Logarithmic Witnesses in Bounded Induction

Saeed Salehi

University of Tabriz

http://SaeedSalehi.ir/

IPM Logic Seminar
December 30-31, 2009

Outline

1 Bounded Induction
Bounded Formulae
Bounded Arithmetic
2 Gödel's 2nd Incompleteness Theorem
Π_{1}-Separation
Herbrand Consistency
3 New Results
Pseudo-Logarithmic Cuts
Computations
4 Farewell

Bounded Formulae

Language of Arithmetic

- $\mathcal{L}_{A}=\langle 0,1,+, \cdot,<\rangle$
- $\mathcal{L}_{A}=\langle 0, \mathrm{~S},+, \cdot, \leq\rangle$

$\mathrm{S}(x)=x+1$	$x \leq y \Longleftrightarrow x<y \vee x=y$
$1=\mathrm{S}(0)$	$x<y \Longleftrightarrow x \leq y \wedge x \neq y$

Terms \Longleftrightarrow Polynomials

Bounded Quantifiers

- All $\exists x$ are in the form $\exists x \leq t$
- All $\forall y$ are in the form $\forall y \leq s$

Bounded Formula: all quantifiers are bounded.

- Relations definable by bounded formulas are
- Decidable
- Primitive Recursive
- Recognizable in Linear Space [LinSpace $=$ Space $\in \mathcal{O}(n)$]
- Recognizable in the Linear Time Hierarchy

Peano Arithmetic

Robinson's Arithmetic Q :

- $\mathbf{S}(x)=\mathbf{S}(y) \Rightarrow x=y$
- $\mathrm{S}(x) \neq 0$
- $x+0=x$
- $x+\mathbf{S}(y)=\mathbf{S}(x+y)$
- $x \cdot 0=0$
- $x \cdot \mathbf{S}(y)=(x \cdot y)+x$
- $x \leq y \Longleftrightarrow \exists z(x+z=y)$
- $x \neq 0 \Rightarrow \exists y[x=\mathrm{S}(y)]$

Plus the Induction Axioms:

$$
\varphi(0) \wedge \forall x[\varphi(x) \rightarrow \varphi(\mathrm{S}(x))] \Longrightarrow \forall y \varphi(y)
$$

Bounded Induction

Definition

$Q+$ Induction Axiom for Bounded Formulas $=\mathrm{I} \Delta_{0}$

Theorem
$\mathrm{I} \Delta_{0} \vdash \forall \bar{x} \exists y \eta(\bar{x}, y) \& \eta \in \Delta_{0} \Longrightarrow \mathrm{I} \Delta_{0} \vdash \forall \bar{x} \exists y \leq t(\bar{x}) \eta(\bar{x}, y)$
t-term

Provably Recursive Functions of $\mathrm{I} \Delta_{0}$ are Polynomially Bounded
$\mathrm{I} \Delta_{0} \vdash \forall \bar{x} \exists y \underbrace{\eta(\bar{x}, y)}_{\Delta_{0}} \Longrightarrow \mathrm{I} \Delta_{0} \vdash \forall \bar{x} \underbrace{\exists y \leq t(\bar{x}) \eta(\bar{x}, y)}_{\Delta_{0}}$

Bounded Arithmetic

Why Bounded Arithmetic?

$$
\begin{aligned}
& x \mid y \equiv \exists z(x \cdot z=y) \\
& \text { PA=Peano Arithmetic }
\end{aligned}
$$

$$
\operatorname{Prime}(x) \equiv \forall y(y \mid x \Rightarrow y=1 \vee y=x)
$$

$$
\text { PA } \vdash \forall x \exists y(y>x \wedge \operatorname{Prime}(y))
$$

Open Problem: $\quad \mathrm{I} \Delta_{0} \vdash^{?} \forall x \exists y(y>x \wedge \operatorname{Prime}(y))$
$\operatorname{Exp}=\forall x \exists y\left[y=2^{x}\right]$
$\mathrm{EA}=\mathrm{I} \Delta_{0}+\operatorname{Exp}$
Elementary Arithmetic

