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Reminding P.R.’s

• Z(x) = 0 •S(x) = x+ 1 •Pni (x1, . . . , xn) = xi ∈ P.R.

• g, h1, . . . , hm∈P.R.&f(x) = g(h1(x), . . . , hm(x))⇒ f ∈P.R.

• g, h∈P.R.&

{
f(x, 0) = g(x)

f(x, y + 1) = h(x, y, f(x, y))
⇒ f ∈ P.R.

I P ⊆ Nk: P ∈ P.R. ⇐⇒ χP ∈ P.R. χP (x) =

{
1 if x ∈ P
0 if x 6∈ P
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Reminding P.R.’s (continued)

+, ×, sg(x) =

{
0 if x = 0

1 if x 6= 0
, sg(x) =

{
1 if x = 0

0 if x 6= 0
∈ P.R.

I χP∩Q = χP × χQ I χP { = sg(χP )
I χP∪Q = sg(χP + χQ) I χP−Q = χP × sg(χQ){
χ∀x6αP (z,x)(z, 0) = χP (z, 0)

χ∀x6αP (z,x)(z, α+ 1) = χ∀x6αP (z,x)(z, α)× χP (z, α+ 1){
χ∃x6αP (z,x)(z, 0) = χP (z, 0)

χ∃x6αP (z,x)(z, α+ 1) = sg(χ∀x6αP (z,x)(z, α) + χP (z, α+ 1))
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All ∆0−Definable Predicates are Primitive Recursive

I If P,Q ∈ P.R. then so are P ∩Q,P ∪Q,P {, P −Q, etc.

I Also ∀x6y P (x, y, z) and ∃x6y Q(x, y, z) are in P.R.

∆0 :=| ATOMS | ∆0 ∧∆0 | ∆0 ∨∆0 | ∆0 → ∆0 | ¬∆0 |
| ∀x6y∆0(z, x, y) | ∃x6y∆0(z, x, y) |

For any ∆0−formula θ we have {a | N |= θ(a)} ∈ P.R.
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∆0−Definable and P.R. Functions

For Functions: ∆0−definable:
exists θ(x, y) ∈ ∆0 s.t. f(a) = b ⇐⇒ N |= θ(a, b).

.. Is Every ∆0−Definable Function P.R.?

.. Is Every P.R. Function ∆0−Definable?
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P.R. Functions and Relations vs. ∆0−Definability

R ∈ ∆0 =⇒ R ∈ P.R. X

R ∈ P.R. =⇒ R ∈ ∆0 ?

−−−−−−−−−−−−

f ∈ ∆0 =⇒ f ∈ P.R. ?

f ∈ P.R. =⇒ f ∈ ∆0 ?
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P.R. Functions and Relations vs. ∆0−Definability (continued)

f : X → Y Γf ⊆ X × Y
• f ∈ ∆0 ⇐⇒ Γf ∈ ∆0

I f ∈ P.R. =⇒ Γf ∈ P.R.:
χΓf (a, b) = χ=(f(a), b) = sg(|f(a)− b|)

.. Γf ∈ P.R. =⇒ f ∈ P.R. ?
f ∈ Rec. : f(a) = µy.Γf (a, y)

R ⊆ X χR : X → {0, 1}
• R ∈ P.R. ⇐⇒ χR ∈ P.R.

I R ∈ ∆0 ⇐⇒ χR ∈ ∆0:
ΓχR(x, y) ≡

(
y = 1 ∧R(x)

)
∨
(
y = 0 ∧ ¬R(x)

)
R(x) ⇐⇒ χR(x) = 1 ⇐⇒ ΓχR(x, 1)
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P.R. Functions and Relations vs. ∆0−Definability ?

R ∈ ∆0 =⇒ R ∈ P.R. X

(R ∈ P.R. =⇒ R ∈ ∆0) ?
m m

(f ∈ P.R. =⇒ f ∈ ∆0) ?

f ∈ ∆0 =⇒ f ∈ P.R. ?

Γf ∈ P.R. =⇒ f ∈ P.R. ?
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A relation is primitive recursive if and only if it is definable by a ∆0 formula.
We presently prove one direction of this fact. The other direction shall become
apparent after Section 8.3 of the next chapter and is left as Exercise 8.6.

Proposition 7.28 Let A be a definable subset of N0. If A is definable by a ∆0

formula, then A is primitive recursive.

