A Quick Introduction to Mathematical Logic

SAEED SALEHI

Frontiers Summer School in Mathematics
Predicate Logic, 28 August 2021

جبرو مقابله	

باب هـابر كوتهكون

كنى وباقيمانده را ورسه جذر آن شال ضربكنى هعدار مال اول بدست میآيد
راه حل آن جـنين است : آكر تهام مال اول را ، بيش از كسر

 ضرب در سه جلرش میشود بر بك مال ونبم ، و جون تهام آنرا در يك جذر ضرب ككى مىشود نصف مال، بنابراين جلذر اين مال نصف است واحل آن يك جهارم است ، بس دو سو سوم مال برابر است با با بك

 ا

است باجهار جذر مال.

 ينجاموشساستر.

1) $x+\sqrt{x^{r}-x}=Y$ بنابرآ

11

 عبارت است از تعداد مردان نوبت اولما

ضربكنى بنج' مىشود
راه حل آن جنين است: آمر آنرا در مانتد خودش ضرب كنى
دوسوم جذر هفتو نيمضرب شود، Tنگاه دوسومرا دردوسوم ضرب
بك سوم‘بسجذنر سه ويكسومعبارتاست از دوسوم جذر هفت ونيم؛
Tانگاه سهو يك سوم را درهغت و نـم ضرب ڤى كنى مىشود بيـت و
مبــ اگركسي بتويد : مالى استك جون درمه جلر خودش
خرب شود بنج برابر مال اول مىشود .
راه حل آن جنيناست: جنان است كاكثنته باشمد hالى رادرجلنرثن
ضرب كردم به اندازक بك مال و دوسوم مال اول شد ، بس شعدار جذذر . . .
اين مال يك درهم ودوسومدرهم اسـت، و اصل ملا دودرهم وهغت نهم
درهم خحو اهد بود .

 ديگرى از مستلا شـارة با است.

ROBERT OF CHESTER'S

LATIN TRANSLATION

OF THE

ALGEBRA OF AL-KHOWARIZMI

WITH AN INTRODUCTION, CRITICAL NOTES AND AN ENGLISH VERSION
sy
LOUIS CHARLES KARPINSKI
universtity of michiona
Muhammad ibn Misa, al-Khuwarazmi

Nitu gark

THE MACMILLAN COMPANY
London: macmillan and company limited
1915
all rigber rawrod
c

the book of algebra and almucabola

equal to 6 units. I take one-half of the roots and I multiply the half by itself. I add the product to 6 , and of this sum I take the root. The remainder obtained after subtracting one-half of the roots will designate the first number of girls, and this is two.

Fifleenth Problem

If from a square I subtract four of its roots and then take one-third of the remainder, finding this equal to four of the roots, the square will be $256 .^{1}$ Explanation. Since one-third of the remainder is equal to four roots, you know that the remainder itself will equal 12 roots. Therefore add this to the four, giving 16 roots. This (16) is the root of the square.

Sixteenth Problem

From a square I subtract three of its roots and multiply the remainder by itself; the sum total of this multiplication equals the square. ${ }^{2}$
Explanation. It is evident that the remainder is equal to the root, which amounts to four. The square is 16 .
These now are the sixteen problems which are seen to arise from the former ones, as we have explained. Hence by means of those things which have been set forth you will easily carry through any multiplication that you may wish to attempt in accordance with the art of restoration and opposition.

