A Quick Introduction to MATHEMATICAL LOGIC

SAEED SALEHI

Frontiers Summer School in Mathematics

Equational Logic, 25 August 2021

The First Identity

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a+b)(a+b) = (a+b)a + (a+b)b = (a(a+b) + b(a+b)) = (a^{2} + ab) + (ba+b^{2}) = (a^{2} + ab) + (ab+b^{2}) = (a^{2} + ab) + (ab+b^{2}) = (a^{2} + (ab+ab) + b^{2} = (a^{2} + (a^{2} + (a^{2} + a^{2} + (a^{2} + (a^{2} +$$

The First Identity, Generalized

 $x \circ (y \circ z) = (x \circ y) \circ z$ x * y = y * x $x * (y \circ z) = (x * y) \circ (x * z)$ $\ell * x = x$ $\ell \circ \ell = \Bbbk$

 $(U \circ V) * (U \circ V) = (U * U) \circ [\Bbbk * (U * V)] \circ (V * V)$

An Example from Algebra & Analysis: $x \cdot 0 = 0$

Lemma

$$\frac{a+c=b+c}{a=b}$$

Proof.

$$a + c = b + c$$

 $(a + c) + (-c) = (b + c) + (-c)$
 $a + [c + (-c)] = b + [c + (-c)]$
 $a + 0 = b + 0$
 $a = b$

An Example from Algebra & Analysis: $x \cdot 0 = 0$

Theorem

 $x \cdot \theta = \theta$

Proof. $x \cdot 0 = x \cdot (0+0) = x \cdot 0 + x \cdot 0$ $x \cdot 0 = 0 + x \cdot 0$ $x \cdot 0 + x \cdot 0 = 0 + x \cdot 0$ by the lemma $x \cdot 0 = 0$

Groups

$$\begin{cases} x * (y * z) = (x * y) * z & associativity \\ x * e = x = e * x & identity \\ x * i'(x) = e = i'(x) * x & inverse \end{cases}$$

Example

• in \mathbb{Z} : * = +, e = 0, i' = -. $\langle \mathbb{Z}; +, 0, - \rangle$ • in $\mathbb{Q} - \{0\}$: * = ×, e = 1, i'(x) = $\frac{1}{x}$. $\langle \mathbb{Q}; \times, 1, 1/x \rangle$ • in Sym_A: * = 0, e = \mathbb{I}_A , i'(f) = f⁻¹. $\langle \text{Sym}_A; 0, \mathbb{I}_A, -1 \rangle$

The 1st Theorem in Group Theory

Theorem The identity element is unique.

Proof. We show

$$\frac{\mathbf{e}' \ast \mathbf{X} = \mathbf{X}}{\mathbf{e}' = \mathbf{e}}$$

From the assumption and the axiom (definition) of a group

$$\frac{\mathbf{e}' * \mathbf{X} = \mathbf{X}}{\mathbf{e}' * \mathbf{e} = \mathbf{e}} (\mathbf{X} = \mathbf{e})$$
$$\frac{\mathbf{X} * \mathbf{e} = \mathbf{X}}{\mathbf{e}' * \mathbf{e} = \mathbf{e}'} (\mathbf{X} = \mathbf{e}')$$

Therefore, e' = e.

7/12

Equational Logic

$$\frac{1}{x \approx x} (Reflexivity)$$

$$\frac{x \approx y}{y \approx x} (Symmetry)$$

$$\frac{x \approx y, \ y \approx z}{x \approx z} (Transitivity)$$

$$\frac{x_1 \approx y_1, \cdots, x_n \approx y_n}{f(x_1 \dots x_n) \approx f(y_1 \dots y_n)} (Congruence)$$

$$\frac{x \approx y}{\sigma[x] \approx \sigma[y]} (Substitutivity)$$

Algebraic Structures

A non-empty set with some functions (maybe also constants) that satisfy some equalities. $\mathbb{A} = \langle \mathfrak{A}; \mathfrak{f}_1^{\mathbb{A}}, \cdots, \mathfrak{f}_m^{\mathbb{A}} \rangle$.

- if f_i is a constant, then $f_i^{\mathbb{A}} \in \mathcal{A}$;
- if f_j is of arity k(>0), then $f_j^{\mathbb{A}} : \mathcal{A}^k \to \mathcal{A}$.

Example

- Groups: $\langle G; *, \mathbf{e}, \boldsymbol{\imath}' \rangle \langle G; \mathbf{e}^{\mathbb{G}}, \boldsymbol{\imath}'^{\mathbb{G}}, *^{\mathbb{G}} \rangle$
- Rings: $\langle \mathbb{Z}; \mathbf{0}, \mathbf{1}, -, +, \times \rangle$
- Modules:

UNIVERSAL ALGEBRA

9/12

(non-)Algebraic Structures

NOT any $\langle G; *, \mathbf{e}, \mathbf{i}' \rangle$ -structure is a *group*:

 $\blacktriangleright \langle \mathbb{N}; +, 0, \iota \rangle \text{ with } \iota(x) = x + 1$

$$\blacktriangleright \langle \mathbb{Z}; \times, \mathbf{1}, - \rangle$$

$$\blacktriangleright \langle \mathfrak{P}(X); -, \emptyset, {}^{\complement} \rangle \ (A^{\complement} = X - A)$$

Definition

- Semigroup: $\langle \mathfrak{A}; * \rangle$ with associative * (x * (y * z) = (x * y) * z)
- Monoid: $\langle \mathfrak{A}; *, e \rangle$ with associative * and identity e(x * e = x)
- Group: . . . (x * i'(x) = x = i'(x) * x)
- Abelian Group: a group that satisfies also x * y = y * x.

Soundness and Completeness

Soundness and Completeness of Equational Logic in Universal Algebra:

Theorem (Completeness of Equational Logic)

A set of identities Σ implies (by the rules of Equational Logic) an identity $\alpha \approx \beta$ if and only if every algebraic structure that satisfies the set Σ also satisfies the identity $\alpha \approx \beta$.

Semantic	Syntactic
$\mathbb{A}\vDash \alpha \thickapprox \beta$	
$\mathbb{A} \models \Sigma$	
$\boldsymbol{\Sigma} \vDash \boldsymbol{\alpha} \boldsymbol{\approx} \boldsymbol{\beta}$	$\Sigma \vdash \alpha \approx \beta$

The 2nd Theorem in Group Theory

Theorem The inverse element is unique.

Proof.
In a group G, if
$$ab = e$$
, then
 $a^{-1}(ab) = a^{-1}e$, so
 $(a^{-1}a)b = a^{-1}$, thus
 $eb = a^{-1}$, therefore
 $b = a^{-1}$.

$$\frac{U * V = \mathfrak{e}}{\mathfrak{e}'(U) * (U * V) = \mathfrak{i}'(U) * \mathfrak{e}}$$
$$\frac{\mathfrak{e}'(U) * U * V = \mathfrak{i}'(U)}{\mathfrak{e} * V = \mathfrak{i}'(U)}$$
$$\frac{\mathfrak{e} * V = \mathfrak{i}'(U)}{V = \mathfrak{i}'(U)}$$