
THEOREMIZING PARADOXES IPM Weekly Seminars on Mathematical Logic

Theoremizing Paradoxes

Saeed Salehi

University of Tabriz
http://SaeedSalehi.ir/

3 October 2013 (3.10.13)
Logic Group, School of Mathematics,©/•/© IPM

Saeed Salehi http://SaeedSalehi.ir/
uΣαεε∂

Σα`ε}ı �ir

THEOREMIZING PARADOXES IPM Weekly Seminars on Mathematical Logic



THEOREMIZING PARADOXES IPM Weekly Seminars on Mathematical Logic

Liar Paradox
This Sentence is not True.

For L←→ ¬L we have
Propositional Logic ` ¬

(
p←→ ¬p

)
.

TARSKI’S THEOREM:
There Is No Formula T Such That T ` ψ ↔ T (ψ) For All Formulae ψ

For Some Encoding ϕ Of ϕ
And Sufficiently Strong Theory T In A Sufficiently Strong Language.

GÖDEL’S THEOREM:
This Sentence Is Not T−Provable Is Indeed True and Not T−Provable
For A Sufficiently Strong And Sound Theory T .
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Russell’s Paradox
The Set of All Those

Sets Which Are Not Members of Themselves
... Does Not Exist!

The Inconsistency Of The Comprehension Principle:
For Any Formula ϕ The Set {x | ϕ(x)} Exists.

A Theorem In Set Theory:
Set Theory ` There Is No Set Which Contains All Sets.

by R = {x | x 6∈ x} we have
Set Theory ` ¬∃y∀x(x∈y ←→ x 6∈x).
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Even More:
First Order Logic ` ¬∃y∀x

[
S(x, y)←→ ¬S(x, x)

]
.

Russell’s Popularization of his paradox:

Barber’s Paradox
Shaves (Only) The Ones Who Cannot Shave Themselves.

This resembles also

Grelling–Nelson Paradox
“Heterological” Is Heterological If And Only If It Is Not!
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So, some paradoxes turn to theorems in mathematics or logic.
Also, some theorems are called paradox in the literature.

Drinker Paradox http://en.wikipedia.org/wiki/Drinker−paradox

There is someone in the pub such that,
if he is drinking, everyone in the pub is drinking.

First Order Logic ` ∃y∀x
[
D(y) −→ D(x)

]
.

Indeed, also
First Order Logic ` ∃y∀x

[
D′(x) −→ D′(y)

]
.

First Order Logic ` ∀x∃y
[
D(y) −→ D(x)

]
.

First Order Logic ` ∀x∃y
[
D′(x) −→ D′(y)

]
.

First Order Logic ` ∀x∃y
[
D(x)←→ D(y)

]
.

but First Order Logic 6` ∃y∀x
[
D(x)←→ D(y)

]
.
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SELF–REFERENCE or DIAGONAL

For the sequence W0,W1,W2, · · · of subsets of N the subset
{m | m 6∈Wm} of N is not in the list. For if {m | m 6∈Wm} = Wk

then k ∈Wk ⇐⇒ k 6∈Wk, contradiction!

For the sequence α0, α1, α2, · · · of 0’s and 1’s (∈ {0, 1}N), the
sequence β defined by β(i) = 1− αi(i) is not equal to any of αn’s.
For if β = αm then αm(m) = β(m) = 1− αm(m), contradiction!

For any F : A→P(A) the sub-set DF = {x ∈ A | x 6∈ F (x)} of A
is not in the range of F . For if DF = F (a) then

a ∈ DF ⇐⇒ a 6∈ F (a) ⇐⇒ a 6∈ DF , contradiction!
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A New Paradox:

Yablo’s Paradox Y1, Y2, Y3, · · ·
Yn is True if and only if All Yk’s for k > n are Untrue.

• If some Ym is true, then Ym+1, Ym+2, Ym+3, · · · are all
untrue. Whence Ym+1 is true and untrue at the same time!

• If all Yk’s are untrue, then Y0, Y1, Y2, · · · are true!

Theoremizing:
Second Order Logic ` ∀x∃y(x<y) ∧ ∀x, y, z(x<y<z → x<z)

−→ ¬∃X∀u
[
X(u)←→ ∀v>u¬X(v)

]
.

If X(a), then for some b > a, ¬X(b) and for all v > b we have v > a and so

¬X(v) which implies X(b), contradiction. So ∀α¬X(α) and in particular

∀α>a¬X(α), whence X(a); contradiction!
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Theoremizing:
First Order Logic ` ∀x∃y(x<y) ∧ ∀x, y, z(x<y<z → x<z)

−→ ¬∀u
[
ψ(u)←→ ∀v>u¬ψ(v)

]
.

Or First Order Logic `

∀x∀y(xRs(x)∧[s(x)Ry→xRy])=⇒∃u
(
D(u)←→∀v

[
uRv→D(v)

])
.

Find the weakest (first–order) condition Ψ on R such that
Second Order Logic `

Ψ(R) =⇒ ¬∃X∀x
[
X(x)←→ ∀y[xRy → ¬X(y)]

]
.

Conjecture
The Second–Order Predicate (of R)

¬∃X∀x
[
X(x)←→ ∀y[xRy → ¬X(y)]

]
Is Not First–Order.
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(Propositional) Linear Temporal Logic (LTL):
#: Next 2: Always

The Intended Model: 〈N,〉 where  ⊆ N×Atoms can be
extended to all formulas by:

• n  ϕ ∧ ψ iff n  ϕ and n  ψ

• n  ¬ϕ iff n 6 ϕ

• n #ϕ iff (n+ 1)  ϕ

• n  2ϕ iff m  ϕ for every m ≥ n

An Example of a Law of LTL: 2#ϕ ≡ #2ϕ
n  2#ϕ iff ∀x ≥ n

[
x  #ϕ

]
iff ∀x ≥ n

[
(x+ 1)  ϕ

]
iff ∀x ≥ n+ 1

[
x  ϕ

]
iff (n+ 1)  2ϕ iff n  #2ϕ
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(Propositional) Linear Temporal Logic:
#: Next 2: Always

Another Law of LTL: #¬ϕ ≡ ¬#ϕ
n #¬ϕ iff (n+ 1)  ¬ϕ iff (n+ 1) 6 ϕ iff n 6#ϕ iff n  ¬#ϕ

Whence, #2¬ϕ ≡ 2#¬ϕ ≡ 2¬#ϕ

Yablo’s Paradox: As A Theorem In LTL:

Theorem

LTL ` ¬
(
ϕ↔ 2#¬ϕ

)
for all formulae ϕ.
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Theorem

LTL 6`
(
ϕ↔ #2¬ϕ

)
for any formula ϕ.

Proof:
Otherwise, if LTL ` φ↔ #2¬φ then:
• If m  φ for some m, then m  #2¬φ so (m+ 1)  2¬φ,

hence (m+ i)  ¬φ for all i ≥ 1. In particular, (m+ 1)  ¬φ
and (m+ j)  ¬φ for all j ≥ 2 which implies that
(m+ 2)  2¬φ or (m+ 1)  #2¬φ so (m+ 1)  φ,
contradiction!

• So, k  ¬φ for all k, and so k  #¬2¬φ thus (k+ 1)  ¬2¬φ;
hence (k + n)  φ for some n ≥ 1, contradiction!
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Thank You!

Thanks to
The Participants

for Listening and for Their Patience!
and Thanks to The Organizers.
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