SAEED SALEHI

University of Tabriz

http://SaeedSalehi.ir/

IPM Logic Seminar December 30–31, 2009

Saeed Salehi

http://SaeedSalehi.ir/

Logarithmic Witnesses in Bounded Induction

Outline

- 1 Bounded Induction Bounded Formulae Bounded Arithmetic
- 2 Gödel's 2nd Incompleteness Theorem Π_1 -Separation Herbrand Consistency
- 3 New Results Pseudo-Logarithmic Cuts Computations
- 4 Farewell

Logarithmic Witnesses in Bounded Induction

Bounded Formulae

Language of Arithmetic

•
$$\mathcal{L}_A = \langle 0, 1, +, \cdot, < \rangle$$

•
$$\mathcal{L}_A = \langle 0, \mathbf{S}, +, \cdot, \leq \rangle$$

$$\begin{array}{|c|c|c|} \hline \mathbf{S}(x) = x + 1 & x \leq y \iff x < y \lor x = y \\ \hline 1 = \mathbf{S}(0) & x < y \iff x \leq y \land x \neq y \\ \end{array}$$

Terms \iff Polynomials

Saeed Salehi

http://SaeedSalehi.ir/

Logarithmic Witnesses in Bounded Induction

Bounded Formulae

Bounded Quantifiers

- All $\exists x$ are in the form $\exists x \leq t$
- All $\forall y$ are in the form $\forall y \leq s$

t, s are \cdots terms

Bounded Formula: all quantifiers are bounded.

- Relations definable by bounded formulas are
 - Decidable
 - Primitive Recursive
 - Recognizable in Linear Space [LinSpace = Space $\in \mathcal{O}(n)$]
 - Recognizable in the Linear Time Hierarchy

http://SaeedSalehi.ir/

Logarithmic Witnesses in Bounded Induction

Bounded Induction

Bounded Arithmetic

Peano Arithmetic

Robinson's Arithmetic Q:

•
$$\mathbf{S}(x) = \mathbf{S}(y) \Rightarrow x = y$$

- $\bullet \ x + 0 = x$
- $\bullet \ x \cdot 0 = 0$

•
$$x \le y \iff \exists z(x+z=y)$$

• $\mathbf{S}(x) \neq 0$ • $x + \mathbf{S}(y) = \mathbf{S}(x + y)$

•
$$x \cdot \mathbf{S}(y) = (x \cdot y) + x$$

•
$$x \neq 0 \Rightarrow \exists y [x = \mathbf{S}(y)]$$

Plus the Induction Axioms:

$$\varphi(0) \land \forall x [\varphi(x) \to \varphi(\mathbf{S}(x))] \Longrightarrow \forall y \varphi(y)$$

Saeed Salehi

http://SaeedSalehi.ir/

Logarithmic Witnesses in Bounded Induction

Bounded Arithmetic

Bounded Induction

Definition

Q + Induction Axiom for Bounded Formulas $= I\Delta_0$

$\begin{array}{l} \text{Theorem} \\ \mathrm{I}\Delta_0 \vdash \forall \overline{x} \exists y \; \eta(\overline{x},y) \; \& \; \eta \in \Delta_0 \Longrightarrow \mathrm{I}\Delta_0 \vdash \forall \overline{x} \; \exists y \leq t(\overline{x}) \; \eta(\overline{x},y) \\ t-term \end{array}$

Provably Recursive Functions of $I\Delta_0$ are Polynomially Bounded $I\Delta_0 \vdash \forall \overline{x} \exists y \quad \underbrace{\eta(\overline{x}, y)}_{\Delta_0} \Longrightarrow I\Delta_0 \vdash \forall \overline{x} \underbrace{\exists y \leq t(\overline{x})\eta(\overline{x}, y)}_{\Delta_0}$

http://SaeedSalehi.ir/

IPM Logic Seminar, Dec. 31' 2009

Logarithmic Witnesses in Bounded Induction

Bounded Arithmetic

Why Bounded Arithmetic?

