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Introduction to Modal Logic

Modalities

Modality Operator

Philosophy − Logic − Computer Science

2A

Necessity − Provability − Program Execution

2A −→ A

Philosophy: Necessity implies Truth
Logic: Provability implies Validity
Computer Science: Program is Sound
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Introduction to Modal Logic

Modalities

Modality Operator

Philosophy − Logic − Computer Science

2A

Necessity − Provability − Program Execution

2A −→ 22A

Philosophy: “Necessity” is Necessary
Logic: “Provability” is Provable
Computer Science: “Executability” is Executable
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Introduction to Modal Logic

Modalities

Modality Operator

Philosophy − Logic − Computer Science

2A

Necessity − Provability − Program Execution

2A −→ A A := ⊥ | ¬2⊥ |

Philosophy: Falsity is Not Necessary
Logic: Contradiction is Not Provable (CONSISTENT)
Computer Science: Program does Not go Absurd
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Introduction to Modal Logic

Modalities

Other Modality Operators

Philosophy − Logic − Computer Science

♦A

Possibility − Consistency − Probable Result

Define ♦A = ¬2¬A (So 2A = ¬♦¬A)

♦♦A −→ ♦A or 2A −→ 22A

Philosophy: If the Possibility of A is Possible,
then A is indeed Possible
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Introduction to Modal Logic

Modalities

Other Modality Operators

Philosophy − Logic − Computer Science

♦A

Possibility − Consistency − Probable Result

Define ♦A = ¬2¬A (So 2A = ¬♦¬A)

♦♦A −→ ♦A or 2A −→ 22A

Logic: If the Consistency of A is Consistent,
then A is consistent
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Introduction to Modal Logic

Modal Logics

Propositional Modal Logics

Classical Propositional Calculus +
Modality Axioms and Rules

Axiom: (K) �(A→ B)→ (�A→ �B)
Rule:

(RN)
A

�A

This base logic is denoted K.

Normal Modal Logics ⊇ K
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Introduction to Modal Logic

Modal Logics

Propositional Modal Logics

Adding more axioms ⇒ stronger modal logics:

(T) �A→ A (3)
(4) �A→ ��A
(5) �A→ �♦A
(B) A→ �♦A
(D) �A→ ♦A
(L) �(�A→ A)→ �A

(K) �(A→ B)→ (�A→ �B) (2)
(♦) ¬♦A↔ �¬A (1)

(K) + (L) + (RN) = GL ` (4).
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Background

Kripke (Relational) Models

M = 〈W ,R,V 〉

I W 6= ∅
I R ⊆ W ×W

I V : At → ℘(W )

Eric Pacuit: Neighborhood Semantics, Lecture 1 6
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Background

Truth in a Kripke Model

1. M,w |= p iff w ∈ V (p)

2. M,w |= ¬ϕ iff M,w 6|= ϕ

3. M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ

4. M,w |= �ϕ iff for each v ∈ W , if wRv then M, v |= ϕ

5. M,w |= ♦ϕ iff there is a v ∈ W such that wRv and M, v |= ϕ

Eric Pacuit: Neighborhood Semantics, Lecture 1 7
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Background

Some Validities

(M) �(ϕ ∧ ψ) → �ϕ ∧�ψ

(C) �ϕ ∧�ψ → �(ϕ ∧ ψ)

(N) �>

(K) �(ϕ→ ψ) → (�ϕ→ �ψ)

(Dual) �ϕ↔ ¬♦¬ϕ

(Nec) from ` ϕ infer ` �ϕ

(Re) from ` ϕ↔ ψ infer ` �ϕ↔ �ψ

(Mon)
` ϕ→ ψ

` �ϕ→ �ψ

Eric Pacuit: Neighborhood Semantics, Lecture 1 8
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Some properties of binary relations
A binary relation R ⊆ X 2 is called:

• reflexive if it satisfies ∀x xRx .
• irreflexive if it satisfies ∀x ¬xRx .
• serial if it satisfies ∀x∃y xRy .
• functional if it satisfies ∀x∃!y xRy ,
• symmetric if it satisfies ∀x∀y(xRy → yRx).
• asymmetric if it satisfies ∀x∀y(xRy → ¬yRx).
• antisymmetric if it satisfies ∀x∀y(xRy ∧ yRx → x = y).
• connected if it satisfies ∀x∀y(xRy ∨ yRx).
• transitive if it satisfies ∀x∀y∀z((xRy ∧ yRz)→ xRz).
• equivalence relation if it is reflexive, symmetric, and transitive.
• euclidean if it satisfies ∀x∀y∀z((xRy ∧ xRz)→ yRz).
• pre-order, (or quasi-order) if it is reflexive and transitive.
• partial order, if it is reflexive, transitive, and antisymmetric.
• linear order, (or total order) if it is a connected partial order.
• well-founded order, if it is a partial order with no infinite

strictly decreasing chains.



Some relational properties of Kripke frames
definable by modal formulae

Claim For every Kripke frame F = (W ,R) the following holds:

• F |= 2p → p iff the relation R is reflexive.
Thus, the formula 2p → p defines the class of reflexive
frames.

• F |= 2p → 3p iff the relation R is serial.

Exercise: Find a simpler modal formula that defines seriality.

• F |= 2p ↔ 3p iff the relation R is a function.

• F |= p → 23p iff F |= 32p → p iff
the relation R is symmetric.

• F |= 2p → 22p iff F |= 33p → 3p iff
the relation R is transitive.

• F |= 3p → 23p iff F |= 32p → 2p iff
the relation R is euclidean.



More relational properties of Kripke frames
definable by modal formulae

• A challenge: F |= 32p → 23p iff . . . ?

• A bigger challenge: F |= 23p → 32p iff . . . ?

• An even bigger challenge: F |= 2(2p → p)→ 2p iff . . . ?



Validity of modal formulae

Some valid modal formulae:

• Every modal instance of a propositional tautology, i.e., every
formula obtained by uniform substitution of modal formulae
for propositional variables in a propositional tautology.

For instance: 2p ∨ ¬2p; (2p ∧32q)→ 32q, etc.

• K: 2(p → q)→ (2p → 2q);

• 2(p ∧ q)↔ (2p ∧2q).