Bounded Arithmetic

More Bounded Arithmetic

Definition

$\left\{\begin{array}{l}\omega_{0}(x)=x^{2} \\ \omega_{n+1}(x)=2^{\omega_{n}(\log x)}\end{array}\right.$

$$
\omega_{1}(x)=2^{\log x \cdot \log x} \sim x^{\log x}
$$

polynomial $(x) \ll \omega_{1}(x) \ll \omega_{2}(x) \ll \cdots \ll 2^{x}$

Definition

$$
\Omega_{m}=\forall x \exists y\left[y=\omega_{m}(x)\right] \quad \text { " } y=\omega_{m}(x) " \in \Delta_{0}
$$

$$
\mathrm{I} \Delta_{0} \varsubsetneqq \mathrm{I} \Delta_{0}+\Omega_{1} \varsubsetneqq \mathrm{I} \Delta_{0}+\Omega_{2} \varsubsetneqq \cdots \varsubsetneqq \mathrm{I} \Delta_{0}+\operatorname{Exp}
$$

Unprovability of Consistency

$$
\begin{array}{ll}
\operatorname{Con}(\mathrm{T})=" \mathrm{~T} \text { is consistent " } " \forall z \neg \underbrace{\operatorname{Proof}}_{\Delta_{0}}(z,\ulcorner 0=1\urcorner) \in \Pi_{1} \\
\mathrm{PA} \nvdash \operatorname{Con}(\mathrm{PA}) & \mathrm{ZFC} \vdash \operatorname{Con}(\mathrm{PA}) \\
\mathrm{I} \Delta_{0} \nvdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}\right) & \mathrm{PA} \vdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}\right)
\end{array}
$$

Open Problem:
Π_{1}-Separating the hierarchy $\left\{\mathrm{I} \Delta_{0}+\Omega_{m}\right\}_{m}$

Herbrand Consistency

- Skolemizing: $\exists y \rightsquigarrow$ eliminate $\exists \&[f(\bar{x}) \hookleftarrow y] \quad f$ new symbol \bar{x} all the universal variables before y
- T is Consistent $\Longleftrightarrow \mathrm{T}^{\mathrm{Sk}}$ is Consistent

Definition

Herbrand Consistency of T = Propositional Satisfiability of every finite set of (Skolem) instances of T

$$
\begin{gathered}
\mathrm{I} \Delta_{0}+\operatorname{SupExp} \vdash \mathrm{HCon}(\mathrm{~T}) \longleftrightarrow \operatorname{Con}(\mathrm{T}) \\
\mathrm{I} \Delta_{0} \nvdash \operatorname{HCon}(\mathrm{~T}) \longleftrightarrow \operatorname{Con}(\mathrm{T})
\end{gathered}
$$

$\mathrm{I} \Delta_{0}+\operatorname{Exp} \vdash \mathrm{HCon}\left(\mathrm{I} \Delta_{0}\right)$
$\mathrm{I} \Delta_{0} \nvdash \mathrm{HCon}\left(\mathrm{I} \Delta_{0}\right) ?$
$\mathrm{I} \Delta_{0}+\operatorname{Exp} \nvdash \operatorname{Con}\left(\mathrm{I} \Delta_{0}\right)$

Herbrand Consistency

Logarithmic Witnesses 1

Definition

$$
\log ^{n} y=\log \cdots \log y \text { (n-times) } \quad \operatorname{LOG}^{n}=\left\{x \mid \exists y\left[x=\log ^{n} y\right]\right\}
$$

Theorem

1 If $\theta \in \Delta_{0} \& m \geq 2$, then the Consistency of

$$
\mathrm{HCon}_{m-2}\left(\mathrm{I} \Delta_{0}+\Omega_{\mathrm{m}}\right)+\left(\mathrm{I} \Delta_{0}+\Omega_{\mathrm{m}}\right)+\exists \bar{x} \in \mathrm{LOG}^{m+1} \theta(\bar{x})
$$

$$
\text { implies the Consistency of } \quad\left(\mathrm{I} \Delta_{0}+\Omega_{\mathrm{m}}\right)+\exists \bar{x} \in \mathrm{LOG}^{m+2} \theta(\bar{x})
$$

where HCOn_{m-2} is HCon restricted to the cut LOG^{m-2}.