 $\begin{array}{ll} x \mid y \equiv \exists z (x \cdot z = y) & \text{Prime}(x) \equiv \forall y (y \mid x \Rightarrow y = 1 \lor y = x) \\ \text{PA=Peano Arithmetic} & \text{PA} \vdash \forall x \exists y \left(y > x \land \texttt{Prime}(y) \right) \end{array}$

Open Problem: $I\Delta_0 \vdash ? \forall x \exists y (y > x \land \texttt{Prime}(y))$

$$Exp = \forall x \exists y [y = 2^{x}]$$

EA = I Δ_0 + Exp
Elementary Arithmetic

"
$$y = 2^x$$
" $\in \Delta_0$
EA $\vdash \forall x \exists y (y > x \land \texttt{Prime}(y))$

Saeed Salehi

http://SaeedSalehi.ir/

Logarithmic Witnesses in Bounded Induction

Bounded Arithmetic

More Bounded Arithmetic

Definition

$$\begin{cases} \omega_0(x) = x^2\\ \omega_{n+1}(x) = 2^{\omega_n(\log x)} \end{cases} \qquad \qquad \omega_1(x) = 2^{\log x \cdot \log x} \sim x^{\log x}$$

 $\mathsf{polynomial}(x) \ll \omega_1(x) \ll \omega_2(x) \ll \cdots \ll 2^x$

Definition $\Omega_m = \forall x \exists y [y = \omega_m(x)] \qquad \qquad ``y = \omega_m(x) " \in \Delta_0$

$$I\Delta_0 \ \subsetneqq \ I\Delta_0 + \Omega_1 \ \subsetneqq \ I\Delta_0 + \Omega_2 \ \subsetneqq \ \cdots \ \subsetneqq \ I\Delta_0 + Exp$$

Saeed Salehi

http://SaeedSalehi.ir/

Logarithmic Witnesses in Bounded Induction

 $\Pi_1 - \text{Separation}$

Unprovability of Consistency

$$Con(\mathbf{T}) = \text{``T is consistent ``} = \forall z \neg \underbrace{\texttt{Proof}_{\Delta_0}}_{\Delta_0} (z, \lceil 0 = 1 \rceil) \in \Pi_1$$

$$PA \nvDash Con(PA) \qquad ZFC \vdash Con(PA)$$

$$I\Delta_0 \nvDash Con(I\Delta_0) \qquad PA \vdash Con(I\Delta_0)$$

Open Problem: Π_1 -Separating the hierarchy $\{I\Delta_0 + \Omega_m\}_m$

Saeed Salehi

http://SaeedSalehi.ir/

Logarithmic Witnesses in Bounded Induction

 $\Pi_1 - \text{Separation}$

Herbrand Consistency

Skolemizing: ∃y → eliminate ∃ & [f(x̄) ↔ y] f new symbol
 x̄ all the universal variables before y
 T is Consistent ↔ T^{Sk} is Consistent

Definition

Herbrand Consistency of T = Propositional Satisfiability of every finite set of (Skolem) instances of T

$$\begin{split} \mathrm{I}\Delta_0 + \mathrm{SupExp} \vdash \mathrm{HCon}(T) &\longleftrightarrow \mathrm{Con}(T) \\ \mathrm{I}\Delta_0 \not\vdash \mathrm{HCon}(T) &\longleftrightarrow \mathrm{Con}(T) \end{split}$$

$$\begin{split} & \mathrm{I}\Delta_0 + \mathrm{Exp} \vdash \mathrm{HCon}(\mathrm{I}\Delta_0) \\ & \mathrm{I}\Delta_0 + \mathrm{Exp} \not\vdash \mathrm{Con}(\mathrm{I}\Delta_0) \end{split}$$

 $I\Delta_0 \not\vdash HCon(I\Delta_0) ?$

Saeed Salehi

http://SaeedSalehi.ir/

Logarithmic Witnesses in Bounded Induction

Herbrand Consistency

Logarithmic Witnesses 1

Definition

 $\log^n y = \log \cdots \log y \ (n-\mathsf{times}) \qquad \mathsf{LOG}^n = \{x \mid \exists y [x = \log^n y]\}\$