Proof We must add one step to the proof of the previous proposition. Sup-
pose that ϕ(x, y) defines a primitive recursive subset A of N0. We must show
the formula ∃y(y < x ∧ ϕ(x, y)) also defines a primitive recursive subset. For
convenience, we assume that x and y are the only free variables of ϕ(x, y) (this
assumption does not alter the essence of the proof).

Let χA(x, y) be the characteristic function for A. Since this function is
primitive recursive, so is the function sumχ(x, y) =

∑
z<y χA(x, z) by Pro-

position 7.18. It follows that the function g(x) = sumχ(x,x) is also primitive
recursive. Note that 1

�
− g(x) equals 0 if χA(x, z) = 1 for some z < x and

otherwise 1
�
− g(x) equals 1. From this observation, we see that the func-

tion 1
�
− (1

�
− g(x)) is the characteristic function for the set defined by ∃y(y <

x ∧ ϕ(x, y)). It follows that this is a primitive recursive set.

Propositions 7.26 and 7.28 allow us to succinctly show that certain functions
and relations are primitive recursive. The aim for the remainder of this section
is twofold. One aim is to demonstrate some of the many familiar functions and
relations that are primitive recursive. The other aim is to show that a specific
binary function, namely pf(x, i), is primitive recursive. The name “pf” bestowed
to this function is an abbreviation for “prime factorization.” We shall make use
of this function and the fact that it is primitive recursive in Section 7.4.

Prior to defining the function pf(x, i), we define the relations div(x, y) and
prime(x). For any pair (x, y) of non-negative integers, the relation div(x, y) says
that x divides y and prime(x) says that x is prime. The relation div(x, y) holds
if and only if there exists a z such that x · z = y. Clearly, if such a z exists, then
z is at most y. So div(x, y) is definable by the ∆0 formula

∃z(z < y ∧ x · z = y) ∨ x = 1 ∨ (y = 0 ∧ ¬x = 0).

Likewise, prime(x) is defined by the formula

∀z(z < x→ (z = 1 ∨ ¬div(z,x))) ∧ (¬x = 1).

Since these formulas are ∆0, the relations div(x, y) and prime(x) are
primitive recursive by Proposition 7.28.

There are infinitely many primes. Let p1, p2, p3, . . . represent the enumera-
tion of the primes in increasing order. So p1 = 2, p2 = 3, p3 = 5, and so forth. We
claim that the function pr(i) = pi is primitive recursive. To make this function
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(b) Show that f is a recursive function if and only if the graph of f is a
recursively enumerable set.

(c) Show that f is a total recursive function if and only if the graph of f
is a recursive set.

7.14 Let f(x, y) = "x/y# where "x/y# denotes the greatest integer less than x/y.
Let g(x) be a primitive recursive function and let

h(x, y) =

{
f(x, y) y �= 0

g(x) y = 0.

Show that h(x, y) is primitive recursive. (Use the previous exercise and the
fact that a relation is primitive recursive if and only if it is definable by a
∆0 formula.)

7.15 Let f(x), g(x), and h(x) be primitive recursive functions. Let

e(x) =

{
f(x)g(x) if f(x) + g(x) > 0

h(x) if f(x) + g(x) = 0.

Show that e(x) is primitive recursive.

7.16 Let ϕ(x, y) be a ∆0 formula and let f(x) be a primitive recursive function.
Show that the formula ∃y(y < f(x) ∧ ϕ(x, y)) is ∆0, where y < f(x) is an
abbreviation for the Var-formula ∃z(y + z = f(x)).

7.17 Assuming that every primitive recursive set is ∆0, prove the following.
(a) Every recursively enumerable set is

∑
1.

(b) Every recursive set is both
∑

1 and Π1.

7.18 Let A be an infinite set. Prove that A is recursive if and only if it is the
range of an increasing recursive function.

7.19 Show that every infinite recursively enumerable set has an infinite recursive
subset.

7.20 Let A and B be recursively enumerable sets. Show that there exist recurs-
ively enumerable subsets A1 ⊂ A and B1 ⊂ B such that A1 ∩ B1 = ∅ and
A1 ∪B1 = A ∪B.

7.21 Show that the union of two recursively enumerable sets is recursive enu-
merable. Moreover, show that the function f(x, y) defined by Wx ∪Wy =
Wf(x,y) is a recursive function.

