DECIDABILITY AND UNDEFINABILITY: A Case for Quantifier Elimination

Saeed Salehi

University of Tabriz

http://SaeedSalehi.ir/

14 – 15 November 2012 Kerman

Saeed Salehi http://SaeedSalehi.ir/ $rac{\Sigma lpha \epsilon \partial}{\Sigma lpha \ell}$

Axiomatizing Theories

Dense Linear Orders Without Endpoints

Cantor: Every Countable Dense Linear Order Without Endpoints Is Isomorphic to $\langle \mathbb{Q}, < \rangle$.

Thus, the theory of "dense linear orders without endpoints" is complete (and fully axiomatizes the theory of $\langle \mathbb{Q}, < \rangle$):

•
$$\forall x, y (x < y \rightarrow y \not< x)$$

•
$$\forall x, y, z (x < y < z \rightarrow x < z)$$

•
$$\forall x, y (x < y \lor x = y \lor y < x)$$

•
$$\forall x, y (x < y \rightarrow \exists z [x < z < y])$$

•
$$\forall x \exists y (x < y)$$

•
$$\forall x \exists y (y < x)$$

Anti-Symmetric

Transitive

Linear Dense

Nalat

No Last Point

No Least Point

Axiomatizing Theories

Dense Linear Orders Without Endpoints

Also $\langle \mathbb{R}, < \rangle$ is a model of this theory. So, the theories of $\langle \mathbb{Q}, < \rangle$ and $\langle \mathbb{R}, < \rangle$ are decidable. (and can be axiomatized as "dense linear order without endpoints").

This fact can be proved by "Quantifier Elimination":

C. H. LANGFORD, Some Theorems on Deducibility, Annals of Mathematics 28 (1927) 16-40.

Though the First-Order Theories of $\langle \mathbb{Q}, < \rangle$ and $\langle \mathbb{R}, < \rangle$ are equal, these structures are very different: $\langle \mathbb{R}, < \rangle$ is complete (every bounded subset has a supremum) while $\langle \mathbb{Q}, < \rangle$ is not.

Saeed Salehi $\frac{\text{http://SaeedSalehi.ir/}}{\text{$\int_{\Sigma\alpha}(\epsilon\partial_{t})}}$

Quantifier Elimination

Reducing First-Order to Propositional

Propositional Logic is Decidable.

Eliminating as many connectives as possible:

$$ho \quad \varphi \to \psi \equiv \neg \varphi \lor \psi \qquad \qquad
ho \quad \forall x \varphi(x) \equiv \neg \exists x \neg \varphi(x)$$

Remaining: $\land, \lor, \neg, \exists$

$$A \land (B \lor C) \equiv (A \land B) \lor (A \land C)$$

Disjunction Normalizing: $\bigvee_i (\bigwedge_i \alpha_{i,j}), \ \alpha_{i,j}$ atom or \neg atom

$$\Rightarrow \exists x(A \lor B) \equiv \exists xA \lor \exists xB.$$

Theorem (The Main Lemma of Quantifier Elimination)

If every formula $\exists x (\bigwedge_j \alpha_{i,j})$ is equivalent to a quantifier-free formula, then we have quantifier elimination.

Quantifier Elimination

Dense Linear Orders Without Endpoints

In case we have order < relation, we may eliminate \neg as well:

Quantifier Elimination for Dense Linear Orders Without

Endpoints:
$$\varphi = \exists x (\bigwedge_i t_i < x \land \bigwedge_j x < s_j \land \bigwedge_k x = u_k)$$

- If $k \neq 0$ then $\varphi \equiv \bigwedge_i t_i < u_1 \land \bigwedge_i u_1 < s_i \land \bigwedge_k u_1 = u_k$
- If k=0 and i=0 then $\varphi \equiv \top$
- If k=0 and j=0 then $\varphi \equiv \top$
- If k = 0 and $i, j \neq 0$ then $\varphi \equiv \bigwedge_{i,j} t_i < s_j$

Quantifier Elimination

Discrete Orders Without Endpoints

So far, we have a decision procedure for the theories of the structures $(\mathbb{Q},<)$ and $(\mathbb{R},<)$.

What about $\langle \mathbb{Z}, < \rangle$? and $\langle \mathbb{N}, < \rangle$?

For $\langle \mathbb{Z}, < \rangle$ we do not have quantifier elimination: $\exists x (a < x < b)$ is not equivalent to a quantifier-free formula.

By adding the successor function $S: \mathbb{Z} \to \mathbb{Z}$ (S(x) = x + 1) to the language, we can have quantifier elimination:

Theorem

The theory of $\langle \mathbb{Z}, S, < \rangle$ admits quantifier elimination.

Order <

The Theory of Order is Decidable in Number Domains.