Theorem

1 If $\theta \in \Delta_0 \& m \ge 2$, then the Consistency of $\operatorname{HCon}_{m-2}(\operatorname{I}\Delta_0 + \Omega_m) + (\operatorname{I}\Delta_0 + \Omega_m) + \exists \overline{x} \in \operatorname{LOG}^{m+1}\theta(\overline{x})$ implies the Consistency of $(\operatorname{I}\Delta_0 + \Omega_m) + \exists \overline{x} \in \operatorname{LOG}^{m+2}\theta(\overline{x})$

where $HCon_{m-2}$ is HCon restricted to the cut LOG^{m-2} .

Saeed Salehi

http://SaeedSalehi.ir/

Logarithmic Witnesses in Bounded Induction

Herbrand Consistency

Logarithmic Witnesses 2

Theorem

2 For any $m, n \ge 0$ there exists a $\eta(x) \in \Delta_0$ such that $(I\Delta_0 + \Omega_m) + \exists x \in LOG^n \eta(x)$ is Consistent, but $(I\Delta_0 + \Omega_m) + \exists x \in LOG^{n+1} \eta(x)$ is NOT Consistent

When HCon is Present one can Shrink any LOG^m-witness *logarithmically* But not always (when HCon is not present)

Saeed Salehi

http://SaeedSalehi.ir/

Logarithmic Witnesses in Bounded Induction

Herbrand Consistency

Proof of Unprovability

Thus (n = m + 1) $I\Delta_0 + \Omega_m \not\vdash HCon_{m-2}(I\Delta_0 + \Omega_m)$ for $m \ge 2$:

Proof.

by 2, $\exists \eta \text{ s.t.}$ (a) $\operatorname{Con}\left((\mathrm{I}\Delta_0 + \Omega_\mathrm{m}) + \exists x \in \mathrm{Log}^{m+1} \eta(x)\right)$ but (b) $\neg \operatorname{Con}\left((\mathrm{I}\Delta_0 + \Omega_\mathrm{m}) + \exists x \in \mathrm{Log}^{m+2} \eta(x)\right)$ If $\operatorname{HCon}_{m-2}(\mathrm{I}\Delta_0 + \Omega_\mathrm{m}) + (\mathrm{I}\Delta_0 + \Omega_\mathrm{m}) = (\mathrm{I}\Delta_0 + \Omega_\mathrm{m})$, then (a)+1 imply $\operatorname{Con}\left((\mathrm{I}\Delta_0 + \Omega_\mathrm{m}) + \exists x \in \mathrm{Log}^{m+2} \eta(x)\right)$ contradiction with (b).

In Particular

 $\mathrm{I}\Delta_0 + \Omega_2 \not\vdash \mathrm{HCon}(\mathrm{I}\Delta_0 + \Omega_2)$

http://SaeedSalehi.ir/

IPM Logic Seminar, Dec. 31' 2009

Logarithmic Witnesses in Bounded Induction

Herbrand Consistency

Logarithmic Witnesses in $I\Delta_0 + \Omega_1$

Not Good for Π_1 -Separating:

Theorem 1' The Consistency of the theory $\operatorname{HCon}(\operatorname{I}\Delta_0 + \Omega_1) + (\operatorname{I}\Delta_0 + \Omega_1) + \exists \overline{x} \in \operatorname{LOG}^2\theta(\overline{x})$ implies the Consistency of $(\operatorname{I}\Delta_0 + \Omega_1) + \exists \overline{x} \in \operatorname{LOG}^3\theta(\overline{x})$

Corollary

 $\mathrm{I}\Delta_0 + \Omega_1 \not\vdash \mathrm{HCon}(\mathrm{I}\Delta_0 + \Omega_1)$