7.22 Repeat the previous exercise with intersections instead of unions.

7.23 Show that there exists a partial recursive function that cannot be extended
to a total recursive function.
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Exercises
8.1. Explain why Gödel’s Incompleteness theorems do not contradict the

Completeness theorem (also proved by Kurt Gödel).

8.2. Encode the following finite sequences as a triple [l,m, k] using the method
described in Section 8.2: (a) (1, 1, 1); (b) (3, 3, 3, 3, 3); (c) (1, 2, 3).

8.3. What finite sequence is coded by the triple [4, 5, 373777]?

8.4. The Fibonacci sequence is 1, 1, 2, 3, 5, 8, . . . (each number in the sequence
is the sum of the previous two.) A number is called a Fibonacci number if
it is one of the numbers in this sequence. Write a VN -formula φ(x) such
that N |= φ(a) if and only if a is a Fibonacci number.

8.5. (a) Express the formula 1 + 2 + · · · + x = x(x+1)
2 as a VN -formula ϕ(x).

(b) Show that ΓN � ∀xϕ(x) where ΓN is the set of axioms from
Section 8.1.

8.6. Prove that a definable subset D of N is definable by a ∆0 VN -formula if
and only if D is primitive recursive.

8.7. Show that the following sets of natural numbers are primitive recursive by
describing a ∆0 formula that defines the set:
(a) T = {n|n is the Gödel code for a VN -term }
(b) F = {n|n is the Gödel code for a VN -formula }
(c) S = {n|n is the Gödel code for a VN -sentence }.

8.8. Let T be recursive VN -theory containing ΓN . Show that the set {n|N |=
PrT (n)} is not primitive recursive.

8.9. Show that the decision problems corresponding to each of the four sets
defined in the previous two problems are in NP. If P �= NP, then which
these problems are in P?

8.10. Consider the structure R = {R|+, ·, 0, 1}. The theory of R is decidable.
For each n ∈ N the set {1, 2, 3, . . . ,n} is a definable subset of R. Let Re

be an expansion of R in which the natural numbers is a definable subset.
Show that the theory of Re is undecidable.

8.11. Let V be a finite vocabulary and let T be a V-theory. Let D =
{t1, t2, t3, . . .} be a set of V-terms. A subset B of D2 is recursive if
B = {(ti, tj)|(i, j) ∈ I} for some recursive subset I of N

2. Suppose that
• for someM |= T , each recursive subset of D2 is a definable subset ofM .

• for each m ∈ N there exists a term tn ∈ D such that n is more than m
times the length of tn. (i.e., there exist terms tn ∈ D that are arbitrarily
short relative to n.) Prove that T is undecidable.





Example: The relation x|y is a ∆0 relation.

Side Remark: All ∆0 relations can be recognized in linear space on a Turing machine,
when input numbers are represented in binary notation.

Lemma: The ∆0 relations are closed under ∧,∨,¬ and the bounded quantifiers ∀ ≤, ∃ ≤.

Proof: Notice that in this lemma, the operations in question are semantic operations, since
they operate on relations (semantic objects). The boolean operations ∧,∨,¬, for example,
are discussed in the context of primitive recursive relations on page 62 of the notes, and the
operations of bounded quantification are discussed on page 63 of the notes.

However each of these semantic operations on relations corresponds to a syntactic operation
on formulas. For example, suppose that R and S are n-ary ∆0 relations. Then by definition
of ∆0, there are bounded formulas A and B which represent R and S, respectively. Then
the formula (A ∧ B) is a bounded formula which represents the relation R ∧ S. Therefore
R∧S is a ∆0 relation. A similar argument applies to each of the other operations mentioned
in the lemma.

Lemma: Every ∆0 relation is primitive recursive.

Proof: Structural Induction on bounded formulas in the vocabulary LA,≤. We use the fact
that the primitive recursive relations (i.e. predicates) are closed under the boolean operations
and bounded quantification, as discussed on pages 62 and 63 in the notes. �

Remark: The converse of the above lemma is false, as can be shown by a diagonal ar-
gument. For those familiar with complexity theory, we can clarify things as follows. As
noted in the Side Remark above, all ∆0 relations can be recognized in linear space on a
Turing machine. On the other hand, it follows from the Ritchie-Cobham Theorem that all
relations recognizable in space bounded by a primitive recursive function of the input length
are primitive recursive. In particular, space O(n2) relations are primitive recursive, and a
straightforward diagonal argument shows that there are relations recognizable in n2 space
which are not recognizable in linear space, and hence are not ∆0 relations.