The Theory of Order in $\mathbb Z$ is Characterized as: Linear Discrete Order Without EndPoints In the Language $\{S,<\}$ where S(x)=x+1 is the Successor Function, Definable by $<:S(x)=z\iff \forall y(x< y\leftrightarrow z\leqslant y).$

- $\forall x, y (x < y \rightarrow y \not< x)$
- $\forall x, y, z (x < y < z \rightarrow x < z)$
- $\forall x, y (x < y \lor x = y \lor y < x)$
- $\forall x, y (x < y \leftrightarrow S(x) < y \lor S(x) = y)$
- $\forall x \exists y (x = S(y))$

Anti-Symmetric

Transitive

Linear

Discrete Order

Predecessor

These Completely Axiomatize the Whole Theory of $(\mathbb{Z}, S, <)$.

Order <

The Theory of Order is Decidable in Number Domains.

For $\langle \mathbb{N}, S, < \rangle$ we still do not have quantifier elimination: $\exists x(a = S(x))$ is not equivalent to a quantifier-free formula.

Theorem (H. B. Enderton)

The theory of $\langle \mathbb{N}, 0, S, \langle \rangle$ admits quantifier elimination, and can be completely axiomatized by

- $\forall x, y(x < y \rightarrow y \not< x)$
- $\bullet \ \forall x, y, z (x < y < z \rightarrow x < z)$
- $\bullet \ \forall x, y(x < y \lor x = y \lor y < x)$
- $\forall x, y(x < y \leftrightarrow S(x) < y \lor S(x) = y)$
- $\forall x(x \neq 0 \rightarrow \exists y[x = S(y)])$
- $\forall x (x \neq 0)$

Anti-Symmetric

Transitive

Linear

Discrete Order

Successor

Least Point

(8/36)

QUANTIFIER ELIMINATION

Decidability and Undefinability

The structures $\langle \mathbb{N}, 0, S, < \rangle$, $\langle \mathbb{Z}, S, < \rangle$, $\langle \mathbb{Q}, < \rangle$ and $\langle \mathbb{R}, < \rangle$ admit Quantifier Elimination, and so are Decidable.

Definability:

$$\begin{aligned} \operatorname{Def}_{R_1}(\mathbb{N},<) &= \text{Finite or Co-Finite Subsets of } \mathbb{N} \\ \{2,3,7\} &= \{x \in \mathbb{N} \mid x = S^2(0) \lor x = S^3(0) \lor x = S^7(0)\} \\ \{4,8,9,10,11,12\cdots\} &= \{x \in \mathbb{N} \mid x = S^4(0) \lor S^7(0) < x\} \end{aligned}$$

So, + or \cdot or ... are not definable in $\langle \mathbb{N}, < \rangle$.

$$\operatorname{Def}_{R_1}(\mathbb{Z},<) = \operatorname{Def}_{R_1}(\mathbb{Q},<) = \operatorname{Def}_{R_1}(\mathbb{R},<) =$$
 empty or the whole domain; Nothing Interesting.

Saeed Salehi http://SaeedSalehi.ir/ $\oint_{\Sigma \alpha \ell \epsilon \hbar^{+}}^{\Sigma \alpha \epsilon \epsilon \partial}$

Decidability of Mathematical Structures

Decision Problem for the Following Structures

	N	\mathbb{Z}	Q	\mathbb{R}	\mathbb{C}
{<}	$\langle \mathbb{N}, < \rangle$	$\langle \mathbb{Z}, < \rangle$	$\langle \mathbb{Q}, < \rangle$	$\langle \mathbb{R}, < angle$	_
{+}	$\langle \mathbb{N}, + \rangle$	$\langle \mathbb{Z}, + \rangle$	$\langle \mathbb{Q}, + \rangle$	$\langle \mathbb{R}, + angle$	$\langle \mathbb{C}, + \rangle$
$\{\cdot\}$	$\langle \mathbb{N}, \cdot angle$	$\langle \mathbb{Z}, \cdot angle$	$\langle \mathbb{Q}, \cdot angle$	$\langle \mathbb{R}, \cdot angle$	$\langle \mathbb{C}, \cdot angle$
{+,<}	$\langle \mathbb{N}, +, < \rangle$	$\langle \mathbb{Z}, +, < \rangle$	$\langle \mathbb{Q}, +, < \rangle$	$\langle \mathbb{R}, +, < \rangle$	_
$\{+,\cdot\}$	$\langle \mathbb{N}, +, \cdot \rangle$	$\langle \mathbb{Z}, +, \cdot \rangle$	$\langle \mathbb{Q}, +, \cdot angle$	$\langle \mathbb{R}, +, \cdot angle$	$\langle \mathbb{C}, +, \cdot angle$
$\{\cdot,<\}$	$\langle \mathbb{N}, \cdot, < \rangle$	$\langle \mathbb{Z}, \cdot, < \rangle$	$\langle \mathbb{Q}, \cdot, < \rangle$	$\langle \mathbb{R}, \cdot, < angle$	_
$\{+,\cdot,<\}$	\	\	\	\	_

Saeed Salehi http://SaeedSalehi.ir/ $\oint_{\Sigma lpha \ell \epsilon h}^{\Sigma lpha \epsilon \epsilon \partial}$

Definability of < By + and \cdot

Order Is Definable By Addition And Multiplication.