• 3(p ∨ q)↔ (3p ∨3q).

• 2ϕ, for every valid modal formula ϕ.

E.g., 2(3p ∨ ¬3p).

Unlike first-order logic, testing validity in modal logic is decidable,
and PSPACE-complete.



Dick de Jongh Days in Logic ’08

Precursors of Intuitionism

• Predecessors of Brouwer: Kronecker: “God made the natural numbers,
the rest is human work”, French semi-intuitionists (e.g. E. Borel).

• Unhappy feeling from these mathematicians about abstractness of
mathematics, proving the existence of objects by reasoning by
contradiction, so that no object really arises from the proof:
¬∀x¬Ax→∃xAx.

Intuitionistic and Modal Logic, Lisbon 2008 5
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Brouwer’s ideas

• Foundations unnecessary, in fact impossible,

• Logic follows mathematics, is not its basis, logical rules extracted from
mathematics,

• Mathematics is a mental activity, the “exact part of human thought”,
writing mathematics down is only an aide,

• Criticism of ’classical’ logical laws,

• Principle of the excluded third (law of the exclude middle) A∨¬A.

Intuitionistic and Modal Logic, Lisbon 2008 7
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Example of nonconstructive proof

• Theorem There exist irrational numbers r and s such that rs is rational.

• Proof Well-known since Euclid,
√
2 is irrational.

• Now either
√
2
√

2
is rational or it is not.

• In the first case take r=
√
2, s=

√
2. Then rs=2, i.e. rational.

• In the second, take r=
√
2
√

2
, s=

√
2. Then rs=(

√
2
√

2
)
√

2=
√
2
2
=2,

i.e. rational.

• So, we have found r and s as required, only we cannot tell what r is, it

is either
√
2
√

2
or
√
2 (in reality of course the latter) and =

√
2.

Intuitionistic and Modal Logic, Lisbon 2008 9
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Heyting

• Heyting, 1928-1930:

• Earlier incomplete version in Kolmogorov 1925,

• Hilbert type system. We first give natural deduction variant of which
first version was given by Gentzen.

• ¬ϕ is defined as ϕ→⊥ where ⊥ stands for a contradiction, an obviously
false statement like 1 = 0.

Intuitionistic and Modal Logic, Lisbon 2008 10
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Classical Logic

To get classical logic one adds the rule that if ⊥ is derived from ¬ϕ,
then one can conclude to ϕ dropping the assumption ¬ϕ.

ϕ→⊥
...

⊥

¬ϕ

Intuitionistic and Modal Logic, Lisbon 2008 13
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BHK-interpretation

• Brouwer-Heyting-Kolmogorov Interpretation of connectives and
quantifiers.

Natural deduction closely related to BHK.

• Interpretation by means of proofs (nonformal, nonsyntactical objects,
mind constructions),

• A proof of ϕ∧ψ consists of proof of ϕ plus proof of ψ (plus conclusion),

• A proof of ϕ∨ψ consists of proof of ϕ or of proof of ψ (plus conclusion),

• A proof of ϕ→ψ consists of method that applied to any conceivable
proof of ϕ will deliver proof of ψ,

Intuitionistic and Modal Logic, Lisbon 2008 14
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BHK-interpretation, continued

• Nothing is a proof of ⊥,
• Proof of ¬ϕ is method that given any proof of ϕ gives proof of ⊥,
• A proof of ∃xϕ(x) consists of object d from domain plus proof of ϕ(d)
(plus conclusion),

• A proof of ∀xϕ(x) consists of method that applied to any element d of
domain will deliver proof of ϕ(d),

Intuitionistic and Modal Logic, Lisbon 2008 15
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Valid and invalid reasoning

• A disjunction is hard to prove: e.g. of the four directions of the de
Morgan laws only ¬ (ϕ∧ψ)→¬ϕ∨¬ψ is not valid,

• ¬ (ϕ∨ψ)→¬ϕ∧¬ψ,
• (¬ϕ∧¬ψ)→¬(ϕ∨ψ),
• ¬ϕ∨¬ψ→¬(ϕ∧ψ) are valid,

• other examples of such invalid formulas are ϕ∨¬ϕ, (the law of the the
excluded middle)

• ¬(ϕ∧ψ)→¬ϕ∨¬ψ,
• (ϕ→ψ ∨χ)→ (ϕ→ψ)∨ (ϕ→χ),

• ((ϕ→ψ)→ψ)→ϕ∨ψ,

Intuitionistic and Modal Logic, Lisbon 2008 16
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Valid and invalid reasoning, continued
• An existential statement is hard to prove:

• of the four directions of the classically valid interactions between
negations and quantifiers only ¬∀xϕ→∃x¬ϕ is not valid,

• statements directly based on the two-valuednes of truth values are not
valid, e.g. ¬¬ϕ→ϕ or ((ϕ→ψ)→ ϕ)→ϕ (Peirce’s law),

• On the other hand, many basic laws naturally remain valid, commutativity
and associativity of conjunction and disjunction, both distributivity laws,

• (ϕ→ψ ∧χ)↔ (ϕ→ψ)∧ (ϕ→χ),

• (ϕ→χ)∧ (ψ→χ)↔ (ϕ∨ψ→χ)),

• (ϕ→ (ψ→χ))↔ (ϕ∧ψ)→χ,

• ((ϕ∨ψ)∧¬ϕ→ψ)) (needs ex falso!).

Intuitionistic and Modal Logic, Lisbon 2008 17
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Hilbert type system

• ϕ→ (ψ→ϕ)

• (ϕ→ (ψ→χ))→ ((ϕ→ψ)→ (ϕ→χ)))

• The only rule is modus ponens from ϕ and ϕ→ψ conclude ψ.

• The first two axioms plus modus ponens are sufficient for proving the
deduction theorem. (corresponding to implication introduction).

• ϕ∧ψ→ϕ ϕ∧ψ→ψ,

• ϕ→ (ψ→ϕ∧ψ),

• ϕ→ϕ∨ψ ψ→ϕ∨ψ,

• (ϕ→χ)→ ((ψ→χ)→ (ϕ∨ψ→χ)),

• ⊥→ϕ,

Intuitionistic and Modal Logic, Lisbon 2008 18
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Classical propositional calculus

• To get CPC add ((ϕ→ψ)→ϕ)→ϕ (Peirce’s law) or ¬¬ϕ→ϕ.