Herbrand Consistency

Logarithmic Witnesses 2

Theorem
2 For any $m, n \geq 0$ there exists a $\eta(x) \in \Delta_{0}$ such that $\left(\mathrm{I} \Delta_{0}+\Omega_{\mathrm{m}}\right)+\exists x \in \mathrm{LOG}^{n} \eta(x)$ is Consistent, but $\left(\mathrm{I} \Delta_{0}+\Omega_{\mathrm{m}}\right)+\exists x \in \mathrm{LOG}^{n+1} \eta(x)$ is NOT Consistent

When HCon is Present one can Shrink any LOG ${ }^{m}$-witness logarithmically But not always (when HCon is not present)

Herbrand Consistency

Proof of Unprovability

Thus $(n=m+1) \mathrm{I} \Delta_{0}+\Omega_{\mathrm{m}} \nvdash \mathrm{HCon}_{m-2}\left(\mathrm{I} \Delta_{0}+\Omega_{\mathrm{m}}\right)$ for $m \geq 2$:
Proof.
by $2, \exists \eta$ s.t.
(a) $\operatorname{Con}\left(\left(I \Delta_{0}+\Omega_{\mathrm{m}}\right)+\exists x \in \operatorname{LoG}^{m+1} \eta(x)\right)$
but
(b) $\neg \operatorname{Con}\left(\left(I \Delta_{0}+\Omega_{\mathrm{m}}\right)+\exists x \in \operatorname{LoG}^{m+2} \eta(x)\right)$
If $\mathrm{HCon}_{m-2}\left(\mathrm{I} \Delta_{0}+\Omega_{\mathrm{m}}\right)+\left(\mathrm{I} \Delta_{0}+\Omega_{\mathrm{m}}\right)=\left(\mathrm{I} \Delta_{0}+\Omega_{\mathrm{m}}\right)$, then (a) +1 imply $\quad \operatorname{CoN}\left(\left(\mathrm{I} \Delta_{0}+\Omega_{\mathrm{m}}\right)+\exists x \in \mathrm{LoG}^{m+2} \eta(x)\right)$ contradiction with (b).

$$
\mathrm{I} \Delta_{0}+\Omega_{2} \nvdash \operatorname{HCon}\left(\mathrm{I} \Delta_{0}+\Omega_{2}\right)
$$

Herbrand Consistency

Logarithmic Witnesses in I $\Delta_{0}+\Omega_{1}$

Not Good for Π_{1}-Separating:
Theorem
$\bigcup_{n}\left(\mathrm{I} \Delta_{0}+\Omega_{\mathrm{n}}\right) \nvdash \mathrm{HCon}\left(\mathrm{I} \Delta_{0}+\Omega_{\mathrm{m}}\right)$ for $m \geq 2$
-000

Theorem

1' The Consistency of the theory

$$
\operatorname{HCon}\left(\mathrm{I} \Delta_{0}+\Omega_{1}\right)+\left(\mathrm{I} \Delta_{0}+\Omega_{1}\right)+\exists \bar{x} \in \operatorname{LOG}^{2} \theta(\bar{x})
$$ implies the Consistency of $\quad\left(\mathrm{I} \Delta_{0}+\Omega_{1}\right)+\exists \bar{x} \in \mathrm{LOG}^{3} \theta(\bar{x})$

Corollary

$$
\mathrm{I} \Delta_{0}+\Omega_{1} \nvdash \mathrm{HCon}\left(\mathrm{I} \Delta_{0}+\Omega_{1}\right)
$$

Pseudo-Logarithmic Cuts

Logarithmic Witnesses in I Δ_{0}

Definition

$$
\begin{array}{cl}
\mathcal{I}:=\left\{x \mid \exists y\left[y=2^{\omega_{1}^{2}(x)}\right]\right\} & \mathcal{J}:=\left\{x \mid \exists y\left[y=2^{2^{x^{4}}}\right]\right\} \\
\omega_{1}^{2}\left(2^{x}\right)=\omega_{1}\left(2^{x^{x^{2}}}\right)=2^{x^{4}} \longrightarrow 2^{\omega_{1}^{2}\left(2^{x}\right)}=2^{2^{x^{4}}} & \\
2^{x} \in \mathcal{I} \Longleftrightarrow x \in \mathcal{J} & \mathcal{J}=\log \mathcal{I}
\end{array}
$$