No need to consider $\{+,\cdot,<\}$:

The Order Relation < is Definable by + and \cdot as

- $\qquad \qquad \bullet \quad \text{in } \mathbb{N}: \quad a \leqslant b \iff \exists x \, (x+a=b).$
- ightharpoonup in \mathbb{R} : $a \leqslant b \iff \exists x (x \cdot x + a = b)$.

for \mathbb{Z} Use Lagrange's Four Square Theorem; Every Natural (Positive) Number Can Be Written As A Sum Of Four Squares.

- ▶ in \mathbb{Z} : $a \leq b \iff \exists u, v, x, y (a + u^2 + v^2 + x^2 + y^2 = b)$.
- for $\mathbb Q$ Lagrange's Theorem Holds Too: $0 \leqslant r = m/n = (mn)/n^2 = (u^2 + v^2 + x^2 + y^2)/n^2 = (u/n)^2 + (v/n)^2 + (x/n)^2 + (y/n)^2$.
- in \mathbb{Q} : $a \le b \iff \exists u, v, x, y (a + u^2 + v^2 + x^2 + y^2 = b)$. $\boxed{a < b \iff a \le b \land a \ne b} \quad \boxed{a \le b \iff a < b \lor a = b}$

Saeed Salehi http://SaeedSalehi.ir/ $\oint \sum_{\Sigma} \alpha \epsilon \epsilon \partial \over \sum_{\Omega} \epsilon_{E} h_{\bullet}$

Addition +

The Theories of $\langle \mathbb{Q}, + \rangle$, $\langle \mathbb{R}, + \rangle$ and $\langle \mathbb{C}, + \rangle$ have, surprisingly, the same theory: Non-Trivial Torsion-Free Divisible Abelian Groups:

•
$$\forall x, y, z (x + (y + z) = (x + y) + z)$$

•
$$\forall x (x + 0 = x = 0 + x)$$

•
$$\forall x (x + (-x) = 0 = (-x) + x)$$

•
$$\forall x, y (x + y = y + x)$$

•
$$\forall x \exists y (\underbrace{y + \dots + y}_{n - \text{times}} = x), \ n = 2, 3, \dots$$

•
$$\forall x \left(\underbrace{x + \dots + x}_{n - \text{times}} = 0 \to x = 0\right), \ n = 2, 3, \dots$$

•
$$\exists x (x \neq 0)$$

Addition +

Quantifier Elimination for $\langle \mathbb{Q}, \mathbb{R}, \mathbb{C}, 0, -, + \rangle$

Write
$$n \cdot t$$
 for $\underbrace{t + \cdots + t}_{n-\text{times}}$. All terms $t(x) : n \cdot x + u$ $(n \in \mathbb{Z})$.

All atomic formulas $\varphi(x)$: $n \cdot x = t$; \neg atom: $n \cdot x \neq t$.

$$\exists x \big(\bigwedge_i \mathbf{n}_i \cdot x = t_i \wedge \bigwedge_j \mathbf{m}_j \cdot x \neq s_j \big)$$

$$\equiv \exists x \big(\bigwedge_i \mathbf{k} \cdot x = t_i' \wedge \bigwedge_j \mathbf{k} \cdot x \neq s_j' \big) \text{ where } k = lcm(\{\mathbf{n}_i\}_i \cup \{\mathbf{m}_j\}_j)$$

$$\equiv \exists y \big(\bigwedge_i y = t_i' \wedge \bigwedge_j y \neq s_j' \big) \text{ where } y = \mathbf{k} \cdot x$$

$$\equiv \big(\bigwedge_i t_1' = t_i' \wedge \bigwedge_j t_1' \neq s_j' \big) \text{ if } i \neq 0$$

$$\equiv \top \text{ if } i = 0$$

The structures $\langle \mathbb{Q}, 0, -, + \rangle$, $\langle \mathbb{R}, 0, -, + \rangle$ and $\langle \mathbb{C}, 0, -, + \rangle$ admit Quantifier Elimination, and so are Decidable.

a model-theoretic proof: [D. MARKER, Model Theory: an introduction, Springer 2002].

Addition +

Quantifier Elimination for $\langle \mathbb{Z}, + \rangle$ or $\langle \mathbb{N}, + \rangle$?

The formula $\exists y (\mathbf{n} \cdot y = x)$ is not equivalent to a quantifier-free formula. Define $D_n(x)$ to hold when $n \mid x$.

