Theoremizing Paradoxes

Saeed Salehi

University of Tabriz

http://SaeedSalehi.ir/

3 October 2013 (3.10.13) *Logic Group*, School of Mathematics, (*) IPM

Saeed Salehi

http://SaeedSalehi.ir/

THEOREMIZING PARADOXES

Liar Paradox

This Sentence is not True.

For $L \longleftrightarrow \neg L$ we have

Propositional Logic $\vdash \neg (p \longleftrightarrow \neg p)$.

TARSKI'S THEOREM:

There Is No Formula \mathscr{T} Such That $T \vdash \psi \leftrightarrow \mathscr{T}(\overline{\psi})$ For All Formulae ψ For Some Encoding $\overline{\varphi}$ Of φ And Sufficiently Strong Theory T In A Sufficiently Strong Language.

GÖDEL'S THEOREM:

This Sentence Is Not T-Provable Is Indeed True and Not T-Provable For A Sufficiently Strong And Sound Theory T.

Saeed Salehi

http://SaeedSalehi.ir/

THEOREMIZING PARADOXES

Russell's Paradox The Set of All Those Sets Which Are Not Members of Themselves ... Does Not Exist!

The Inconsistency Of The Comprehension Principle: For Any Formula φ The Set $\{x \mid \varphi(x)\}$ Exists.

A Theorem In Set Theory: Set Theory - There Is No Set Which Contains All Sets.

by $R = \{x \mid x \notin x\}$ we have

Set Theory $\vdash \neg \exists y \forall x (x \in y \longleftrightarrow x \notin x).$

Saeed Salehi

http://SaeedSalehi.ir/

THEOREMIZING PARADOXES

Even More: First Order Logic $\vdash \neg \exists y \forall x [\mathcal{S}(x,y) \longleftrightarrow \neg \mathcal{S}(x,x)].$

Russell's Popularization of his paradox:

Barber's Paradox

Shaves (Only) The Ones Who Cannot Shave Themselves.

This resembles also

Grelling–Nelson Paradox "Heterological" Is Heterological If And Only If It Is Not!

Saeed	Cal	lohi
Jaeeu	Ja	

http://SaeedSalehi.ir/

THEOREMIZING PARADOXES

So, some paradoxes turn to theorems in mathematics or logic. Also, some theorems are called paradox in the literature.

Drinker Paradox http://en.wikipedia.org/wiki/Drinker_paradox There is someone in the pub such that, if he is drinking, everyone in the pub is drinking.

First Order Logic $\vdash \exists y \forall x [\mathcal{D}(y) \longrightarrow \mathcal{D}(x)].$ Indeed, also First Order Logic $\vdash \exists y \forall x [\mathcal{D}'(x) \longrightarrow \mathcal{D}'(y)].$ First Order Logic $\vdash \forall x \exists y [\mathcal{D}(y) \longrightarrow \mathcal{D}(x)].$ First Order Logic $\vdash \forall x \exists y [\mathcal{D}'(x) \longrightarrow \mathcal{D}'(y)].$

First Order Logic $\vdash \forall x \exists y [\mathcal{D}(x) \longleftrightarrow \mathcal{D}(y)].$ but First Order Logic $\nvDash \exists y \forall x [\mathcal{D}(x) \longleftrightarrow \mathcal{D}(y)].$

Saeed Salehi

http://SaeedSalehi.ir/

THEOREMIZING PARADOXES

SELF-REFERENCE or DIAGONAL

For the sequence W_0, W_1, W_2, \cdots of subsets of \mathbb{N} the subset $\{m \mid m \notin W_m\}$ of \mathbb{N} is not in the list. For if $\{m \mid m \notin W_m\} = W_k$ then $k \in W_k \iff k \notin W_k$, contradiction!

For the sequence $\alpha_0, \alpha_1, \alpha_2, \cdots$ of 0's and 1's $(\in \{0, 1\}^{\mathbb{N}})$, the sequence β defined by $\beta(i) = 1 - \alpha_i(i)$ is not equal to any of α_n 's. For if $\beta = \alpha_m$ then $\alpha_m(m) = \beta(m) = 1 - \alpha_m(m)$, contradiction!

For any $F : A \to \mathscr{P}(A)$ the sub-set $D_F = \{x \in A \mid x \notin F(x)\}$ of Ais not in the range of F. For if $D_F = F(a)$ then $a \in D_F \iff a \notin F(a) \iff a \notin D_F$, contradiction!

Saeed Salehi

http://SaeedSalehi.ir/

THEOREMIZING PARADOXES

A New Paradox:

Yablo's Paradox

$$Y_1, Y_2, Y_3, \cdots$$

 Y_n is True if and only if All Y_k 's for k > n are Untrue.

- If some Y_m is true, then $Y_{m+1}, Y_{m+2}, Y_{m+3}, \cdots$ are all untrue. Whence Y_{m+1} is true and untrue at the same time!
- If all Y_k 's are untrue, then Y_0, Y_1, Y_2, \cdots are true!

Theoremizing:

 $\begin{array}{ll} \text{Second Order Logic} \vdash \forall x \exists y (x < y) \land \forall x, y, z (x < y < z \to x < z) \\ & \longrightarrow \neg \exists X \forall u \big[X(u) \longleftrightarrow \forall v > u \, \neg X(v) \big]. \end{array}$

If X(a), then for some b > a, $\neg X(b)$ and for all v > b we have v > a and so $\neg X(v)$ which implies X(b), contradiction. So $\forall \alpha \neg X(\alpha)$ and in particular $\forall \alpha > a \neg X(\alpha)$, whence X(a); contradiction!