Intuitionistic and Modal Logic, Lisbon 2008 19
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Kripke frames and models

• Frames, (usually F):

• A set of worlds W, also nodes, points

• An accessibility relation R, which is a 6 -partial order,

• For models M a persistent valuation V is added. Persistence means:

• wRw′&w ∈V (p)=⇒ w ∈V ′(p).

• w ² ϕ∧ψ⇐⇒w ² ϕ and w ² ψ,

• w ² ϕ∨ψ⇐⇒w ² ϕ or w ² ψ,

• w ² ϕ→ψ⇐⇒ ∀w′(wRw′ and w′ ² ϕ ⇒w′ ² ψ),

Intuitionistic and Modal Logic, Lisbon 2008 20
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Kripke frames and models, continued

• Frames will usually have a root w0: w0Rw for all w.

• w 2⊥,
• w ² ¬ϕ ⇐⇒ ∀w′(wRw′ ⇒ not w ² ϕ) (follows from definition of ¬ϕ
as ϕ→⊥),

• Persistence for formulas follows:

• wRw′&w ² ϕ =⇒ w′ ² ϕ.

• Note that w ² ¬¬ϕ ⇐⇒ ∀w′(wRw′ =⇒ ∃w′′(w′Rw′′&w′′ ² ϕ))
• ⇔ for finite models ↔ ∀w′′(wRw′′&w′′ end point =⇒ w′′ ² ϕ).

Intuitionistic and Modal Logic, Lisbon 2008 21
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Kripke frames and models, predicate logic

• Increasing domains Dw:

• wRw′ =⇒ Dw⊆Dw′.

• with names for the elements of the domains:

• w ² ∃xϕ(x) ⇐⇒ , for some d∈Dw, w ² ϕ(d),

• w ² ∀xϕ(x) ⇐⇒ , for each w′ with wRw′ and all d∈Dw′, w′ ² ϕ(d),

• Persistency transfers to formulas here as well.

Intuitionistic and Modal Logic, Lisbon 2008 22
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Counter-models to propositional formulas

p

(a)

p, q p, r

(b)

q r p

(c)

p

(d)

Figure 1: Counter-models for the propositional formulas

• These figures give counterexamples to respectively:

• (a) p∨¬p, ¬¬p→ p,

• (b) (p→ q ∨ r)→ (p→ q)∨ (p→ r),

• (c) (¬p→ q ∨ r)→ (¬p→ q)∨ (p→ r),

• (d) (¬¬p→ p)→ p∨¬p.

Intuitionistic and Modal Logic, Lisbon 2008 23
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Counter-models to predicate formulas

A0

A1

A2

A3
..
.
.

(a)

B0

A

{0}

{0, 1}

(b)

Figure 2: Counter-models for the predicate formulas

• These figures give counterexamples to:

• (a) ¬¬∀x(Ax∨¬Ax), if domain constant N (and also against
∀x¬¬Ax→¬¬∀xAx),

• (b) ∀x(A∨Bx)→A∨∀xBx.

Intuitionistic and Modal Logic, Lisbon 2008 24
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Glivenko’s theorem

• Before the completeness proof an application of completeness.

• Glivenko’s Theorem, Theorem 5:

• `CPCϕ iff ` IPC¬¬ϕ (CPC is classical propositional calculus).

• ⇐= is of course trivial.

• =⇒ Exercise.

• e.g. ` IPC¬¬(ϕ∨¬ϕ).
• Glivenko’s Theorem does not extend to predicate logic, exercise.

Intuitionistic and Modal Logic, Lisbon 2008 26
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Disjunction property

• Theorem 16. ` IPCϕ∨ψ iff ` IPCϕ or ` IPCψ.

• This extends to the predicate calculus and arithmetic.

• Proof. ⇐ : Trivial

⇒ : Assume 0 IPCϕ and 0 IPCψ.

• Let K 2 ϕ and L 2 ψ.

• Add a new root w0 below both K and L. In w0, ϕ∨ψ is falsified (because
of persistence!).

Intuitionistic and Modal Logic, Lisbon 2008 40
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K L

w0

Figure 3: Proving the disjunction property

Intuitionistic and Modal Logic, Lisbon 2008 41
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Kripke frames, models for S4, Grz and GL

• S4 characterizes the reflexive transitive frames,

• S4 is complete w.r.t. the (finite) reflexive, transitive frames,

• S4 is complete w.r.t. 6 -partial orders (reflexive, transitive, anti-
symmetric)

• Grz characterizes the reflexive, transitive, conversely well-founded frames,

• Grz is complete w.r.t. the finite 6 -partial orders,

• GL characterizes the transitive, conversely well-founded (i.e. irreflexive,
asymmetric) frames.

• GL is complete w.r.t. the finite < -partial orders.

Intuitionistic and Modal Logic, Lisbon 2008 48
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Translations

• Gödel’s negative translation

• extends to the predicate calculus and arithmetic, has many variations,

• Definition 28

• pn=¬¬ p,
• (ϕ∧ψ)n=ϕn∧ψn,

• (ϕ∨ψ)n=¬¬ (ϕn∨ψn),

• (ϕ→ψ)n=ϕn→ψn,

• ⊥n=⊥.

Intuitionistic and Modal Logic, Lisbon 2008 49
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Properties of Gödel’s negative translation

• Theorem 29. `CPCϕ iff ` IPCϕ
n.

• Proof.

• ⇐= : ` IPCϕ
n ⇒ `CPCϕ

n ⇒ `CPCϕ.

=⇒ : First prove ` IPCϕ
n↔¬¬ϕn (ϕn is negative) (using

` IPC¬¬(ϕ→ψ)↔ (¬¬ϕ→¬¬ψ) and ` IPC¬¬(ϕ∧ψ)↔ (¬¬ϕ∧¬¬ψ).
Then simply follow the proof of ϕ in CPC to mimic it with a proof of ϕn

in IPC. Exercise.

Intuitionistic and Modal Logic, Lisbon 2008 50
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Gödel’s translation of IPC into S4

• Gödel noticed the closeness of S4 and IPC when one interprets ¤ as
intuitive provability.