Theorem (Presburger-Skolem)

The theory of the structure $\langle \mathbb{Z}, 0, -, +, D_2, D_3, D_4, \cdots \rangle$ admits quantifier elimination, and so $\operatorname{Th}(\mathbb{Z}, +)$ is decidable.

Write $a \equiv_m b$ when $m \mid a - b$.

Theorem (Presburger)

The theory of the structure $\langle \mathbb{Z}, 0, -, +, \equiv_2, \equiv_3, \equiv_4, \cdots \rangle$ admits quantifier elimination, and so $\operatorname{Th}(\mathbb{Z}, +)$ is decidable.

Saeed Salehi $\frac{\texttt{http://SaeedSalehi.ir/}}{\$\Sigma\alpha\epsilon\epsilon\hbar}$

(15/36)

Addition +

Quantifier Elimination for $\langle \mathbb{Z}, + \rangle$ or $\langle \mathbb{N}, + \rangle$?

For a $q \in \mathbb{Q}$ and any $n \in \mathbb{Z}$ we have $[q \cdot n] \in \mathbb{Z}$.

Note that e.g.
$$[(3/4) \cdot 15] = [45/4] = 11$$
, but $3 \cdot [(1/4) \cdot 15] = [15/4] + [15/4] + [15/4] = 3 + 3 + 3 = 9$.

Theorem (Skolem)

The theory of the structure $\langle \mathbb{Z}, 0, -, +, [q \cdot \square]_{q \in \mathbb{Q}} \rangle$ admits quantifier elimination, and so $\operatorname{Th}(\mathbb{Z}, +)$ is decidable.

- G. S. BOOLOS, et. al., Computability and Logic, 5th ed. Cambridge University Press 2007.
- C. SMORYŃSKI, Logical Number Theory I: an introduction, Springer 1991.

Addition + and Order <

Quantifier Elimination for $\langle \mathbb{Z}, +, < \rangle$ and $\langle \mathbb{N}, +, < \rangle$.

For $\langle \mathbb{N}, + \rangle$ the formula $\exists x(x+a=b)$ is not equivalent to a quantifier-free formula.

Theorem (Presburger)

The theory of $\langle \mathbb{N}, 0, S, +, <, \equiv_2, \equiv_3, \equiv_4, \cdots \rangle$ admits quantifier elimination, and so $\operatorname{Th}(\mathbb{N}, +)$ (and $\operatorname{Th}(\mathbb{N}, +, <)$) is decidable.

H. B. ENDERTON, A Mathematical Introduction to Logic, 2nd ed. Academic Press 2001.

Theorem (Presburger)

The theory of the structure $\langle \mathbb{Z}, 0, S, +, <, \equiv_2, \equiv_3, \equiv_4, \cdots \rangle$ admits quantifier elimination, and so $\operatorname{Th}(\mathbb{Z}, +, <)$ is decidable.

Addition + and Order <

Axiomatizing and Characterizing the Definable Subsets

Axiomatizing
$$\langle \mathbb{Z}, 0, 1, -, +, < \rangle$$

Ordered Abelian Group with division algorithm

- $\bullet \forall x, y, z (x + (y + z) = (x + y) + z) \bullet \forall x, y (x + y = y + x)$
- $\forall x (x + 0 = x)$ $\forall x (x + (-x) = 0)$ $\forall x, y (x < y \rightarrow y \nleq x)$
- $\bullet \forall x, y, z \ (x < y < z \to x < z) \ \bullet \ \forall x, y \ (x < y \lor x = y \lor y < x)$
- $\bullet \forall x, y \ (x < y \longleftrightarrow x + 1 < y \lor x + 1 = y)$
- $\bullet \, \forall x, y, z \, \big(x < y \to x + z < y + z \big) \, \bullet \, \forall x \exists y \, \big(\, \bigvee_{i < n} (x = n \, \centerdot \, y + i) \big)$

Definable Subsets of $\langle \mathbb{N}, + \rangle$

For $A \subseteq \mathbb{N}$ we have $A \in \operatorname{Def}_{R_1}(\mathbb{N}, +)$ if and only if $\exists M, p \colon \forall n > M (n \in A \longleftrightarrow n + p \in A).$

Addition + and Order <

Quantifier Elimination for $\langle \mathbb{Q}, +, < \rangle$ and $\langle \mathbb{R}, +, < \rangle$.