Saeed Salehi

http://SaeedSalehi.ir/

Logarithmic Witnesses in Bounded Induction

New Results

Pseudo-Logarithmic Cuts

Logarithmic Witnesses in $I\Delta_0$

Definition

$$\mathcal{I} := \{ x \mid \exists y [y = 2^{\omega_1^2(x)}] \} \qquad \qquad \mathcal{J} := \{ x \mid \exists y [y = 2^{2^{x^4}}] \}$$

$$\omega_1^2(2^x) = \omega_1(2^{x^2}) = 2^{x^4} \longrightarrow 2^{\omega_1^2(2^x)} = 2^{2^{x^4}}$$

 $2^x \in \mathcal{I} \iff x \in \mathcal{J} \qquad \qquad \mathcal{J} = \log \mathcal{I}$

Theorem

• The Consistency of the theory

implies the Consistency of

 $\begin{aligned} & \operatorname{HCon}(\mathbb{I}\Delta_0) + \mathrm{I}\Delta_0 + \exists \overline{x} \in \mathcal{I}\theta(\overline{x}) \\ & \mathrm{I}\Delta_0 + \exists \overline{x} \in \mathcal{J}\theta(\overline{x}) \end{aligned}$

where
$$\mathbb{I} \triangle_0 = \mathbb{I} \Delta_0 + \forall x \exists y [y = x \cdot x] !$$

Saeed Salehi

http://SaeedSalehi.ir/

Logarithmic Witnesses in Bounded Induction

New Results

Pseudo-Logarithmic Cuts

Inside
$$I\Delta_0$$

Theorem

2' There Exists a $\eta(x) \in \Delta_0$ such that $I\Delta_0 + \exists x \in \mathcal{I} \ \eta(x)$ is Consistent, but $I\Delta_0 + \exists x \in \mathcal{J} \ \eta(x)$ is NOT Consistent

Corollary

$\mathrm{I}\Delta_0 \not\vdash \mathrm{HCon}(\mathbb{I}\triangle_0)$

http://SaeedSalehi.ir/

 $\oint_{\Sigma\alpha\ell\epsilon\hbar\imath}^{\Sigma\alpha\epsilon\epsilon\partial}$.ir

IPM Logic Seminar, Dec. 31' 2009

Logarithmic Witnesses in Bounded Induction

New Results

Computations

Some Dirty Computations

$$\begin{split} p(x) &\ll x^{\log^2 x} \ll \omega_1(x) \ll \omega_2(x) = 2^{2^{\log^2 x \cdot \log^2 x}} \ll \cdots \ll 2^x \\ \lceil \langle \alpha \rangle^{\neg} \leq 9(\lceil \alpha \rceil + 1)^2 \quad \lceil A \frown B^{\neg} (\lceil A \cup B^{\neg}) \leq 64 \cdot (\lceil A^{\neg} \cdot \lceil B^{\neg}) \\ \texttt{length}(A) \ (|A|) \leq (\log^{\lceil} A^{\neg}) \quad \lceil p^{\neg} \leq \mathcal{P} \left(\omega_1(\lceil \Lambda^{\neg}) \right) \prod_{t,s \in \Lambda} \lceil t^{\neg} \cdot \lceil s^{\neg} = \\ \prod_{t \in \Lambda} (\lceil t^{\neg})^{2|\Lambda|} = (\prod_{t \in \Lambda} \lceil t^{\neg})^{2|\Lambda|} \leq \mathcal{P} (\lceil \Lambda^{\neg})^{2\log^{\lceil} \Lambda^{\neg}} \leq \mathcal{P} (\lceil \Lambda^{\neg} \log^{\lceil} \Lambda^{\neg}) \\ \lceil \Lambda^{\neg} \log^{\lceil} \Lambda^{\neg} \leq \exp(\log^{\lceil} \Lambda^{\neg})^{\log^{\lceil} \Lambda^{\neg}} = \exp\left((\log^{\lceil} \Lambda^{\neg})^2\right) = \omega_1(\lceil \Lambda^{\neg}) \quad \Lambda^{\langle 0 \rangle} = \Lambda \\ \Lambda^{\langle k+1 \rangle} = \Lambda^{\langle k \rangle} \cup \{f(t_1, \dots, t_m) \mid f \in \mathcal{L} \& t_1, \dots, t_m \in \Lambda^{\langle k \rangle}\} \\ \cup \{\mathfrak{f}_{z x \psi(x)}(t_1, \dots, t_m) \mid \lceil \psi^{\neg} \leq k \& t_1, \dots, t_m \in \Lambda^{\langle k \rangle}\} \\ |\Lambda^{\langle n \rangle}| \leq \mathcal{P} \left((n!)^{n!} |\Lambda|^{n!}\right) \quad \lceil \Lambda^{\langle n \rangle \neg} \leq \mathcal{P} \left((\lceil \Lambda^{\neg})^{|\Lambda|^{(n+1)!}}\right) \\ 2(j+1)! \leq 2^{2^j} \leq \log^{2^{\lceil} \Lambda^{\neg}} \\ \lceil \Lambda^{\langle j \rangle \neg} \leq \mathcal{P} \left((\lceil \Lambda^{\neg})^{|\Lambda|^{(j+1)!}}\right) \leq \mathcal{P} \left((2^{\log^{\lceil} \Lambda^{\neg}+1})^{(\log^{\lceil} \Lambda^{\neg})^{(j+1)!}}\right) \leq \\ \mathcal{P} \left(\exp\left((\log^{\lceil} \Lambda^{\neg})^{2(j+1)!}\right)\right) \leq \mathcal{P} \left(\exp\left(\omega_1(\log^{\lceil} \Lambda^{\neg})\right)\right) \end{split}$$

