1/12

A Quick Introduction to MATHEMATICAL LOGIC

SAEED SALEHI

Frontiers Summer School in Mathematics

Foundations of Mathematics, 28 August 2021

2/12

AMS Math Subject Classification (1970)

From (almost) 1970's AMS divided Mathematics into

- History and Foundations
 - 01. History and Biography
 - 02. Logic and Foundations
 - :
- Algebra
- Analysis
- Geometry
 - •
 - .

AMS Math Subject Classification of Logic (1970)

02 LOGIC AND FOUNDATIONS

- 02A PHILOSOPHICAL AND CRITICAL
- 02B CLASSICAL LOGICAL SYSTEMS
- 02C NONCLASSICAL FORMAL SYSTEMS
- 02D PROOF THEORY
- **02E CONSTRUCTIVE MATHEMATICS**
- 02F RECURSION THEORY
- 02G METHODOLOGY OF DEDUCTIVE SYSTEMS
- 02H MODEL THEORY
- 02I —
- 02J ALGEBRAIC LOGIC
- 02K SET THEORY

AMS Math Subject Classification of Logic (1980)

From 1980 AMS divided Mathematics into

- 00. General
- 01. History and Biography
- 02. —
- 03. Mathematical Logic and Foundations
- 04. Set Theory
 - ÷
 - 1.1

AMS Math Subject Classification of Logic (2000)

From 2000 AMS divided Mathematics into

- 00. General
- 01. History and Biography
- 02. —
- 03. Mathematical Logic and Foundations
- 04. —
- 05. Combinatorics
 - 10
 - 1

AMS Math Subject Classification of Logic (2020)

03 MATHEMATICAL LOGIC AND FOUNDATIONS

- 03A PHILOSOPHICAL ASPECTS OF LOGIC AND FOUNDATIONS
- 03B GENERAL LOGIC
- 03C MODEL THEORY
- 03D COMPUTABILITY AND RECURSION THEORY
- 02E SET THEORY
- 03F PROOF THEORY AND CONSTRUCTIVE MATHEMATICS
- 02G ALGEBRAIC LOGIC
- 02H NONSTANDARD MODELS

```
Foundations — Why?
```

Because everything is (can be) a set! Even numbers!

```
0 \ \emptyset (= \{\})
1 \ \{\emptyset\}
2 \ \{\emptyset, \{\emptyset\}\}
3 \ \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}
\vdots
n+1 \ \{0, 1, \cdots, n\} = n \cup \{n\}
\vdots
```

•

Foundations — How?

Graphs, Groups, Algebras, . . . everything is (can be defined as) a set; even ordered pairs:

Definition (Kuratowski 1921) $\langle x, y \rangle = \{ \{x\}, \{x, y\} \}$

Exercise: Show that $\langle x, y \rangle = \langle a, b \rangle \iff x = a \land y = b$.

A relation is a set of ordered pairs, a function is a relation . . .

Now we are used to the terminology of Set Theory after the wave of *New Mathematics* . . .

9/12

Sets for Counting

Numbers Having the same number of things ... Equinumerosity Having a bijection between them ...

Surprises:

ŝ

- $\triangleright \mathbb{N} \cong \mathbb{N} \{0\}: f(x) = x + 1.$
- ▶ $\mathbb{Z} \cong 2\mathbb{Z}(\text{Even Integers})$: f(x) = 2x.

$$\triangleright \mathbb{N}^2 \cong \mathbb{N}: f(x, y) = 2^x (2y+1) - 1.$$

▶ but $\mathfrak{P}(\mathbb{N}) \not\cong \mathbb{N}$ since for every $f : \mathbb{N} \to \mathfrak{P}(\mathbb{N})$, the set $D_f = \{n \mid n \notin f(n)\}$ is not in the range of f (if $D_f = f(m)$, then $m \in D_f \leftrightarrow m \notin f(m) \leftrightarrow m \notin D_f$!) remember the Liar's Paradox?

Crisis in the Foundations of Math.

Russell's Paradox

The set of all sets that are not members of themselves. $\Re = \{x \mid x \notin x\}, \quad \Re \in \Re \iff \Re \notin \Re!$

So, the axiom of unrestricted comprehension is not valid! $\{x \mid \varphi(x)\}$

If $1 = \{\{a\} \mid a = a\}$, or $\{x \mid \exists y \forall z (z \in x \leftrightarrow z = y)\}$ $(x = \{y\})$, then let $1' = \{x \in 1 \mid \exists y (x = \{y\} \land x \notin y)\}$ $(\{\{a\} \mid \{a\} \notin a\})$. Now, $\{1'\} \in 1' \leftrightarrow \exists y [\{1'\} = \{y\} \land \{1'\} \notin y] \leftrightarrow \{1'\} \notin 1'!$

Some Exercises (1)

- 1. Write the syllogisms \mathcal{SaP} , \mathcal{SiP} , \mathcal{SeP} , and \mathcal{SoP} in Predicate Logic by using the unary predicate symbols $\mathfrak{S}(x)$ and $\mathfrak{P}(x)$.
- 2. Prove the following in Group Theory:

$$\frac{x \cdot x = \mathbf{e}}{a \cdot b = b \cdot a}$$

3. Prove that the following sentence, for any formula $\varphi(x)$, is true in every structure:

$$\exists x \big[\varphi(x) \to \forall y \, \varphi(y) \big]$$

└── SAEED SALEHI, Frontiers Summer School in Mathematics, 28 August 2021. 12/12

Some Exercises (2)

1. Prove Barber's Paradox in Predicate Logic:

$$\neg \exists y \forall x [\theta(y, x) \leftrightarrow \neg \theta(x, x)]$$

2. Show that for every a, b, x, y we have

$$\left\{\{x\}, \{x, y\}\right\} = \left\{\{a\}, \{a, b\}\right\} \Longrightarrow x = a \land y = b$$

3. Prove that the mapping

$$\mathbb{N}^2 \to \mathbb{N}, \quad (x, y) \mapsto 2^x (2y+1) - 1$$

is a bijection (1-1 and onto).