The Theories of $\langle \mathbb{Q}, 0, -, +, < \rangle$ and $\langle \mathbb{R}, 0, -, +, < \rangle$ have, surprisingly, the same theory:

Non-Trivial Ordered Divisible Abelian Groups:

- $\bullet \forall x, y, z (x + (y + z) = (x + y) + z) \bullet \forall x, y (x + y = y + x)$
- $\bullet \, \forall x \, (x + 0 = x) \, \bullet \, \forall x \, (x + (-x) = 0) \, \bullet \, \forall x, y \, (x < y \to y \not< x)$
- $\bullet \, \forall x, y, z \, \big(x < y < z \to x < z \big) \, \bullet \, \forall x, y \, \big(x < y \, \lor \, x = y \, \lor \, y < x \big)$
- $\forall x, y, z \ (x < y \rightarrow x + z < y + z)$ $\exists x \ (x \neq 0)$
- $\bullet \forall x \exists y (n \cdot y = x), \ n = 2, 3, \cdots$

So Far ...

$$\{<\}, \{+\} \text{ and } \{+,<\}$$

	N	\mathbb{Z}	Q	\mathbb{R}	\mathbb{C}
{<}	$\langle \mathbb{N}, < \rangle$	$\langle \mathbb{Z}, < angle$	$\langle \mathbb{Q}, < \rangle$	$\langle \mathbb{R}, < angle$	_
{+}	$\langle \mathbb{N}, + \rangle$	$\langle \mathbb{Z}, + \rangle$	$\langle \mathbb{Q}, + \rangle$	$\langle \mathbb{R}, + angle$	$\langle \mathbb{C}, + \rangle$
$\{+,<\}$	$\langle \mathbb{N}, +, < \rangle$	$\langle \mathbb{Z}, +, < \rangle$	$\langle \mathbb{Q}, +, < \rangle$	$\langle \mathbb{R}, +, < \rangle$	_

Δ_1 = Decidable

	N	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
{<}	Δ_1	Δ_1	Δ_1	Δ_1	_
{+}	Δ_1	Δ_1	Δ_1	Δ_1	Δ_1
{+,<}	Δ_1	Δ_1	Δ_1	Δ_1	_

Multiplication

Skolem Arithmetic $\langle \mathbb{N}, \cdot \rangle$

Proof with "quantifier elimination" by

PATRICK CEGIELSKI, *Théorie Élémentaire de la Multiplication des Entiers Naturels*, in C. Berline, K. McAloon, J.-P. Ressayre (eds.) *Model Theory and Arithmetics*, LNM 890, Springer 1981, pp. 44–89.

Let
$$I(\prod_i p_i^{\alpha_i}) = \prod_i p_i^{\alpha_i+1}$$
; $T(\prod_i p_i^{\alpha_i}, \prod_j q_j^{\beta_j}) = \prod_k p_k^{\beta_k}$; $S_n(\prod_i p_i^{\alpha_i}, \prod_j q_j^{\beta_j}) = \prod_{(\alpha_k < \beta_k) \& (\alpha_k \equiv_n \beta_k)} p_k$; and $E_n(x) \equiv \exists p_1 \cdots \exists p_n \left(\bigwedge_i \operatorname{Prime}(p_i) \wedge \bigwedge_{i \neq j} (p_i \neq p_j) \wedge \bigwedge_i (p_i \mid x) \right)$.

Theorem (P. Cegielski 1980)

The theory of the structure

 $\langle \mathbb{N}, 0, 1, \cdot, I, T, S_0, S_1, S_2, \cdots, E_1, E_2, E_3, \cdots \rangle$ admits quantifier elimination, and so $\operatorname{Th}(\mathbb{N}, \cdot)$ is decidable.

Multiplication

$$\langle \mathbb{Z}, \cdot \rangle$$
, $\langle \mathbb{Q}, \cdot \rangle$, $\langle \mathbb{R}, \cdot \rangle$ and $\langle \mathbb{C}, \cdot \rangle$?

Missing in the literature. Maybe because:

- almost the same proofs can show the decidability of $\langle \mathbb{Z}, \cdot \rangle$
- the decidability of $\langle \mathbb{R}, \cdot \rangle$ and $\langle \mathbb{C}, \cdot \rangle$ follows from the decidability of $\langle \mathbb{R}, +, \cdot \rangle$ and $\langle \mathbb{C}, +, \cdot \rangle$ (Tarski's Theorems)
- and $\langle \mathbb{Q}, \cdot \rangle$? Not Interesting ?

Indeed, $\langle \mathbb{R}^{>0}, 1, \cdot, ^{-1} \rangle$ is a torsion-free divisible abelian group.

Theorem

The theory of $\langle \mathbb{R}, 0, 1, -1, \cdot, ^{-1}, \mathscr{P} \rangle$ admits quantifier elimination.

Where $\mathscr{P}(x) \equiv x > 0$.

By Convention: $0^{-1} = 0$.

Multiplication

$$\langle \mathbb{Z}, \cdot \rangle$$
, $\langle \mathbb{Q}, \cdot \rangle$, $\langle \mathbb{R}, \cdot \rangle$ and $\langle \mathbb{C}, \cdot \rangle$

Let $\omega_k = \cos(2\pi/k) + i\sin(2\pi/k)$ be a k-th root of the unit; so $1, \omega_k, (\omega_k)^2, \cdots, (\omega_k)^{k-1}$ are all the k-th roots of the unit.

