coded in \mathbb{N} : Let $\mathfrak{p}_0, \mathfrak{p}_1, \mathfrak{p}_2, \cdots$ be the sequence of all the prime numbers $(2, 3, 5, \cdots)$, and put

$$\langle m_0, \cdots, m_k \rangle \mapsto \mathfrak{p}_0^{m_0+1} \times \cdots \times \mathfrak{p}_k^{m_k+1}.$$

This coding is injective but not surjective.

7/10

So, one can put all the programs (and all the finite sequences of ascii codes) in a bijective correspondence with N.

Uncomputability

► Thus, one can also put all the computably decidable (and enumerable) subsets of N in a bijective correspondence with N.

▶ But we saw that $\mathfrak{P}(\mathbb{N}) \cong \mathbb{N}$.

So, there *exist some* subsets of \mathbb{N} that are not computably decidable, or computably enumerable!

We will see explicit subsets of N that are not computably decidable or computably enumerable.

Recursion Theory (functions: $\mathbb{N}^n \to \mathbb{N}$)

Recursive Functions Contain:

- Zero Constant Function Z(x) = 0
- Successor Function S(x) = x + 1
- Projection Functions $\pi_i^k(n_1, \cdots, n_k) = n_i$
- Addition Function A(x, y) = x + y
- Multiplication Function $M(x, y) = x \cdot y$
- Exponentiation Function $E(x, y) = x^y$
- Prime Numbering Function $p(x) = x^{\text{th}} prime number$
- Order Recognition Function $\chi_{\leq}(x, y) = \begin{cases} 1 & \text{if } x \leq y \\ 0 & \text{if } x > y \end{cases}$

and Are Closed Under:

- The Composition of Functions
- Minimization of Functions

 $[\mu z. f(\mathbf{x}, z) = g(\mathbf{x}, z)](\mathbf{x}) = \min\{z \in \mathbb{N} | f(\mathbf{x}, z) = g(\mathbf{x}, z)\}$

Church (& Turing)'s Thesis

```
Thesis (by Experience)
Every (Intuitionally) Computable Function is Recursive.
```

Note that every recursive function is clearly computable.

For example, it can be shown that recursive functions are closed under primitive recursion:

 $PR^{f,g}(\mathbf{x},z):\begin{cases} PR^{f,g}(\mathbf{x},0) = f(\mathbf{x}) \\ PR^{f,g}(\mathbf{x},z+1) = g(\mathbf{x},z,PR^{f,g}(\mathbf{x},z)) \end{cases}$

There are lots of functions $\mathbb{N}^n \to \mathbb{N}$ that are not recursive (computable). (the characteristic functions of undecidable sets)