• Definition 32.

• p¤=¤ p,
• (ϕ∧ψ)¤=ϕ¤∧ψ¤,
• (ϕ∨ψ)¤=ϕ¤∨ψ¤,
• (ϕ→ψ)¤=¤ (ϕ¤→ψ¤),

• Theorem 33 ` IPCϕ iff ` S4ϕ
¤ iff `Grzϕ

¤.

Intuitionistic and Modal Logic, Lisbon 2008 51
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Proof for Gödel’s translation of IPC into S4

• Proof =⇒ : Trivial from S4 to Grz. From IPC to S4 it is simply a matter
of using one of the proof systems of IPC and to find the needed proofs
in S4, or showing their validity in the S4-frames and using completeness.

• ⇐= : It is sufficient to note that it is easily provable by induction on
the length of the formula ϕ that for any world w in a Kripke model
with a persistent valuation w ² ϕ iff w ² ϕ

¤. This means that if 0 IPCϕ
one can interpret the finite IPC-countermodel to ϕ provided by the
completeness theorem immediately as a finite Grz-countermodel to ϕ¤.

Intuitionistic and Modal Logic, Lisbon 2008 52
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Intermediate Logics

• Intermediate logics (Superintuitionistic logics),

• Logics extending intuitionistic logic by axiom schemes (and sublogics of
classical logic),

• e.g. Weak excluded middle: ¬ϕ∨¬¬ϕ,
• Dummett’s logic: (ϕ→ψ)∨ (ψ→ϕ),

• most do not have disjunction property, some do:

• e.g. the Kreisel-Putnam logic (¬ϕ→ψ ∨χ)→ (¬ϕ→ψ)∨ (¬ϕ→ χ),

Intuitionistic and Modal Logic, Lisbon 2008 53



Non-Normal Modal Logics

Modal Logics Weaker than K
A semantics for modal logics:
Lindenbaum-Tarski (Boolean) Algebras
B = (B,∧,∨, ′,6, 0, 1,��) �� : B → B

Let T be a theory. [ϕ]T = {ψ | T ` ϕ↔ ψ}.

[ϕ]T ∧ [ψ]T = [ϕ ∧ ψ]T [ϕ]T ∨ [ψ]T = [ϕ ∨ ψ]T

[ϕ]′T = [¬ϕ]T [ϕ]T 6 [ψ]T iff T ` ϕ→ ψ;

0 = [⊥]T 1 = [>]T ��[ϕ]T = [�ϕ]T .

Well−defined iff
T ` ϕ↔ ψ

T ` �ϕ↔ �ψ
.

Saeed Salehi: Mathematical Interpretations of Non-Normal Modality, Moscow 2008 3



Non-Normal Modal Logics

Minimal Modal Logic E

CPC + Rule of Inference

(RE)
ϕ↔ ψ

�ϕ↔ �ψ
.

Monotone Modal Logic M

CPC + Monotonicity Rule

(RM)
ϕ→ ψ

�ϕ→ �ψ

(or equivalently) E + the Axiom

(M) �(A ∧ B) → �A ∧�B.

Saeed Salehi: Mathematical Interpretations of Non-Normal Modality, Moscow 2008 4



Non-Normal Modal Logics

Necessitation Modal Logic N

CPC + Necessitation Rule

(RN)
ϕ

�ϕ

(or equivalently) E + the Axiom
(N) �>.