Theorem (NEW)

The theory of the structure $\langle \mathbb{C}, 0, 1, -1, \omega_2, \omega_3, \omega_4, \dots, -1, \cdot \rangle$ admits quantifier elimination.

In
$$\mathbb{Q}$$
 let $R_n(x) \equiv \exists y(x=y^n)$.

Recall
$$\mathscr{P}(x) \equiv x > 0$$
.

Theorem (NEW)

The theory of the structure $\langle \mathbb{Q}, 0, 1, -1, R_2, R_3, R_4, \dots, ^{-1}, \cdot, \mathscr{P} \rangle$ admits quantifier elimination.

Addition and Multiplication

$$\langle \mathbb{N}, +, \cdot \rangle$$
 and $\langle \mathbb{Z}, +, \cdot \rangle$ and $\langle \mathbb{Q}, +, \cdot \rangle$

Gödel's First Incompleteness Theorem:

 $Th(\mathbb{N}, +, \cdot)$ is Not Decidable.

So, $\operatorname{Th}(\mathbb{Z},+,\cdot)$ is Not Decidable, because \mathbb{N} is definable in it: for $m\in\mathbb{Z}$ we have

$$m \in \mathbb{N} \iff \exists a, b, c, d \in \mathbb{Z} \ (m = a^2 + b^2 + c^2 + d^2).$$

Also, $\langle \mathbb{Q}, +, \cdot \rangle$ can define \mathbb{Z} :

- J. ROBINSON, Definability and Decision Problems in Arithmetic, JSL 14 (1949) 98–114.
- B. POONEN, Characterizing integers among rational numbers with a universal-existential formula, American Journal of Mathematics 131 (2009) 675–682.
- J. KOENIGSMANN, *Defining* \mathbb{Z} *in* \mathbb{Q} , arXiv:1011.3424 [math.NT] (Nov. 2010)

So, $Th(\mathbb{Q}, +, \cdot)$ is Not Decidable.

Addition and Multiplication

$$\langle \mathbb{R}, +, \cdot \rangle$$
 and $\langle \mathbb{C}, +, \cdot \rangle$

 $\langle \mathbb{R}, +, \cdot \rangle$: Real Closed (Ordered) Field

 $\langle \mathbb{C}, +, \cdot \rangle$: Algebraically Closed Field

Theorem (Tarski {and Seidenberg and Chevalley})

The theories of the structures $\langle \mathbb{R}, 0, 1, -, +, \cdot, ^{-1}, < \rangle$ and $\langle \mathbb{C}, 0, 1, -, +, ^{-1}, \cdot \rangle$ admit quantifier elimination.

- G. KREISEL, J. L. KRIVINE, Elements of mathematical logic: model theory, North Holland 1967.
- Z. ADAMOWICZ, P. ZBIERSKI, Logic of Mathematics: a modern course of classical logic, Wiley 1997.
- J. BOCHNAK, M. COSTE, M.-F. ROY, Real Algebraic Geometry, Springer 1998.
- S. BASU, R. POLLACK, M.-F. COSTE-ROY, Algorithms in Real Algebraic Geometry, 2nd ed. Springer 2006.

State of the Art

(Un-)Decidability

	N	\mathbb{Z}	Q	\mathbb{R}	\mathbb{C}
{<}	Δ_1	Δ_1	Δ_1	Δ_1	_
{+}	Δ_1	Δ_1	Δ_1	Δ_1	Δ_1
$\{\cdot\}$	Δ_1	Δ_1	Δ_1	Δ_1	Δ_1
$\boxed{\{+,<\}}$	Δ_1	Δ_1	Δ_1	Δ_1	_
$\{+,\cdot\}$	$\lambda \lambda_1$	λ_1	λ_1	Δ_1	Δ_1
$\{\cdot,<\}$	√	??	??	Δ_1	_

State of the Art

(Un-)Definability

 $\operatorname{Def}_{R_1}(\mathbb{N},<)=\operatorname{Finite}$ or $\operatorname{Co-Finite}=\operatorname{Def}_{R_1}(\mathbb{C},+,\cdot)$ Minimal Structure // Strongly Minimal Theory

 $\operatorname{Def}_{R_1}(\mathbb{N},+) = \operatorname{Ultimately/Eventually Periodic}$ (semi-linear)

 $\operatorname{Def}_{R_1}(\mathbb{R},+,\cdot)=\operatorname{Union}$ of Some Points or Intervals O-Minimal Structure // O-Minimal Theory

Saeed Salehi http://SaeedSalehi.ir/ $\oint \sum_{i=0}^{\sum \alpha \in \epsilon \partial_{i}} di$

Why Not Quantifier Elimination for $\langle \mathbb{N}, 0, 1, +, -, \cdot, < \rangle$?