Theorem

- The Consistency of the theory
implies the Consistency of

$$
\begin{array}{r}
\operatorname{HCon}\left(\mathbb{I} \triangle_{0}\right)+\mathrm{I} \Delta_{0}+\exists \bar{x} \in \mathcal{I} \theta(\bar{x}) \\
\mathrm{I} \Delta_{0}+\exists \bar{x} \in \mathcal{J} \theta(\bar{x})
\end{array}
$$

where $\mathbb{I} \triangle_{0}=\mathrm{I} \Delta_{0}+\forall x \exists y[y=x \cdot x]!$

Pseudo-Logarithmic Cuts

Inside I Δ_{0}

Theorem

2' There Exists a $\eta(x) \in \Delta_{0}$ such that $\mathrm{I} \Delta_{0}+\exists x \in \mathcal{I} \eta(x)$ is Consistent, but $\mathrm{I} \Delta_{0}+\exists x \in \mathcal{J} \eta(x)$ is NOT Consistent

Corollary $\quad \mathrm{I} \Delta_{0} \nvdash \operatorname{HCon}\left(\mathbb{I} \triangle_{0}\right)$

$$
\begin{array}{lr}
\hline \mathbb{I} \triangle_{0}=\mathrm{I} \Delta_{0}+\Omega_{0} & \\
\Omega_{0}=\forall x \exists y\left[y=\omega_{0}(x)=x^{2}\right] & \Omega_{0} \mathrm{Sk} \equiv \mathfrak{f}(x)=x^{2} \\
\mathfrak{f}^{n}(\alpha)=\left(\ldots\left(\left(\alpha^{2}\right)^{2}\right)^{\cdots}\right)^{2}=\underbrace{\alpha \cdot \alpha \cdot \alpha \ldots \alpha}_{2^{n}-\text { times }}=\alpha^{2^{n}} & \\
\left\ulcorner\mathfrak{f}^{n}(2)\right\urcorner \sim 2^{n} & \mathfrak{f}^{n}(2)=2^{2^{n}}
\end{array}
$$

Computations

Some Dirty Computations

$$
\begin{aligned}
& p(x) \ll x^{\log ^{2} x} \ll \omega_{1}(x) \ll \omega_{2}(x)=2^{2^{\log ^{2} x \cdot \log ^{2} x} \ll \cdots \ll 2^{x}, ~<~} \\
& \ulcorner\langle\alpha\rangle\urcorner \leq 9(\ulcorner\alpha\urcorner+1)^{2} \quad\ulcorner A \frown B\urcorner(\ulcorner A \cup B\urcorner) \leq 64 \cdot(\ulcorner A\urcorner \cdot\ulcorner B\urcorner) \\
& \operatorname{length}(A)(|A|) \leq(\log \ulcorner A\urcorner)\ulcorner p\urcorner \leq \mathcal{P}\left(\omega_{1}(\ulcorner\Lambda\urcorner)\right) \prod_{t, s \in \Lambda}\ulcorner t\urcorner \cdot\ulcorner s\urcorner= \\
& \prod_{t \in \Lambda}(\ulcorner t\urcorner)^{2|\Lambda|}=\left(\prod_{t \in \Lambda}\ulcorner t\urcorner\right)^{2|\Lambda|} \leq \mathcal{P}(\ulcorner\Lambda\urcorner)^{2 \log \ulcorner\Lambda\urcorner} \leq \mathcal{P}\left(\ulcorner\Lambda\urcorner \log ^{\ulcorner }\ulcorner \urcorner\right) \\
& \ulcorner\Lambda\urcorner \log \ulcorner\Lambda\urcorner \leq \exp (\log \ulcorner\Lambda\urcorner)^{\log \ulcorner\Lambda\urcorner}=\exp \left((\log \ulcorner\Lambda\urcorner)^{2}\right)=\omega_{1}(\ulcorner\Lambda\urcorner) \Lambda^{\langle 0\rangle}=\Lambda \\
& \Lambda^{\langle k+1\rangle}=\Lambda^{\langle k\rangle} \cup\left\{f\left(t_{1}, \ldots, t_{m}\right) \mid f \in \mathcal{L} \& t_{1}, \ldots, t_{m} \in \Lambda^{\langle k\rangle}\right\} \\
& \cup\left\{\mathfrak{f}_{\exists x \psi(x)}\left(t_{1}, \ldots, t_{m}\right) \mid\ulcorner\psi\urcorner \leq k \& t_{1}, \ldots, t_{m} \in \Lambda^{\langle k\rangle}\right\} \\
& \left|\Lambda^{\langle n\rangle}\right| \leq \mathcal{P}\left((n!)^{n!}|\Lambda|^{n!}\right)\left\ulcorner\Lambda^{\langle n\rangle}\right\urcorner \leq \mathcal{P}\left((\ulcorner\Lambda\urcorner)^{|\Lambda|^{(n+1)!}}\right) \\
& 2(j+1)!\leq 2^{2^{j}} \leq \log ^{2}\ulcorner\Lambda\urcorner \\
& \left\ulcorner\Lambda^{\langle j\rangle}\right\urcorner \leq \mathcal{P}\left((\ulcorner\Lambda\urcorner)^{|\Lambda|^{(j+1)!}}\right) \leq \mathcal{P}\left(\left(2^{\log \ulcorner\Lambda\urcorner+1}\right)^{(\log \ulcorner\Lambda\urcorner)^{(j+1)!}}\right) \leq \\
& \mathcal{P}\left(\exp \left((\log \ulcorner\Lambda\urcorner)^{2(j+1)!}\right)\right) \leq \mathcal{P}\left(\exp \left(\omega_{1}(\log \ulcorner\Lambda\urcorner)\right)\right)
\end{aligned}
$$

