1/10

A Quick Introduction to MATHEMATICAL LOGIC

SAEED SALEHI

Frontiers Summer School in Mathematics

Aristotle's Syllogism, 25 August 2021

└── SAEED SALEHI, Frontiers Summer School in Mathematics, 25 August 2021.

2/10

Shortage of Propositional Logic

This deduction cannot be formalized in Propositional Logic:

All humans are mortal. Socrates is a human.

We need some

• predicates for expressing **properties** of subjects, and some

• quantifiers to **quantify** (the number of) **the subjects** satisfying some properties (in terms of ALL or NONE).

Syllogism

S=subject P=property

Aristotle's Syllogistic Connectives: a e í

- $\blacktriangleright Sa\mathcal{P}: Every S is \mathcal{P}.$
- $\blacktriangleright Si\mathcal{P}: \text{Some } S \text{ is } \mathcal{P}.$
- \mathcal{SeP} : No \mathcal{S} is \mathcal{P} . Every \mathcal{S} is not \mathcal{P}

Later was added: o

 $\blacktriangleright S \circ \mathcal{P}: Some S is not \mathcal{P}.$

Syllogistic Rules \mathcal{M} =middle property First Figure $\frac{\mathcal{M} \sqcup \mathcal{P}, \quad \mathcal{S} \bigcirc \mathcal{M}}{\mathcal{S} \land \mathcal{P}}$ example : $\frac{\mathcal{M}a\mathcal{P}, \mathcal{S}a\mathcal{M}}{\mathcal{S}a\mathcal{P}}$ Second Figure $\frac{\mathcal{P}\Box \mathcal{M}, \quad \mathcal{S} \bigcirc \mathcal{M}}{\mathcal{S} \land \mathcal{P}}$ example : $\frac{\mathcal{Pe}\mathcal{M}, \ \mathcal{Si}\mathcal{M}}{\mathcal{Si}\mathcal{P}}$ Third Figure $\frac{\mathcal{M}\Box \mathcal{P}, \quad \mathcal{M} \bigcirc \mathcal{S}}{\mathcal{S} \land \mathcal{P}}$ example : $\frac{\mathcal{MeP}, \mathcal{MaS}}{\mathcal{SoP}}$ example : $\frac{\mathcal{P} \alpha \mathcal{M}, \ \mathcal{M} i \mathcal{S}}{\mathcal{S} \circ \mathcal{P}}$ Fourth Figure $\frac{\mathcal{P} \sqcup \mathcal{M}, \quad \mathcal{M} \bigcup \mathcal{S}}{\mathcal{S} \land \mathcal{P}}$

Aristotle's Syllogistic Valid Rules – First Figure

$\frac{\mathcal{M}a\mathcal{P}, \mathcal{S}a\mathcal{M}}{\mathcal{S}a\mathcal{P}}$	$\frac{\text{all M is P,} \text{all S is M}}{\text{all S is P}}$
\mathcal{S} a \mathcal{P}	all S is P
$rac{\mathcal{MaP}, \mathcal{SiM}}{\mathcal{SiP}}*$	all M is P, some S is M
$\mathcal{S}i\mathcal{P}$	some S is P
$\mathcal{MeP}, Sa\mathcal{M}$	no M is P, all S is M
\mathcal{SeP}	no S is P
$\mathcal{MeP}, \ \mathcal{SiM}$	no M is P, some S is M
$\overline{\mathcal{SoP}}$	some S is not P

Aristotle's Syllogistic Valid Rules – Second Figure

$\mathcal{Pe}\mathcal{M}, \ \mathcal{Sa}\mathcal{M}$	no P is M, all S is M
SeP	no S is P
$\mathcal{P}\mathfrak{a}\mathcal{M}, \mathcal{S}\mathfrak{e}\mathcal{M}$	all P is M, no S is M
SeP	no S is P
$\mathcal{Pe}\mathcal{M},\ \mathcal{Si}\mathcal{M}$	no P is M, some S is M
SoP	some S is not P
$\mathcal{P}a\mathcal{M}, \mathcal{S}o\mathcal{M}$	all P is M, some S is not M
$\overline{\mathcal{SoP}}$	some S is not P

Aristotle's Syllogistic Valid Rules – Third Figure

$rac{\mathcal{M}a\mathcal{P}, \mathcal{M}a\mathcal{S}}{\mathcal{S}i\mathcal{P}}?$	all M is P, all M is S
SíP	some S is P
\mathcal{M} i \mathcal{P}, \mathcal{M} a \mathcal{S}	some M is P, all M is S
SíP	some S is P
\mathcal{M} a \mathcal{P}, \mathcal{M} í \mathcal{S}	all M is P, some M is S
$\overline{\mathcal{S}i\mathcal{P}}$	some S is P
$rac{\mathcal{MeP}, \mathcal{MaS}}{\mathcal{SoP}}$?	no M is P, all M is S
SoP	some S is not P
$\mathcal{MoP}, \mathcal{MaS}$	some M is not P, all M is S
SoP	some S is not P
$\mathcal{M}e\mathcal{P}, \mathcal{M}i\mathcal{S}$	no M is P, some M is S
SoP	some S is not P

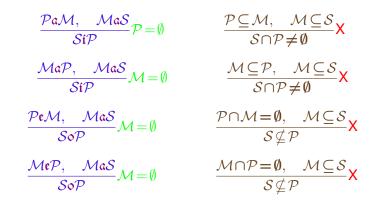
Aristotle's Syllogistic Valid Rules – Fourth Figure

$rac{\mathcal{P}a\mathcal{M}, \mathcal{M}a\mathcal{S}}{\mathcal{S}i\mathcal{P}}?$	all P is M, all M is S
$\overline{\mathcal{S}i\mathcal{P}}$	some S is P
\mathcal{P} i \mathcal{M}, \mathcal{M} a \mathcal{S}	some P is M, all M is S
\mathcal{S} i \mathcal{P}	some S is P
$\mathcal{P}a\mathcal{M}, \mathcal{M}e\mathcal{S}$	all P is M, no M is S
\mathcal{SeP}	no S is P
$rac{\mathcal{Pe}\mathcal{M}, \mathcal{MaS}}{\mathcal{SoP}}$?	no P is M, all M is S
SoP	some S is not P
$\mathcal{Pe}\mathcal{M}, \mathcal{M}i\mathcal{S}$	no P is M, some M is S
\mathcal{SoP}	some S is not P

└── SAEED SALEHI, Frontiers Summer School in Mathematics, 25 August 2021. 9/10

Syllogism, Set Theoretically

http://www.thefirstscience.org/syllogistic/


Aristotle's Syllogistic Connectives: a e í

- SaP: Every S is P.
 SiP: Some S is P.
 SiP: No S is P.
 ScP: No S is P.
 S∩P=∅
 Later was added: o
 - $\blacktriangleright S \circ \mathcal{P}: \text{Some } S \text{ is not } \mathcal{P}. \qquad S \not\subseteq \mathcal{P}$

http://www.butte.edu/resources/interim/wmwu//iLogic/2.5/iLogic_2_5.html

Aristotle's Syllogistic (In)valid Rules

Some rules are not valid – require non-emptiness conditions.