Hilbert's Tenth Problem

$$\exists x \left(\bigwedge_i p_i(x) = q_i(x) \land \bigwedge_j r_j(x) > s_j(x) \right) \equiv \exists \overline{\mathbf{x}} \left(p(\overline{\mathbf{x}}) = q(\overline{\mathbf{x}}) \right) \dots$$
 and its decidability is H10 (Undecidable!).

Hilbert's 10th Problem: Is $\operatorname{Th}_{\exists}(\mathbb{N},+,\cdot)\in\Delta_1$? Is $\operatorname{Th}_{\exists}(\mathbb{Z},+,\cdot)\in\Delta_1$? Is $\operatorname{Th}_{\exists}(\mathbb{Q},+,\cdot)\in\Delta_1$?

DRPM: H10 $\notin \Delta_1$ and so $\operatorname{Th}_{\exists}(\mathbb{N},+,\cdot) \notin \Delta_1$

Because of a \exists definition of \mathbb{N} in $(\mathbb{Z}, +, \cdot)$, $\operatorname{Th}_{\exists}(\mathbb{Z}, +, \cdot) \notin \Delta_1$.

Open Question: H10 \mathbb{Q} : Is $\mathrm{Th}_{\exists}(\mathbb{Q},+,\cdot)\in\Delta_1$?

Is There an \exists Definition for \mathbb{Z} in $(\mathbb{Q}, +, \cdot)$?

Robinson (1949): $\forall^2 \exists^7 \forall^6$; Poonen (2009): $\forall^2 \exists^7$; Koenigsmann (2010): \forall^{418} .

Multiplication and Order

$$\langle \mathbb{N}, \cdot, < \rangle$$
 and $\langle \mathbb{R}, \cdot, < \rangle$

That $\operatorname{Th}(\mathbb{R},\cdot,<)\in\Delta_1$ follows from Tarski-Seidenberg Principle. Indeed, $\langle\mathbb{R}^{>0},1,\cdot,^{-1}<\rangle$ is an ordered divisible abelian group.

Theorem

The theory of $\langle \mathbb{R}, 0, 1, -1, \cdot, ^{-1}, < \rangle$ admits quantifier elimination.

That $\mathrm{Th}(\mathbb{N},\cdot,<)\not\in\Delta_1$ follows from Tarski's Identity:

Addition is Definable by Multiplication and Order:

$$z = x + y \iff [x = y = z = 0] \lor [z \neq 0 \& S(x \cdot z) \cdot S(y \cdot z) = S(z \cdot z \cdot S(x \cdot y))]$$

$$u = 0 \iff \forall x \, (x \not< u)$$

$$v = S(u) \iff \forall w (u < w \longleftrightarrow v = w \lor v < w)$$

Multiplication and Order

$$\langle \mathbb{Z}, \cdot, < \rangle$$
 or $\langle \mathbb{Q}, \cdot, < \rangle$? – Missing in the Literature

Defining + in $\langle \mathbb{Z}, \cdot, < \rangle$:

In \mathbb{N} we had $x + y = 0 \longleftrightarrow x = y = 0$. But Not in \mathbb{Z} !

In \mathbb{Z} we could have $x + y = 0 \longleftrightarrow S(x \cdot y) = S(x) \cdot S(y)$.

So, $\operatorname{Th}(\mathbb{Z},\cdot,<) \not\in \Delta_1$ again from

Gödel's Incompleteness Theorem and $\operatorname{Th}(\mathbb{Z},+,\cdot)\not\in\Delta_1$.

But,
$$\operatorname{Th}(\mathbb{Q},\cdot,<)\in\Delta_1$$

Theorem (NEW)

The theory of the structure $\langle \mathbb{Q}, 0, 1, -1, R_2, R_3, R_4, \dots, ^{-1}, \cdot, \cdot \rangle$ admits quantifier elimination.

Recall: in \mathbb{Q} we had $R_n(x) \equiv \exists y(x=y^n)$.

A Complete Picture

Decidability and Undecidability

	N	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
{<}	Δ_1	Δ_1	Δ_1	Δ_1	_
{+}	Δ_1	Δ_1	Δ_1	Δ_1	Δ_1
$\{\cdot\}$	Δ_1	Δ_1	Δ_1	Δ_1	Δ_1
$\boxed{\{+,<\}}$	Δ_1	Δ_1	Δ_1	Δ_1	-
$[\ \{+,\cdot\} \]$	$\lambda \lambda_1$	$\lambda \lambda_1$	λ_1	Δ_1	Δ_1
$\{\cdot,<\}$	X_1	X_1	Δ_1	Δ_1	_

Exponentiation

in \mathbb{N}, \mathbb{R} and \mathbb{C}

$$\exp(x,y) = x^y$$
 Gödel: exp is definable in $(\mathbb{N}, +, \cdot)$.

Also, \cdot and + are definable by \exp :

$$x \cdot y = z \iff \forall u \left(\exp(u, z) = \exp(\exp(u, x), y) \right)$$

 $x + y = z \iff \forall u \left(\exp(u, z) = \exp(u, x) \cdot \exp(u, y) \right)$
So, Th(N, exp) $\not\in \Delta_1$.