CHAPTER ON MERCANTILE TRANSACTIONS*

Mercantile transactions and all things pertaining thereto involve two ideas and four numbers. ${ }^{4}$ Of these numbers the first is called by the Arabs ideas and four numbers, ${ }^{4}$ Of these numbers the first is called by the Arabs
Almuzahar and is the first one proposed. The second is called Alszian, and recognized as second by means of the first. The third, Almuhen, is unknown. The fourth, Alchemon, is obtained by means of the first and second. Further, these four numbers are so related that the first of them, the measure, is inversely proportional to the last, which is cost. Moreover, three of these numbers are always given or known and the fourth is unknown, and this

```
    M Rosen, p. 66; Libri, p, 206. f(\mp@subsup{v}{}{2}-4x)=4x.
    In
```



```
*)
    'The famous 'rule of thrre' is the subject of discussion in this chapter.
    -The famous 'rule of three' is the subject of discusion in this chapter.
    * The two ideas appear to be the notions of quantity and cost; the lour numbers represent
*)
```


Coding Mathematics

Example from Al-Khwarizmi: If from a square, I subtract four of its roots and then take one-third of the remainder, finding this equal to four of the roots, the square will be 256 .

Modern Notation: If I have $\frac{1}{3}\left(x^{2}-4 x\right)=4 x$, then $x^{2}=256$.
More Modern: $\forall x\left[\frac{1}{3}\left(x^{2}-4 x\right)=4 x \longrightarrow x^{2}=256\right]$.
This holds in the domain $\mathbb{N}-\{0\}=\{1,2,3, \cdots\}$ (but not in \mathbb{N}).
Indeed, $\mathbb{N} \models \forall x\left[\frac{1}{3}\left(x^{2}-4 x\right)=4 x \longrightarrow x=16 \vee x=0\right]$.

First-Order Logic (SYNTAX)

Fix a set of primitive constant, function, or relation symbols.
For example, constants 0,1 ; the functions,,$-+ \cdot ;$ the relation $<$.
Terms are constructed from variables and constants by successive application of function symbols.
Examples: $0+x, 1 \cdot(x+y),(x \cdot x)+y$, algebraic expressions.
Atomic Formulas are relations (including $=$) between terms.
Examples: $t=u$ or $t<u$ or $t \leqslant u$.
Formulas are either atomic or the negation (\neg), disjunction (\vee), conjunction (\wedge), implication (\rightarrow) or quantification (\forall, \exists) of other formulas.
Examples: $\forall x \exists y[x=2 y \vee x=2 y+1], \exists x \forall y[x+y=y]$, $\forall x[x+u<x], \forall y[y \cdot u=u], \forall z[z \cdot u<z], \exists z[z+x=y]$.

Structures

A non-empty set with some functions (maybe also constants) and relations. $\mathbb{A}=\left\langle\mathscr{A} ; \mathfrak{f}_{1}^{\mathbb{A}}, \cdots, \mathfrak{f}_{m}^{\mathbb{A}}, \mathfrak{r}_{1}^{\mathbb{A}}, \cdots, \mathfrak{r}_{n}^{\mathbb{A}}\right\rangle$.

- if \mathfrak{f}_{i} is a constant, then $\mathfrak{f}_{i}^{\mathbb{A}} \in \mathscr{A}$;
- if f_{j} is of arity $k(>0)$, then $\mathfrak{f}_{j}^{\mathbb{A}}: \mathscr{A}^{k} \rightarrow \mathscr{A}$.
- if \mathfrak{r}_{ℓ} is of arity $k(>0)$, then $\mathfrak{r}_{\ell}^{\mathbb{A}} \subseteq \mathscr{A}^{k}$.

Example

- Ordered Groups: $\left\langle G ; *, \mathbf{e}, \boldsymbol{\iota}^{\prime}, \leqslant\right\rangle-\left\langle G ; \mathbf{e}^{\mathbb{G}}, \boldsymbol{\imath}^{\boldsymbol{G}}, *^{\mathbb{G}}, \leqslant^{\mathbb{G}}\right\rangle$

$$
\forall x, y, z(x \leqslant y \longrightarrow x * z \leqslant y * z \wedge z * x \leqslant z * y)
$$

- Fields: $\left\langle\mathbb{Q} ; 0,1,-,+, \cdot, l^{\prime}\right\rangle$

$$
\imath^{\prime}(0)=0 \quad \forall x\left(x \neq 0 \rightarrow x \cdot \imath^{\prime}(x)=1\right) \quad x \cdot 0=0 \neq 1 \neq 0 \cdot \imath^{\prime}(0)
$$