Axiom (C) �A ∧�B → �(A ∧ B) converse of monotonicity

K = E + (N) + (M) + (C) = M + N + C

Saeed Salehi: Mathematical Interpretations of Non-Normal Modality, Moscow 2008 5



Non-Normal Modal Logics

E ϕ↔ψ
�ϕ↔�ψ

PPPPPPPPP

���������
�A ∧�B → �(A ∧ B) (C) (N) �>

M ϕ→ψ
�ϕ→�ψ

���������

````````̀

���������

PPPPPPPPP E + {(R) : �A ∧�B ↔ �(A ∧ B)}���������

PPPPPPPPP
K : {�(A → B) → (�A → �B)} + ϕ

�ϕ

•

GL : K + {�(�A → A) → �A}

Saeed Salehi: Mathematical Interpretations of Non-Normal Modality, Moscow 2008 6



Why Non-Normal?

Literature:
B. Chellas, Modal Logic: An Introduction, CUP 1990.

Philosophically ...?

No (explicit) mention in the Handbook of Modal Logic?

Proof–Theoretic Aspects [e.g. cut elimination] Different Systems

Saeed Salehi: Mathematical Interpretations of Non-Normal Modality, Moscow 2008 7



Mathematical Interpretations

Let �ϕ mean

I happening of ϕ with high probability

I having a strategy to force ϕ

I the set of consequences of ϕ

I cut-free provability of ϕ in weak arithmetics

then � does not satisfy (K).

Saeed Salehi: Mathematical Interpretations of Non-Normal Modality, Moscow 2008 8



Mathematical Interpretations

High Probability

Fix a threshold r < 1 and let �ϕ mean
happening of ϕ with probability ≥ r .

Take an 1 ≤ x < 1/
√

r , and assume φ and ψ are independent
with probability x · r . Then �φ ∧�ψ.
But �(φ ∧ ψ) does not hold, because the probability of φ ∧ ψ is
x2 · r2 < (1/r) · r2 = r .
Thus (C) : �φ ∧�ψ 6→ �(φ ∧ ψ) under this interpretation.

Though (RE) : A ↔ B/�A ↔ �B, (M) : �(A ∧ B) → �A ∧�B,
and (N) : �> are valid.

Saeed Salehi: Mathematical Interpretations of Non-Normal Modality, Moscow 2008 9



Mathematical Interpretations

Deductive Closure

For Σ a set of sentences in CPC, a Σ-valuation is a mapping ∗
(A ∧ B)∗ = A∗ ∩ B∗, (¬A)∗ = Σ− A∗, and
(�A)∗ = {α ∈ Σ | A∗ `CPC α}.

This modal logic can be axiomatized by

B A → �A reflexivity

B �(A ∨�A) → �A transitivity

B A → B/�A → �B monotonicity

because

C A∗ ⊆ (�A)∗

C (�(A ∨�A))∗ ⊆ (�A)∗

C if A∗ ⊆ B∗ then (�A)∗ ⊆ (�B)∗

Saeed Salehi: Mathematical Interpretations of Non-Normal Modality, Moscow 2008 10



Mathematical Interpretations

Deductive Closure

Proof of Completeness in
[P. Naumov, “On modal logic of deductive closure”, APAL (2006)]

For (C) : �A ∧�B → �(A ∧ B) we should have
(�A)∗ ∩ (�B)∗ ⊆ (�(A ∧ B))∗ which is not true:
A∗ ` α & B∗ ` α 6−→ A∗ ∩ B∗ ` α
(put A∗ = {p}, B∗ = {q}, and α = p ∨ q).
Thus �A ∧�B 6→ �(A ∧ B).

Also (N) : �>, because {α ∈ Σ | Σ ` α} = Σ.

Saeed Salehi: Mathematical Interpretations of Non-Normal Modality, Moscow 2008 11



Introduction

Neighborhoods in Topology

In a topology, a neighborhood of a point x is any set A containing
x such that you can “wiggle” x without leaving A.

A neighborhood system of a point x is the collection of
neighborhoods of x .

J. Dugundji. Topology. 1966.
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Introduction

Neighborhoods in Modal Logic

Neighborhood Structure: 〈W ,N,V 〉

I W 6= ∅
I N : W → ℘(℘(W ))

I V : At → ℘(W )

Eric Pacuit: Neighborhood Semantics, Lecture 1 11



Introduction

Some Notation

Given ϕ ∈ L and a model M, the

I proposition expressed by ϕ

I extension of ϕ

I truth set of ϕ

is

(ϕ)M = {w ∈ W | M,w |= ϕ}
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Brief History

w |= �ϕ if the truth set of ϕ is a neighborhood of w

neighborhood in some topology.
J. McKinsey and A. Tarski. The Algebra of Topology. 1944.

contains all the immediate neighbors in some graph
S. Kripke. A Semantic Analysis of Modal Logic. 1963.

an element of some distinguished collection of sets
D. Scott. Advice on Modal Logic. 1970.

R. Montague. Pragmatics. 1968.
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Brief History

w |= �ϕ if the truth set of ϕ is a neighborhood of w

What does it mean to be a neighborhood?

neighborhood in some topology.
J. McKinsey and A. Tarski. The Algebra of Topology. 1944.

contains all the immediate neighbors in some graph
S. Kripke. A Semantic Analysis of Modal Logic. 1963.

an element of some distinguished collection of sets
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R. Montague. Pragmatics. 1968.
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Non-Normality – Semantically

Neighborhood Models: M = (W ,N,V )
where N : W → PP(W ) - neighborhood function; and

V : Atomic → P(W ) which can be extended to all formulae:

V (¬φ) = W − V (φ); V (φ ∧ ψ) = V (φ) ∩ V (ψ); and

V (�φ) = {w ∈ W | V (φ) ∈ N(w)}.

I.O.W. w |= �φ ⇔ {v ∈ W | v |= φ} ∈ N(φ).

Then RE : A ↔ B/�A ↔ �B is valid in every Neighborhood model.
The Logic of Neighborhood Models is E (⊆ Classical).

Saeed Salehi: Mathematical Interpretations of Non-Normal Modality, Moscow 2008 17



Non-Normality – Semantically

M 〈sound&complete〉 each N(w) closed under superset

N 〈sound&complete〉 each N(w) 3 W

C 〈sound&complete〉 each N(w) closed under intersection

K 〈sound&complete〉 each N(w) is a filter

Saeed Salehi: Mathematical Interpretations of Non-Normal Modality, Moscow 2008 18



Non-Normality – Semantically

Neighborhood Models
There is more ...

For a Kripke Model (W ,R,�) let (W ,ℵ,V ) be defined:

ℵ(w) =
{

X ⊆ W | X ⊇ {v ∈ W | wRv}
}

and

V (φ) = {w ∈ W | w � φ}.

Then each ℵ(w) is a [principal] filter.

Eric Pacuit:
Neighborhood Semantics for Modal Logic

An Introduction
Course at ESSLLI 2007

Saeed Salehi: Mathematical Interpretations of Non-Normal Modality, Moscow 2008 19