Next Talk:

Logical Approaches to Barriers in Computing and Complexity

The DVMLG, the PTLiFN, the ACiE and the EACSL jointly organize a workshop on Logical Approaches to Barriers in Computing and Complexity. The workshop is sponsored by the Stiftung Alfried Krupp Kolleg Greifswald and the DFG, and takes place at the Alfried Krupp Wissenschaftskolleg in the city of Greifswald in Germany.

Date of the Workshop: 17-20 February 2010
http://www.cs.swan.ac.uk/greifswald2010/
Programme Committee

Zofia Adamowicz (Warsaw, Poland)
Franz Baader (Dresden, Germany)
Arnold Beckmann (chair; Swansea, Wales) Sam Buss (La Jolla CA, U.S.A.) Manfred Droste (Leipzig, Germany) Christine Gaßner (Greifswald, Germany) Peter Koepke (Bonn, Germany)

Benedikt Löwe (Amsterdam, The Netherlands) Johann Makowsky (Haifa, Israel) Elvira Mayordomo (Zaragoza, Spain) Damian Niwinski (Warsaw, Poland)
Wolfgang Thomas (Aachen, Germany) Martin Ziegler (Darmstadt, Germany)

Future Works ?

Conjecture

$$
\begin{aligned}
& 1 \bigcup_{n}\left(\mathrm{I} \Delta_{0}+\Omega_{\mathrm{n}}\right) \nvdash \operatorname{HCon}\left(\mathrm{I} \Delta_{0}+\Omega_{1}\right) \\
& 2 \bigcup_{n}\left(\mathrm{I} \Delta_{0}+\Omega_{\mathrm{n}}\right) \nvdash \operatorname{HCon}\left(\mathrm{I} \Delta_{0}+\Omega_{0}\right)=\operatorname{HCon}\left(\mathbb{I} \triangle_{0}\right)
\end{aligned}
$$

Problems

$1 \bigcup_{n}\left(\mathrm{I} \Delta_{0}+\Omega_{\mathrm{n}}\right) \nvdash \mathrm{HCon}\left(\mathrm{I} \Delta_{0}\right)$ for a good definition of HCon
2 Proving GST THHCon(T) nicely and neatly for every $\mathrm{T} \supseteq Q$-Robinson's Arithmetic

Thank You!

Thanks to the

Participants

and The Organizers of the

IPM Logic Seminar
December 30-31, 2009

SAEEDSALEHI.ir