Definition: A ∃∆0 formula (also called a Σ1 formula) is one of the form ∃yA, where A is a
∆0 formula.

Definition: R is a ∃∆0-relation iff R is represented by a ∃∆0 formula.

Notice that we are applying the same adjective “∃∆0” to both relations and formulas. Of
course all ∃∆0 relations are arithmetical.

Theorem: Every ∃∆0 relation is r.e. (defined page 75)

Proof: Suppose that R(~x) is a ∃∆0 relation. Then R is represented by a formula ∃yA(~x, y),
where A(~x, y) is a bounded formula. Then A represents a ∆0 relation S(~x, y), such that
R(~x) = ∃yS(~x, y). By the previous lemma, S is primitive recursive, and hence recursive, and
therefore R is r.e., by the definition of r.e. �
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Abstract 

Rudimentary relations are those relations over natural integers that are defined by a first-order 
arithmetical formula, in which all quantifications are bounded by some variables. The question of 
whether a given primitive recursive relation is rudimentary is in some cases difficult and related 

to several well-known open questions in theoretical computer science. In this paper, we present 
systematic tools to study this question, and various applications. One of them gives a sufficient 
condition of the collapsing of the first classes of the Grzegorczyk’s hierarchy. 

Keywords: Rudimentary relations, counting, primitive recursion, coding 

1. Introduction 

Rudimentary relations are those relations over integers which are definable by a 

do-formula. They have been studied for a long time (see [ 1,9,20,24]) and are still 

interesting because they form the following robust, large and intriguing class of rela- 

tions. 

Definition 1.1. Let us denote by ‘33 the smallest class of relations over integers con- 

taining the graphs of addition and multiplication (seen as ternary relations) and closed 

under the following operations: 

l boolean operations (7, A, V, +); 

l explicit transformations, i.e. adding, cancelling, renaming, permuting and confusing 

variables, (see a precise definition in [24]); 

l variable bounded quantifications (i.e. Vx <y . . . meaning Vx (x<Y + . . .) and 3x < 

Y . . . meaning 3x (x < y A . . .). 

93 is robust: there are several different definitions of this class of relations. Rudimen- 

tary relations were first introduced by Smullyan in [24], following the ideas of Quine 

* Corresponding author. E-mail: esbelin@llaic.univ-bpcleront.fr. 

0304-3975/98/$19.00 @ 1998 - Ekevier Science B.V. All rights reserved 

PZZ SO304-3975(97)00002-9 
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(cf. [20]) using dyadic concatenation x = y *z as a basic relation for arithmetic instead 

of x = y + z and x = y.z. In the same paper, Smullyan shows that any semi-recursive 

relation can be defined by a formula of type as 3uP(x,u), where P is a rudimentary 

relation, and that all rudimentary relations are definable by do-formulas. Then, Bennett 

shows in [l] that the class of rudimentary relations does not depend on what (fixed) 

alphabet is used to represent integers, as long as it contains at least two letters, and 

that all do-formulas define rudimentary relations. 

In [9], Harrow proved that ‘!JI is closed under substitution of a polynomial to a vari- 

able. In particular, this means we can make use of polynomially bounded quantifications 

(such as ‘dx < y2) instead of bounded variable quantifications. 

Also, % corresponds to a computational complexity class, to a descriptive complexity 

class and to a weak recursion class as we recall below. 

!R is large: most natural arithmetical relations are rudimentary. For instance, the 

following formula defines the set of prime numbers: 

x>l AVy<xVz<x~(x= y.z). 

In Section 2, we list some other relations that are proved to be rudimentary. In some 

cases, we use the fact that the ternary relation x = y’ is rudimentary, as Bennett has 

proved in [l]. 

Mainly there are two types of relations whose status toward rudimentary relations 

is unknown. The first type corresponds to graphs of recursive primitive functions, in 

particular to counting relations. For instance, is the binary relation “y is the xth prime 

number” rudimentary? Indeed, the question of whether % is closed under counting is 

still open (see [13,19] and Section 7). In this paper, we are concerned in this first 

type of relations. 