Neighborhood Frames and Models

Neighborhood Frames

Let W be a non-empty set of states.

Any map N : W → ℘℘W is called a neighborhood function

Definition
A pair 〈W ,N〉 is a called a neighborhood frame if W a non-empty
set and N is a neighborhood function.

Eric Pacuit: Neighborhood Semantics, Lecture 2 12



Neighborhood Frames and Models

Neighborhood Model

Let F = 〈W ,N〉 be a neighborhood frame. A neighborhood model
based on F is a tuple 〈W ,N,V 〉 where V : At → 2W is a valuation
function.

Eric Pacuit: Neighborhood Semantics, Lecture 2 15



Neighborhood Frames and Models

Truth in a Model

I M,w |= p iff w ∈ V (p)

I M,w |= ¬ϕ iff M,w 6|= ϕ

I M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ

I M,w |= �ϕ iff (ϕ)M ∈ N(w)

I M,w |= ♦ϕ iff W − (ϕ)M 6∈ N(w)

where (ϕ)M = {w | M,w |= ϕ}.

Eric Pacuit: Neighborhood Semantics, Lecture 2 16
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Neighborhood Frames and Models

Let N : W → ℘℘W be a neighborhood function and define
mN : ℘W → ℘W :

for X ⊆ W , mN(X ) = {w | X ∈ N(w)}

1. (p)M = V (p) for p ∈ At

2. (¬ϕ)M = W − (ϕ)M

3. (ϕ ∧ ψ)M = (ϕ)M ∩ (ψ)M

4. (�ϕ)M = mN((ϕ)M)

5. (♦ϕ)M = W −mN(W − (ϕ)M)

Eric Pacuit: Neighborhood Semantics, Lecture 2 17



Neighborhood Frames and Models

Detailed Example

Suppose W = {w , s, v} is the set of states and define a
neighborhood model M = 〈W ,N,V 〉 as follows:

I N(w) = {{s}, {v}, {w , v}}
I N(s) = {{w , v}, {w}, {w , s}}
I N(v) = {{s, v}, {w}, ∅}

Further suppose that V (p) = {w , s} and V (q) = {s, v}.

w s v

{s} {v} {w , v} {w , s} {w} {s, v} ∅

Eric Pacuit: Neighborhood Semantics, Lecture 2 18
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Detailed Example

V (p) = {w , s} and V (q) = {s, v}

w s v
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Neighborhood Frames and Models

Detailed Example

V (p) = {w , s} and V (q) = {s, v}

w s v

{s} {v} {w , v} {w , s} {w} {s, v} ∅

M, s |= ♦p

(¬p)M = {v}

Eric Pacuit: Neighborhood Semantics, Lecture 2 18



Neighborhood Frames and Models

Detailed Example

V (p) = {w , s} and V (q) = {s, v}

w s v

{s} {v} {w , v} {w , s} {w} {s, v} ∅

M, v |= �♦p?

M, v |= ♦�p?M,w |= ��p?

M,w |= ♦�p?
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Reasoning about Neighborhood Structures

New slogan: The basic modal language is a simple language for
talking about neighborhood structures.

Eric Pacuit: Neighborhood Semantics, Lecture 2 20



Reasoning about Neighborhood Structures

What can we say?

Definition
A modal formula ϕ defines a property P of neighborhood functions
if any neighborhood frame F has property P iff F validates ϕ.

Eric Pacuit: Neighborhood Semantics, Lecture 2 21



Reasoning about Neighborhood Structures

What can we say?

Lemma
Let F = 〈W ,N〉 be a neighborhood frame. Then
F |= �(ϕ ∧ ψ) → �ϕ ∧�ψ iff F is closed under supersets.

Lemma
Let F = 〈W ,N〉 be a neighborhood frame. Then
F |= �ϕ∧�ψ → �(ϕ∧ψ) iff F is closed under finite intersections.

Eric Pacuit: Neighborhood Semantics, Lecture 2 22
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Reasoning about Neighborhood Structures

What can we say?

Consider the formulas ♦> and �ϕ→ ♦ϕ.

On relational frames, these formulas both define the same
property: seriality.

On neighborhood frames:

I ♦> corresponds to the property ∅ 6∈ N(w)

I �ϕ→ ♦ϕ is valid on F iff F is proper.

Eric Pacuit: Neighborhood Semantics, Lecture 2 23
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Reasoning about Neighborhood Structures

What can we say?

Lemma
Let F = 〈W ,N〉 be a neighborhood frame such that for each
w ∈ W, N(w) 6= ∅.

1. F |= �ϕ→ ϕ iff for each w ∈ W, w ∈ ∩N(w)

2. F |= �ϕ→ ��ϕ iff for each w ∈ W, if X ∈ N(w), then
{v | X ∈ N(v)} ∈ N(w)

Eric Pacuit: Neighborhood Semantics, Lecture 2 24



Reasoning about Neighborhood Structures

Find properties on frames that are defined by the following
formulas:

1. �⊥
2. ¬�ϕ→ �¬�ϕ

3. ♦ϕ→ �ϕ

4. ♦�ϕ→ �♦ϕ

5. �♦ϕ→ ♦�ϕ

Eric Pacuit: Neighborhood Semantics, Lecture 2 25



Reasoning about Neighborhood Structures

Some Non-validities

1. �(ϕ ∧ ψ) → �ϕ ∧�ψ

2. �ϕ ∧�ψ → �(ϕ ∧ ψ)

3. �(ϕ→ ψ) → (�ϕ→ �ψ)

4. �>
5. �ϕ→ ϕ

6. �ϕ→ ��ϕ

7. Many more...

Eric Pacuit: Neighborhood Semantics, Lecture 2 27



Reasoning about Neighborhood Structures

Validities

(Dual) �ϕ↔ ¬♦¬ϕ is valid in all neighborhood models.

(Re) If ϕ↔ ψ is valid then �ϕ↔ �ψ is valid.

Eric Pacuit: Neighborhood Semantics, Lecture 2 28



Non-normal modal logics

PC Propositional Calculus

E �ϕ↔ ¬♦¬ϕ
M �(ϕ ∧ ψ) → (�ϕ ∧�ψ)

C (�ϕ ∧�ψ) → �(ϕ ∧ ψ)

N �>
K �(ϕ→ ψ) → (�ϕ→ �ψ)

RE
ϕ↔ ψ

�ϕ↔ �ψ

Nec
ϕ

�ϕ

MP
ϕ ϕ→ ψ

ψ
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Non-normal modal logics

PC Propositional Calculus

E �ϕ↔ ¬♦¬ϕ
M �(ϕ ∧ ψ) → (�ϕ ∧�ψ)

C (�ϕ ∧�ψ) → �(ϕ ∧ ψ)

N �>
K �(ϕ→ ψ) → (�ϕ→ �ψ)

RE
ϕ↔ ψ

�ϕ↔ �ψ

Nec
ϕ

�ϕ

MP
ϕ ϕ→ ψ

ψ

A modal logic L is classical if it
contains all instances of E and is
closed under RE .
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PC Propositional Calculus

E �ϕ↔ ¬♦¬ϕ
M �(ϕ ∧ ψ) → (�ϕ ∧�ψ)
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RE
ϕ↔ ψ

�ϕ↔ �ψ

Nec
ϕ

�ϕ

MP
ϕ ϕ→ ψ

ψ

A modal logic L is classical if it
contains all instances of E and is
closed under RE .

E is the smallest classical modal
logic.
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Non-normal modal logics

PC Propositional Calculus

E �ϕ↔ ¬♦¬ϕ
M �(ϕ ∧ ψ) → (�ϕ ∧�ψ)

C (�ϕ ∧�ψ) → �(ϕ ∧ ψ)

N �>