Saeed Salehi

http://SaeedSalehi.ir/

THEOREMIZING PARADOXES

Theoremizing:

 $\begin{array}{ll} \text{First Order Logic} \vdash \forall x \exists y (x < y) \land \forall x, y, z (x < y < z \rightarrow x < z) \\ & \longrightarrow \neg \forall u \big[\psi(u) \longleftrightarrow \forall v > u \, \neg \psi(v) \big]. \end{array}$

Or First Order Logic⊢

 $\forall x \forall y (x \mathsf{Rs}(x) \land [\mathfrak{s}(x) \mathsf{R}y \to x \mathsf{R}y]) \Longrightarrow \exists u \big(\mathcal{D}(u) \longleftrightarrow \forall v \big[u \mathsf{R}v \to \mathcal{D}(v) \big] \big).$

Find the weakest (first-order) condition Ψ on R such that Second Order Logic \vdash $\Psi(R) \Longrightarrow \neg \exists X \forall x [X(x) \longleftrightarrow \forall y [xRy \rightarrow \neg X(y)]].$

Conjecture

The Second–Order Predicate (of R) $\neg \exists X \forall x [X(x) \longleftrightarrow \forall y [xRy \rightarrow \neg X(y)]]$ Is Not First–Order.

Saeed Salehi

http://SaeedSalehi.ir/

THEOREMIZING PARADOXES

(Propositional) Linear Temporal Logic (LTL): ○: Next □: Always

The Intended Model: $\langle \mathbb{N}, \Vdash \rangle$ where $\Vdash \subseteq \mathbb{N} \times \texttt{Atoms}$ can be extended to all formulas by:

- $n \Vdash \varphi \land \psi$ iff $n \Vdash \varphi$ and $n \Vdash \psi$
- $\bullet \ n \Vdash \neg \varphi \text{ iff } n \not\Vdash \varphi$
- $n \Vdash \bigcirc \varphi$ iff $(n+1) \Vdash \varphi$
- $n \Vdash \Box \varphi$ iff $m \Vdash \varphi$ for every $m \ge n$

 $\begin{array}{lll} \text{An Example of a Law of LTL:} & \Box \bigcirc \varphi \equiv \bigcirc \Box \varphi \\ n \Vdash \Box \bigcirc \varphi \text{ iff } \forall x \geq n \big[x \Vdash \bigcirc \varphi \big] \text{ iff } \forall x \geq n \big[(x+1) \Vdash \varphi \big] \\ & \text{ iff } \forall x \geq n+1 \big[x \Vdash \varphi \big] \text{ iff } (n+1) \Vdash \Box \varphi \text{ iff } n \Vdash \bigcirc \Box \varphi \end{array}$

Saeed Salehi

THEOREMIZING PARADOXES

(Propositional) Linear Temporal Logic: C: Next C: Always Another Law of LTL:

Another Law of LTL: $\bigcirc \neg \varphi \equiv \neg \bigcirc \varphi$ $n \Vdash \bigcirc \neg \varphi \text{ iff } (n+1) \Vdash \neg \varphi \text{ iff } (n+1) \nvDash \varphi \text{ iff } n \nvDash \bigcirc \varphi \text{ iff } n \Vdash \neg \bigcirc \varphi$

Whence, $\bigcirc \Box \neg \varphi \equiv \Box \bigcirc \neg \varphi \equiv \Box \neg \bigcirc \varphi$

Yablo's Paradox:

As A Theorem In LTL:

Theorem

 $LTL \vdash \neg (\varphi \leftrightarrow \Box \bigcirc \neg \varphi)$ for all formulae φ .

Saeed Salehi

http://SaeedSalehi.ir/

THEOREMIZING PARADOXES

Theorem

 $LTL \not\vdash (\varphi \leftrightarrow \bigcirc \Box \neg \varphi)$ for any formula φ .

Proof:

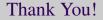
Otherwise, if $LTL \vdash \phi \leftrightarrow \bigcirc \Box \neg \phi$ then:

- If $m \Vdash \phi$ for some m, then $m \Vdash \bigcirc \Box \neg \phi$ so $(m+1) \Vdash \Box \neg \phi$, hence $(m+i) \Vdash \neg \phi$ for all $i \ge 1$. In particular, $(m+1) \Vdash \neg \phi$ and $(m+j) \Vdash \neg \phi$ for all $j \ge 2$ which implies that $(m+2) \Vdash \Box \neg \phi$ or $(m+1) \Vdash \bigcirc \Box \neg \phi$ so $(m+1) \Vdash \phi$, contradiction!
- So, $k \Vdash \neg \phi$ for all k, and so $k \Vdash \bigcirc \neg \Box \neg \phi$ thus $(k+1) \Vdash \neg \Box \neg \phi$; hence $(k+n) \Vdash \phi$ for some $n \ge 1$, contradiction!

Saeed Salehi

http://SaeedSalehi.ir/

THEOREMIZING PARADOXES



Thanks to The Participants for Listening and for Their Patience! and Thanks to The Organizers.

Saeed Salehi

http://SaeedSalehi.ir/

THEOREMIZING PARADOXES