A Quick Introduction to Mathematical Logic

SAEED SALEHI

Frontiers Summer School in Mathematics
Foundations of Mathematics, 28 August 2021

AMS Math Subject Classification (1970)

From (almost) 1970's AMS divided Mathematics into

- History and Foundations

1. History and Biography
2. Logic and Foundations

- Algebra
- Analysis
- Geometry
:

AMS Math Subject Classification of Logic (1970)

02 Logic and Foundations
02A Philosophical and Critical
02B Classical Logical Systems
02C Nonclassical Formal Systems
02D Proof Theory
02E Constructive Mathematics
02F Recursion Theory
02G Methodology of Deductive Systems
02H Model Theory
02I -
02J Algebraic Logic
02K Set Theory

AMS Math Subject Classification of Logic (1980)

From 1980 AMS divided Mathematics into
00. General

1. History and Biography
2. -
3. Mathematical Logic and Foundations
4. Set Theory

AMS Math Subject Classification of Logic (2000)

From 2000 AMS divided Mathematics into
00. General

1. History and Biography
2. -
3. Mathematical Logic and Foundations
4. -
5. Combinatorics

AMS Math Subject Classification of Logic (2020)

03 Mathematical Logic and Foundations 03A Philosophical Aspects of Logic and Foundations 03B General Logic
03C Model Theory
03D Computability and Recursion Theory
02E Set Theory
03F Proof Theory and Constructive Mathematics
02G Algebraic Logic
02H Nonstandard Models

Foundations - Why?

Because everything is (can be) a set! Even numbers!
$0 \emptyset(=\{ \})$
$1\{\emptyset\}$
$2\{\emptyset,\{\emptyset\}\}$
$3\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}$
$n+1\{0,1, \cdots, n\}=n \cup\{n\}$

Foundations - How?

Graphs, Groups, Algebras, . . . everything is (can be defined as) a set; even ordered pairs:

Definition (Kuratowski 1921)
$\langle x, y\rangle=\{\{x\},\{x, y\}\}$
Exercise: Show that $\langle x, y\rangle=\langle a, b\rangle \Longleftrightarrow x=a \wedge y=b$.
A relation is a set of ordered pairs, a function is a relation . . .
Now we are used to the terminology of Set Theory after the wave of New Mathematics . . .

Sets for Counting

Numbers Having the same number of things ...
Equinumerosity Having a bijection between them ...
Surprises:

- $\mathbb{N} \cong \mathbb{N}-\{0\}: f(x)=x+1$.
- $\mathbb{Z} \cong 2 \mathbb{Z}$ (Even Integers): $f(x)=2 x$.
$-\mathbb{N}^{2} \cong \mathbb{N}: f(x, y)=2^{x}(2 y+1)-1$.
- but $\mathscr{P}(\mathbb{N}) \not \not \mathbb{N}$ since for every $f: \mathbb{N} \rightarrow \mathscr{P}(\mathbb{N})$, the set $D_{f}=\{n \mid n \notin f(n)\}$ is not in the range of f (if $D_{f}=f(m)$, then $m \in D_{f} \leftrightarrow m \notin \underline{f(m)} \leftrightarrow m \notin \underline{D_{f}!}!$ remember the Liar’s Paradox?

Crisis in the Foundations of Math.

Russell's Paradox

The set of all sets that are not members of themselves.

$$
\mathscr{R}=\{x \mid x \notin x\}, \quad \mathscr{R} \in \mathscr{R} \Longleftrightarrow \mathscr{R} \notin \mathscr{R}!
$$

So, the axiom of unrestricted comprehension is not valid! $\{x \mid \varphi(x)\}$

If $\mathbf{1}=\{\{a\} \mid a=a\}$, or $\{x \mid \exists y \forall z(z \in x \leftrightarrow z=y)\}(x=\{y\})$, then let $\mathbf{1}^{\prime}=\{x \in \mathbf{1} \mid \exists y(x=\{y\} \wedge x \notin y)\}(\{\{a\} \mid\{a\} \notin a\})$.
Now, $\left\{\mathbf{1}^{\prime}\right\} \in \mathbf{1}^{\prime} \leftrightarrow \exists y\left[\left\{\mathbf{1}^{\prime}\right\}=\{y\} \wedge\left\{\mathbf{1}^{\prime}\right\} \notin y\right] \leftrightarrow\left\{\mathbf{1}^{\prime}\right\} \notin \mathbf{1}^{\prime}!$

Some Exercises (1)

1. Write the syllogisms $\mathcal{S a P}, \mathcal{S i} \mathcal{P}, \mathcal{S e} \mathcal{P}$, and $\mathcal{S o P}$ in Predicate Logic by using the unary predicate symbols $\boldsymbol{S}(x)$ and $\mathfrak{p}(x)$.
2. Prove the following in Group Theory:

$$
\overline{\imath^{\prime}(a * b)=\imath^{\prime}(b) * \imath^{\prime}(a)} \quad \frac{x * x=\mathbf{e}}{a * b=b * a}
$$

3. Prove that the following sentence, for any formula $\varphi(x)$, is true in every structure:

$$
\exists x[\varphi(x) \rightarrow \forall y \varphi(y)]
$$

Some Exercises (2)

1. Prove Barber's Paradox in Predicate Logic:

$$
\neg \exists y \forall x[\theta(y, x) \leftrightarrow \neg \boldsymbol{\theta}(x, x)]
$$

2. Show that for every a, b, x, y we have

$$
\{\{x\},\{x, y\}\}=\{\{a\},\{a, b\}\} \Longrightarrow x=a \wedge y=b
$$

3. Prove that the mapping

$$
\mathbb{N}^{2} \rightarrow \mathbb{N}, \quad(x, y) \mapsto 2^{x}(2 y+1)-1
$$

is a bijection (1-1 and onto).