K �(ϕ→ ψ) → (�ϕ→ �ψ)

RE
ϕ↔ ψ

�ϕ↔ �ψ

Nec
ϕ

�ϕ

MP
ϕ ϕ→ ψ

ψ

E is the smallest classical modal
logic.

In E, M is equivalent to

(Mon)
ϕ→ ψ

�ϕ→ �ψ
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Non-normal modal logics

PC Propositional Calculus

E �ϕ↔ ¬♦¬ϕ

Mon
ϕ→ ψ

�ϕ→ �ψ

C (�ϕ ∧�ψ) → �(ϕ ∧ ψ)

N �>
K �(ϕ→ ψ) → (�ϕ→ �ψ)

RE
ϕ↔ ψ

�ϕ↔ �ψ

Nec
ϕ

�ϕ

MP
ϕ ϕ→ ψ

ψ

E is the smallest classical modal
logic.

EM is the logic E + Mon
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Non-normal modal logics

PC 6. Propositional Calculus

E �ϕ↔ ¬♦¬ϕ

Mon
ϕ→ ψ

�ϕ→ �ψ

C (�ϕ ∧�ψ) → �(ϕ ∧ ψ)

N �>
K �(ϕ→ ψ) → (�ϕ→ �ψ)

RE
ϕ↔ ψ

�ϕ↔ �ψ

Nec
ϕ

�ϕ

MP
ϕ ϕ→ ψ

ψ

E is the smallest classical modal
logic.

EM is the logic E + Mon

EC is the logic E + C
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Non-normal modal logics
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Non-normal modal logics

PC Propositional Calculus

E �ϕ↔ ¬♦¬ϕ

Mon
ϕ→ ψ

�ϕ→ �ψ

C (�ϕ ∧�ψ) → �(ϕ ∧ ψ)

N �>
K �(ϕ→ ψ) → (�ϕ→ �ψ)

RE
ϕ↔ ψ

�ϕ↔ �ψ

Nec
ϕ

�ϕ

MP
ϕ ϕ→ ψ

ψ

E is the smallest classical modal
logic.

EM is the logic E + Mon

EC is the logic E + C

EMC is the smallest regular
modal logic

A logic is normal if it contains all
instances of E , C and is closed
under Mon and Nec
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Non-normal modal logics

PC Propositional Calculus

E �ϕ↔ ¬♦¬ϕ

Mon
ϕ→ ψ

�ϕ→ �ψ

C (�ϕ ∧�ψ) → �(ϕ ∧ ψ)

N �>
K �(ϕ→ ψ) → (�ϕ→ �ψ)

RE
ϕ↔ ψ

�ϕ↔ �ψ

Nec
ϕ

�ϕ

MP
ϕ ϕ→ ψ

ψ

E is the smallest classical modal
logic.

EM is the logic E + Mon

EC is the logic E + C

EMC is the smallest regular
modal logic

K is the smallest normal modal
logic
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Non-normal modal logics

PC Propositional Calculus

E �ϕ↔ ¬♦¬ϕ

Mon
ϕ→ ψ

�ϕ→ �ψ

C (�ϕ ∧�ψ) → �(ϕ ∧ ψ)

N �>
K �(ϕ→ ψ) → (�ϕ→ �ψ)

RE
ϕ↔ ψ

�ϕ↔ �ψ

Nec
ϕ

�ϕ

MP
ϕ ϕ→ ψ

ψ

E is the smallest classical modal
logic.

EM is the logic E + Mon

EC is the logic E + C

EMC is the smallest regular
modal logic

K = EMCN
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Non-normal modal logics

PC Propositional Calculus

E �ϕ↔ ¬♦¬ϕ

Mon
ϕ→ ψ

�ϕ→ �ψ

C (�ϕ ∧�ψ) → �(ϕ ∧ ψ)

N �>
K �(ϕ→ ψ) → (�ϕ→ �ψ)

RE
ϕ↔ ψ

�ϕ↔ �ψ

Nec
ϕ

�ϕ

MP
ϕ ϕ→ ψ

ψ

E is the smallest classical modal
logic.

EM is the logic E + Mon

EC is the logic E + C

EMC is the smallest regular
modal logic

K = PC (+E ) + K + Nec + MP
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Non-normal modal logics

Are there non-normal extensions of K?

Yes!

Let L be the smallest modal logic containing

I S4 (K + �ϕ→ ϕ + �ϕ→ ��ϕ)

I all instances of M: �♦ϕ→ ♦�ϕ

Claim: L is a non-normal extension of S4.
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Non-normal modal logics

Useful Fact

Theorem (Uniform Substitution)

The following rule can be derived in E

ψ ↔ ψ′

ϕ↔ ϕ[ψ/ψ′]
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Non-normal modal logics

Interesting Fact

Each of K , M and C are logically independent:

I EC 6` K

I EM 6` K

I EK 6` M

I EK 6` C

“Our discussion indicates that, in a sense, C is a more
fundamental schema than K; yet it is K which is most
often used in axiomatizations of normal modal logics.”

(pg. 45)

K. Segerberg. An Essay on Classical Modal Logic. 1970.
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Completeness

Comparing Relational and Neighborhood Semantics

Fact: If a (normal) modal logic is complete with respect to some
class of relational frames then it is complete with respect to some
class of neighborhood frames.

What about the converse?

Are there normal modal logics that are incomplete with respect to
relational semantics, but complete with respect to neighborhood
semantics?
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Completeness

Comparing Relational and Neighborhood Semantics

Fact: If a (normal) modal logic is complete with respect to some
class of relational frames then it is complete with respect to some
class of neighborhood frames.

What about the converse?

Are there normal modal logics that are incomplete with respect to
relational semantics, but complete with respect to neighborhood
semantics? Yes!
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Completeness

Comparing Relational and Neighborhood Semantics

There is

I an extension of K

D. Gabbay. A normal logic that is complete for neighborhood frames but not
for Kripke frames. Theoria (1975).
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Comparing Relational and Neighborhood Semantics

There is

I an extension of K

D. Gabbay. A normal logic that is complete for neighborhood frames but not
for Kripke frames. Theoria (1975).

I An extension of T

M. Gerson. A Neighbourhood frame for T with no equivalent relational frame.
Zeitschr. J. Math. Logik und Grundlagen (1976).
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Completeness

Comparing Relational and Neighborhood Semantics

There is

I an extension of K

D. Gabbay. A normal logic that is complete for neighborhood frames but not
for Kripke frames. Theoria (1975).

I An extension of T

M. Gerson. A Neighbourhood frame for T with no equivalent relational frame.
Zeitschr. J. Math. Logik und Grundlagen (1976).

I An extension of S4

M. Gerson. An Extension of S4 Complete for the Neighbourhood Semantics
but Incomplete for the Relational Semantics. Studia Logica (1975).
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Completeness