Saeed Salehi

http://SaeedSalehi.ir/

Logarithmic Witnesses in Bounded Induction

New Results

Computations

Next Talk:

Logical Approaches to Barriers in Computing and Complexity

The DVMLG, the PTLIFN, the ACIE and the EACSL jointly organize a workshop on Logical Approaches to Barriers in Computing and Complexity. The workshop is sponsored by the Stiftung Alfried Krupp Kolleg Greifswald and the DFG, and takes place at the Alfried Krupp Wissenschaftskolleg in the city of Greifswald in Germany.

Date of the Workshop: 17 - 20 February 2010

http://www.cs.swan.ac.uk/greifswald2010/

Programme Committee

Zofia Adamowicz (Warsaw, Poland) Franz Baader (Dresden, Germany) Arnold Beckmann (**chair**; Swansea, Wales) Sam Buss (La Jolla CA, U.S.A.) Manfred Droste (Leipzig, Germany) Christine Gaßner (Greifswald, Germany) Peter Koepke (Bonn, Germany)

Benedikt Löwe (Amsterdam, The Netherlands) Johann Makowsky (Haifa, Israel) Elvira Mayordomo (Zaragoza, Spain) Damian Niwinski (Warsaw, Poland) Wolfgang Thomas (Aachen, Germany) Martin Ziegler (Darmstadt, Germany)

Saeed Salehi

Logarithmic Witnesses in Bounded Induction

Future Works ?

Conjecture

- 1 $\bigcup_n (\mathrm{I}\Delta_0 + \Omega_n) \not\vdash \mathrm{HCon}(\mathrm{I}\Delta_0 + \Omega_1)$
- $\mathbf{2} \ \bigcup_n (\mathrm{I}\Delta_0 + \Omega_n) \not\vdash \mathrm{HCon}(\mathrm{I}\Delta_0 + \Omega_0) = \mathrm{HCon}(\mathbb{I}\Delta_0)$

Problems

- 1 $\bigcup_n (I\Delta_0 + \Omega_n) \not\vdash \operatorname{HCon}(I\Delta_0)$ for a good definition of HCon
- 2 Proving GST $T \not\vdash HCon(T)$ nicely and neatly
 - for every T $\supseteq Q$ -Robinson's Arithmetic

Saeed Salehi

http://SaeedSalehi.ir/

Logarithmic Witnesses in Bounded Induction

Thanks to the

Participants

and The Organizers of the

IPM Logic Seminar December 30–31, 2009

SAEEDSALEHI.ir

Saeed Salehi

http://SaeedSalehi.ir/

Logarithmic Witnesses in Bounded Induction