The second type corresponds to relations obtained from rudimentary relations by 

substituting an exponential to a variable. For instance, is the unary relation “x verifies 

2’ + 1 is prime” rudimentary ? Note that it is known that ‘% is not closed under 

substitution of an exponential to a variable (see [9]), so that the answer is “no” in 

general. 

However, it is difficult to exhibit a natural arithmetical relation which can be proved 

not to be rudimentary. 

The origin of this paper is a previous proof of the fact that the sequence of 

Fibonacci’s numbers is rudimentary (see [6, 161 and Section 6). With this aim in view, 

we had to use various coding devices which are presented in this paper. This paper 

is an attempt to systematize the use of these tools for proving that various primitive 

recursive relations are rudimentary (or counting rudimentary, see Section 7). 

‘31 is intriguing: rudimentary relations are linked with a lot of well-known open 

questions in computational complexity, finite model theory, weak arithmetics and re- 

cursivity theory. Let us denote by RUD the class of rudimentary sets (i.e. unary 

rudimentary relations) and by &(RUD) the class of their dyadic representations 

(“rudimentary languages”). Wrathall proved that reasonable encoding of k-ary 
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way of exhibiting a primitive recursive relation which is not rudimentary is to choose 

it in @.\K’, . Although it is true that infinitly many relations exist, we know no natural 

example. 

The first author attempts to characterize 94 as a recursion class in [5]. Let J-’ be the 

smallest class of functions containing constants, projections and predecessor and closed 

under composition and bounded iteration (f(x, 0) = g(x), f(x, i + 1) = h(x, f(x, i)), 
f(x,i) < j(x,i)). The corresponding class of relations J+’ contains ‘!X whereas any 

class obtained by cancelling some basic operations or by replacing bounded iteration 

by bounded pure iteration is strictly contained in ‘X But, once again, the question of 
equality remains open. 

Hence, given a primitive recursive relation, the question of its belonging to % is 

nontrivial, and methodic tools for studying this type of questions are worth being 

developed. 

In Section 2, we write down several easy rudimentary definitions that are used in 

the sequel. In Section 3, we present the classical encoding of calculus for a primitive 

recursive function, and study in which case this tool is strong enough to prove that the 

graph of a given (primitive recursive) function is rudimentary. This method was used 

by Paris and Wilkie in [19], and by Woods in [26]: his result corresponds to our Lemma 

3.6, and proves that some “short and small” recursively defined sequences of integers 

are rudimentary. He extended this lemma to larger and longer sequences, but only when 

they are defined by summation. We generalize it to larger and longer and recursively 

dejined sequences. Then we can obtain results, (some of these have already been 

proved by Meloul in [ 151 via LOGSPACE machines), in a straightforward arithmetical 

way. Then we prove that linear and polynomial recurrences are rudimentary in Section 

6. Finally, in Section 7, we prove that the set of the counting rudimentary relations 

is closed under polynomial substitution, and to obtain a sufficient condition of the 

collapsing of the Gregorczyk’s hierarchy. Sections 6 and 7 can be read independently. 

2. Easy rudimentary relations 

It will be convenient for the last section to generalize the results to classes which 

contains the rudimentary relations. So let us introduce the following definition: 

Definition 2.1. Let us denote by ‘%Z”b any class of primitive recursive relations over 

integers containing the graph of addition and multiplication and closed under the fol- 

lowing operations: 

l boolean operations; 

0 explicit transformations; 

l variables bounded quantifications. 

It clearly appears that the class % is the smallest among the !Rub classes. 
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6.3 Representability of Arithmetical Predicates 239

formulas. ϕ is called Δ0, Σ1, or Π1 also if it is equivalent to an original
Δ0-, Σ1-, or Π1-formula, respectively. In this sense, if α is Δ0 then so too
are (∃x�t)α

(
≡ ¬(∀x�t)¬α

)
and (∀x<t)α

(
≡ (∀x�t)(x==== t ∨ α)

)
.

Clearly, Π1 consists of the complements of the P ∈ Σ1. The P ∈ Δ1 are
both Σ1- and Π1-definable, with possibly distinct formulas. By Exercise 3
in 2.4, Σ1 and Π1 are closed under union and intersection of predicates of
the same arity, and Δ1 like Δ0 moreover under complements. If P ∈ N

m

and g1, . . . , gm ∈ Fn are Σ1, so too is Q = P [g1, . . . , gm], simply because
Q�a ⇔ ∃�y(

∧n
i=1 yi=gi�a & P�y). Note also that if graph f is Σ1 then it is

automatically Δ1, for f�a�=b ⇔ ∃y(f�a=y & y �=b), so that the complement
of graph f is again Σ1. Here some examples of Δ0- and Σ1-formulas and
sentences. Interesting Π1-sentences are found at the end of 6.5.