Satisfaction in Structures

Question: Is $\exists x(3 x+1=2 y)$ true in $\mathbb{N} ?(\langle\mathbb{N} ; 0,1,+, \cdot,<\rangle)$ Answer: It depends on y :
for e.g. $y=1$ it is false! but for e.g. $y=2$ it is true.
Also, $\langle\mathbb{N} ; 0,1,+, \cdot,<\rangle \not \models \forall y \exists x(3 x+1=2 y)$;
but $\langle\mathbb{N} ; 0,1,+, \cdot,<\rangle \vDash \exists y \exists x(3 x+1=2 y)$.
Examples:

- $\mathbb{N} \not \vDash \forall x \exists y(x+y=0) \quad$ but $\mathbb{Z} \models \forall x \exists y(x+y=0)$.
- $\mathbb{Z} \forall \forall \forall x \exists y(x \neq 0 \rightarrow[x \cdot y=1])$ but $\mathbb{Q} \vDash \forall x \exists y(x \neq 0 \rightarrow[x \cdot y=1])$.
- $\mathbb{Q} \mid \vDash \forall x \exists y(0 \leqslant x \rightarrow[y \cdot y=x])$ but $\mathbb{R} \models \forall x \exists y(0 \leqslant x \rightarrow[y \cdot y=x])$.
- $\mathbb{R} \not \vDash \forall x \exists y(y \cdot y+x=0) \quad$ but $\mathbb{C} \models \forall x \exists y(y \cdot y+x=0)$.

Axiomatizing (Propositional and) Predicate Logic

Theorem (Gödel's Completeness Theorem 1929)
From An Axiomatization of (Logically) Valid Formulas:

- $\alpha \rightarrow(\beta \rightarrow \alpha) \quad$ - $(\neg \beta \rightarrow \neg \alpha) \rightarrow(\alpha \rightarrow \beta)$
- $[\alpha \rightarrow(\beta \rightarrow \gamma)] \rightarrow[(\alpha \rightarrow \beta) \rightarrow(\alpha \rightarrow \gamma)]$
- $\forall x \varphi(x) \rightarrow \varphi(t) \quad$ - $\varphi \rightarrow \forall x \varphi[x$ is not free in φ]
- $\forall x(\varphi \rightarrow \psi) \rightarrow(\forall x \varphi \rightarrow \forall x \psi)$

With the Modus Ponens Rule: $\quad \frac{\varphi, \varphi \rightarrow \psi}{\psi}$
All Universally Valid Formulas can be proved/generated.

(Soundness and) Strong Completeness

Semantic	Definition
$\mathbb{A} \vDash \varphi(\bar{x})$	depends on values of free \bar{x}
$\mathbb{A} \vDash \psi$	definite; when ψ is a sentence
$\mathbb{A} \vDash \Sigma$	$\mathbb{A} \vDash \psi$ for every $\psi \in \Sigma$
$\Sigma \vDash \psi$	$\mathbb{A} \vDash \psi$ for every $\mathbb{A} \vDash \Sigma$
Syntactic	Definition
$\Sigma \vdash \psi$	ψ is proved from Σ

Soundness If $\Sigma \vdash \psi$, then $\Sigma \vDash \psi$.
Completeness If $\Sigma \vDash \psi$, then $\Sigma \vdash \psi$.

A Consequence of the Completeness

Definition (Computably Enumerable Set)
Set A is computably enumerable where there is an (input-free) algorithm \mathcal{P} lists all members of A; i.e., $A=\operatorname{output}(\mathcal{P})$.

$$
\text { Algorithm } \xrightarrow{\text { output: }}\left\{a_{0}, a_{1}, a_{2}, \cdots\right\}=A
$$

Algorithm: input-free, outputs a set. input-free such as operating system

Tautologies (\equiv Theorems) of the Predicate Logic is
Computably Enumerable (Gödel 1929).