The general situation is not very well understood.

Notable exceptions:

L. Chagrova. On the Degree of Neighborhood Incompleteness of Normal Modal
Logics. AiML 1 (1998).

V. Shehtman. On Strong Neighbourhood Completeness of Modal and Inter-
mediate Propositional Logics (Part I). AiML 1 (1998).

T. Litak. Modal Incompleteness Revisited. Studia Logica (2004).
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Topological Models for Modal Logic

Topological Models for Modal Logic

Definition
Topological Space A topological space is a neighborhood frame
〈W , T 〉 where W is a nonempty set and

1. W ∈ T , ∅ ∈ W

2. T is closed under finite intersections

3. T is closed under arbitrary unions.
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Topological Models for Modal Logic

Definition
Topological Space A topological space is a neighborhood frame
〈W , T 〉 where W is a nonempty set and

1. W ∈ T , ∅ ∈ W

2. T is closed under finite intersections

3. T is closed under arbitrary unions.

A neighborhood of w is any set X such that there is an O ∈ T
with w ∈ O ⊆ N

Let Tw be the collection of all neighborhoods of w .
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Topological Models for Modal Logic

Topological Models for Modal Logic

Definition
Topological Space A topological space is a neighborhood frame
〈W , T 〉 where W is a nonempty set and

1. W ∈ T , ∅ ∈ W

2. T is closed under finite intersections

3. T is closed under arbitrary unions.

Lemma
Let 〈W , T 〉 be a topological space. Then for each w ∈ W, the
collection Tw contains W , is closed under finite intersections and
closed under arbitrary unions.
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Topological Models for Modal Logic

Topological Models for Modal Logic

The largest open subset of X is called the interior of X , denoted
Int(X ). Formally,

Int(X ) = ∪{O | O ∈ T and O ⊆ X}

The smallest closed set containing X is called the closure of X ,
denoted Cl(X ). Formally,

Cl(X ) = ∩{C | W − C ∈ T and X ⊆ C}
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Topological Models for Modal Logic

Topological Models for Modal Logic

I Int(X ) = ∪{O | O ∈ T and O ⊆ X}
I Cl(X ) = ∩{C | W − C ∈ T and X ⊆ C}

Lemma
Let 〈W , T 〉 be a topological space and X ⊆ W. Then

1. Int(X ∩ Y ) = Int(X ) ∩ Int(Y )

2. Int(∅) = ∅, Int(W ) = W

3. Int(X ) ⊆ X

4. Int(Int(X )) = Int(X )

5. Int(X ) = W − Cl(W − X )
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Topological Models for Modal Logic

Topological Models for Modal Logic

I Int(X ) = ∪{O | O ∈ T and O ⊆ X}
I Cl(X ) = ∩{C | W − C ∈ T and X ⊆ C}

Lemma
Let 〈W , T 〉 be a topological space and X ⊆ W. Then

1. �(ϕ ∧ ψ) ↔ �ϕ ∧�ψ

2. �⊥ ↔ ⊥,�> ↔ >
3. �ϕ→ ϕ

4. ��ϕ↔ �ϕ

5. �ϕ↔ ¬♦¬ϕ
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Topological Models for Modal Logic

Topological Models for Modal Logic

A topological model is a triple 〈W , T ,V 〉 where 〈W , T 〉 is a
topological space and V a valuation function.
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Topological Models for Modal Logic

Topological Models for Modal Logic

A topological model is a triple 〈W , T ,V 〉 where 〈W , T 〉 is a
topological space and V a valuation function.

MT ,w |= �ϕ iff ∃O ∈ T ,w ∈ O such that ∀v ∈ O,MT , v |= ϕ

(�ϕ)MT
= Int((ϕ)MT

)
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Topological Models for Modal Logic

From Neighborhoods to Topologies
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Topological Models for Modal Logic

From Neighborhoods to Topologies

A family B of subsets of W is called a basis for a topology T if
every open set can be represented as the union of elements of a
subset of B

Fact: A family B of subsets of W is a basis for some topology if

I for each w ∈ W there is a U ∈ B such that w ∈ U

I for each U,V ∈ B, if w ∈ U ∩ V then there is a W ∈ B such
that w ∈ W ⊆ U ∩ V

Eric Pacuit: Neighborhood Semantics, Lecture 3 11



Topological Models for Modal Logic

From Neighborhoods to Topologies

A family B of subsets of W is called a basis for a topology T if
every open set can be represented as the union of elements of a
subset of B

Let M = 〈W ,N,V 〉 be a neighborhood models. Suppose that N
satisfies the following properties

I for each w ∈ W , N(w) is a filter

I for each w ∈ W , w ∈ ∩N(w)

I for each w ∈ W and X ⊆ W , if X ∈ N(w), then
mN(X ) ∈ N(w)

Then there is a topological model that is point-wise equivalent to
M.
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Topological Models for Modal Logic

Main Completeness Result

Theorem
S4 is the logic of the class of all topological spaces.

J. van Benthem and G. Bezhanishvili. Modal Logics of Space. Handbook of
Spatial Logics (2007).
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Relations to Kripke Models

Given a Kripke model K = (W,R,) defineM = 〈W,N, ‖ · ‖〉
by ‖p‖ = {w ∈W | w  p}, and
Nw =

{
X ⊆W | X ⊇ {v ∈W | wRv}

}
(principal) filter.

For any modal formula A, w ∈ ‖A‖ ⇐⇒ w  A.

If inM = 〈W,N, ‖ · ‖〉 each Nw is a principal filter, define
Kripke model K = (W,R,) by wRv ⇐⇒ v ∈

⋂
Nw, and

w  p ⇐⇒ w ∈ ‖p‖.

For any modal formula A, w  A ⇐⇒ w ∈ ‖A‖.

Saeed Salehi http://SaeedSalehi.ir/
uΣαεε∂
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Thank You!

Thanks to the Participants
and

The Organizers of the

IPM Workshop on
Modal Logic and Computer Science

SAEEDSALEHI.ir
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