Examples. Diophantine equations are the simplest Δ0-formulas. To these
belong the formulas y ==== t(�x) with y /∈ var t, which define the term func-
tions �a 
→ tN (�a). Since a b ⇔ (∃c�b)(a · c = b), divisibility and thus also
the predicate prim are Δ0. Because ℘(a, b) = c ⇔ 2c = (a + b)2 + 3a + b,
graph℘ is Δ0. The same holds for the relation of being coprime, denoted
by ⊥ and defined by a⊥b :⇔ (∀c � a + b)(c a, b ⇒ c = 1). Diophantine
predicates are trivially Σ1. Surprisingly, by Theorem 5.6 the converse
holds as well, although it had originally been conjectured that, for in-
stance, the set {a ∈ N | (∀p�a)(prim p & p a ⇒ p = 2)} of all powers of 2
was not Diophantine. This set is Δ0. Even the graph of n 
→ 2n is Δ0.

Remark 1. More generally, the predicate ‘ab = c’ is Δ0, though it is difficult to
prove this fact. Indeed, even the proof in 6.4 that this predicate is arithmetical
requires effort. Earlier results from Bennet, Paris, Pudlak, among others, are
generalized in [BA] as follows: if f ∈ Fn+1 (more precisely, graph f) is Δ0 then so
is g : (�a, n) 
→

∏
i�n f(�a, i), and the recursion equation g(�x, Sy)==== g(�x, y) · f(�x, y)

is provable in IΔ0. This theory is an important weakening of PA. It results from
Q by adjoining the induction schema restricted to Δ0-formulas. IΔ0 plays a role
in various questions, e.g., in complexity theory ([Kra] or [HP]). Induction on the
Δ0-formulas readily shows that all Δ0-predicates are p.r. The converse does not
hold; an example is the graph of the very rapidly growing hyperexponentiation,
recursively defined by hex(a, 0) = 1 and hex(a, Sb) = ahex(a,b). Stated more

suggestively, hex(a, n) = aa··
· a

︸ ︷︷ ︸
n

.

According to Theorem 3.1 below, already the weak theory Q is Σ1-
complete, i.e., each Σ1-sentence true in N is provable in Q. This can be
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P.R. & ∆0−Definable Functions

I Kurt Gödel: defining y = 2x in the language 〈0, S,+,×,6〉
I a ∆0−definition for y = 2x ... is possible ...

through efficient coding:
code of 〈a1, . . . , ak〉 6 polynomial of (

∏k
j=1 aj)

I for y = 22x : code of 〈2, 22, 222 , . . . , 22i , . . . , 22x〉 6 polynomial
of
∏x

j=0 22j 6 P (2
∑x

j=0 2j ) 6 P (22x+1
) = P

(
(22x)2

)
= Q(22x).

I So, y = 22x ⇐⇒
∃s 6 Q(y)

[
seq(s)∧(s)0 = 2∧∀i < x[(s)i+1 = (s)i·(s)i]∧(s)x = y

]
.

II For y = h− exp(a, x) if we have exp∆0(a, x, y) for y = ax then
∃s6y2

[
seq(s)∧(s)0 = 1∧∀i < x[exp∆0(a, (s)i, (s)i+1)]∧(s)x = y

]
.
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P.R. & ∆0−Definable Functions (continued)

• Proskurin, A.V.; “Positive Rudimentarity of the Graphs of
Ackermann’s and Grzegorczyk’s Functions”, Zap. Nauch.
Semin. Leningr. Otd. Mat. Inst. Steklova 88, 186–191
(1979). Russian!

• Pudlák, Pavel, “A Definition of Exponentiation by a
Bounded Arithmetical Formula”, Commentat. Math. Univ.
Carol. 24, 667–671 (1983).

• Calude, Cristian; “Super-Exponentials Non-Primitive
Recursive, but Rudimentary”, Inf. Process. Lett. 25,
311–315 (1987).
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Non-P.R. but ∆0−Definable Functions

I Kleene’s Normal Form Theorem:
− A Primitive Recursive (indeed ∆0−definable) Predicate
T(e, x, z): the program with code e has (a halting) configuration
z on input x
− A Primitive Recursive Function U(z)
such that for every Recursive function f there exists some e:

f(x) = U
(
µz.[T(e, x, z)]

)
.