For \mathbb{R} and \mathbb{C} we consider natural exponentiation: $\mathbb{E}(x) = e^x$.

Open Problem: Is $Th(\mathbb{R}, +, \cdot, \mathbb{E})$ Decidable?

Saeed Salehi $\frac{\text{http://SaeedSalehi.ir/}}{\sum_{\alpha} \ell \epsilon \hbar_i} \mathbf{i}$

Exponentiation

in \mathbb{N}, \mathbb{R} and \mathbb{C}

Surprise: \mathbb{Z} is definable in $\langle \mathbb{C}, +, \cdot, \mathbb{E} \rangle$:

$$z \in \mathbb{Z} \iff \forall x, y \ (x \cdot x + 1 = 0 \land \mathbb{E}(x \cdot y) = 1 \longrightarrow \mathbb{E}(x \cdot y \cdot z) = 1)$$

And so are $\mathbb N$ and $\mathbb Q$ (definable in $\langle \mathbb C, +, \cdot, \mathbb E \rangle$.)

Whence, $\operatorname{Th}(\mathbb{C}, +, \cdot, \mathbb{E}) \not\in \Delta_1$.

Open Problem: Is \mathbb{R} definable in $\mathrm{Th}(\mathbb{C},+,\cdot,\mathbb{E})$? $\mathbb{R}\in\mathrm{Def}_{B_1}(\mathbb{C},+,\cdot,\mathbb{E})$?

Saeed Salehi $\frac{\text{http://SaeedSalehi.ir/}}{\sum_{\Omega \in \mathcal{E}h}}$

Exponentiation

in \mathbb{N}, \mathbb{R} and \mathbb{C}

Tarski's Exponential Function Problem

http://en.wikipedia.org/wiki/Tarski's_exponential_function_problem

D. MARKER, Model Theory and Exponentiation, Notices AMS 43 (1996) 753–759.

A. MACINTYRE, A. J. WILKIE, On the Decidability of the Real Exponential Field, in P. Odifreddi (ed.) Kreiseliana: about and around Georg Kreisel, A. K. Peters (1996) pp. 441–467.

Zilber's Conjecture: Every Definable Subset of $(\mathbb{C}, +, \cdot, \mathbb{E})$ is either Countable or Co-Countable.

- D. MARKER, A Remark on Zilber's Pseudoexponentiation, JSL 71 (2006) 791-798.
- $\label{eq:decomposition} D. \ MARKER, \emph{Zilber's Pseudoexponentiation}, Slides of a Talk in "Algebra, Combinatorics and Model Theory", Istanbul, 22–26 August 2011.$ $<math display="block"> http://home.ku.edu.tr/\sim model theory/Marker.pdf$
- A. J. WILKIE, Some Results and Problems on Complex Germs With Definable Mittag-Leffler Stars, MIMS EPrint 2012.86. http://eprints.ma.man.ac.uk/1877/01/covered/MIMS_ep2012_86.pdf

(33/36)

A More Complete Picture

Decidability and Undecidability

	N	\mathbb{Z}	Q	\mathbb{R}	\mathbb{C}
{<}	Δ_1	Δ_1	Δ_1	Δ_1	_
{+}	Δ_1	Δ_1	Δ_1	Δ_1	Δ_1
$\{\cdot\}$	Δ_1	Δ_1	Δ_1	Δ_1	Δ_1
$\{+,<\}$	Δ_1	Δ_1	Δ_1	Δ_1	-
$[+,\cdot]$	$\lambda \lambda_1$	$\lambda \lambda_1$	$\lambda \lambda_1$	Δ_1	Δ_1
$\{\cdot,<\}$	X_1	X_1	Δ_1	Δ_1	_
E	¾ 1	_	_	<u>;</u> ?	X_1

Another Complete Picture

Definability and Undefinability

	N	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	\mathbb{C}
{<}					_
{+}	<				
$\{\cdot\}$					
{+,<}		N			_
$\{+,\cdot\}$	<, exp	$<, \mathbb{N}$	$<, \mathbb{N}, \mathbb{Z}$	<	
$\{\cdot,\overline{<}\}$	$+, \exp$	$+, \mathbb{N}$			_
E	+, ·, <	_	_	<	$\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ [¿ \mathbb{R} ?]

Saeed Salehi http://SaeedSalehi.ir/ $\oint rac{\Sigma lpha \epsilon \delta \partial}{\Sigma lpha \ell \epsilon \hbar i}$ i

Thank You!

Thanks To
The Participants
for Listening and for Your Patience!
and thanks to The Organizers.

Saeed Salehi http://SaeedSalehi.ir/ $\oint \sum_{\alpha \in \mathcal{A}_i}^{\sum \alpha \in \mathcal{A}_i} i$