I For non-P.R. total e:
the function x 7→ µz.T(e, x, z) is ∆0−definable but non-P.R.!
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P.R. Functions and Relations vs. ∆0−Definability ?

R ∈ ∆0 =⇒ R ∈ P.R. X

(R ∈ P.R. =⇒ R ∈ ∆0) ?
m m

(f ∈ P.R. =⇒ f ∈ ∆0) ?

f ∈ ∆0 =⇒ f ∈ P.R. X

Γf ∈ P.R. =⇒ f ∈ P.R. X
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P.R. =⇒ ∆0−Definability ?

I A Non-∆0−Definable Property? Truth of ∆0−Formulae!

.There can exist no ∆0−formula Sat∆0(x, y) such that
N |= Sat∆0(x, y) ⇐⇒ x is the Gödel code of a ∆0−formula with
one free variable θ(ξ) which is satisfied by y (i.e., N |= θ(y)).

I Otherwise, let θ(x) = ¬Sat∆0(x, x) and m = pθ(x)q.
Then Sat∆0(m,m) ⇐⇒ θ(m) ⇐⇒ ¬Sat∆0(m,m).

[Tarski’s Theorem on Non-Definability of Truth]
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∆0−Satisfiability is P.R.!

• Lessan, H. (Hamid), Models of Arithmetic, Ph.D. Thesis,
University of Manchester (1978).

• Hájek, Petr & Pudlák, Pavel, Metamathematics of
First-Order Arithmetic, Springer (1998), 2nd printing.

I There exists a ∆0−formula Γ∆0(x, y, z) such that
the bounded formula with code x is satisfied by y ⇐⇒

for some z>222
(x+y+c)

(c is a constant) Γ∆0(x, y, z) holds.

. So, ∃z62x+y+c
4 Γ∆0(x, y, z) is a non-∆0, P.R. predicate !
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∆0−Satisfiability is P.R. – EASIER!

I The Properties of
being a term: P.R. (also ∆0)
being a bounded formula: P.R. (also ∆0)
the value of a term: P.R. (not ∆0 ?)
satisfaction of a bounded formula: P.R. (not ∆0 !)

I For a ∆0−formula
θ(y) = Q1x16 t1(y) . . . Qnxn6 tn(y, x1, . . .) %(y, x), (Qi ∈ {∀, ∃})
there exists a polynomial Pϕ (P.R. function) such that
∀a : N |= θ(a) ⇐⇒ {0, 1, · · · , Pϕ(a)} |= θ(a).

II Thus, {(pθq, a) | θ∈∆0 & N |= θ(a)} ∈ P.R.−∆0!
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Finally ...

R ∈ ∆0 =⇒ R ∈ P.R. X

(R ∈ P.R. =⇒ R ∈ ∆0) X
m m

(f ∈ P.R. =⇒ f ∈ ∆0) X

f ∈ ∆0 =⇒ f ∈ P.R. X

Γf ∈ P.R. =⇒ f ∈ P.R. X
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Finally ...

R ∈ ∆0 =⇒ R ∈ P.R.

R ∈ P.R. 6=⇒ R ∈ ∆0

f ∈ P.R. 6=⇒ f ∈ ∆0

f ∈ ∆0 6=⇒ f ∈ P.R.

Γf ∈ P.R. 6=⇒ f ∈ P.R.
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Finally ...

• Shawn Hedman’s assertion in “A First Course in Logic”
that every P.R. predicate is ∆0, is wrong!

• Wolfgang Rautenberg’s counterexample for a non−∆0 but
P.R. functions in “A Concise Introduction to Mathematical
Logic” is wrong!

• Stephen Cook’s too advanced argument for existence of a
non−∆0 but P.R. predicate can be considerably simplified!

• I believe that “satisfaction” is a natural predicate for being
non−∆0 and P.R., contrary to Henri-Alex Esbelin & Malika
More’s claim in “Rudimentary Relations and Primitive
Recursion: A Toolbox”!
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Thank You!

Thanks to

The Participants . . . . . . . . . . . . . . . . . . . For Listening...

and

The Organizers . . . . For Taking Care of Everything...
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