Gödel's Incompleteness from a Computational Viewpoint

Saeed Salehi

University of Tabriz

http://SaeedSalehi.ir/

Saeed Salehi

http://SaeedSalehi.ir/

Completeness of Logic \mathfrak{L} with respect to Class of Structures \mathscr{K} :

For any formula φ : $\forall \mathcal{M} \in \mathscr{K}(\mathcal{M} \models \varphi) \implies \vdash_{\mathfrak{L}} \varphi$.

Strong Completeness For any theory Γ (set of formulas) and any formula φ : $\forall \mathcal{M} \in \mathscr{K}(\mathcal{M} \models \Gamma \Rightarrow \mathcal{M} \models \varphi) \implies \Gamma \vdash_{\mathfrak{L}} \varphi.$

Soundness of Logic \mathfrak{L} with respect to Class of Structures \mathscr{K} : For any formula φ : $\vdash_{\mathfrak{L}} \varphi \implies \forall \mathcal{M} \in \mathscr{K}(\mathcal{M} \models \varphi)$. \equiv Strong Soundness $\forall \Gamma \forall \varphi : \Gamma \vdash_{\mathfrak{L}} \varphi \Longrightarrow \forall \mathcal{M} \in \mathscr{K}(\mathcal{M} \models \Gamma \Rightarrow \mathcal{M} \models \varphi).$

So (here) Completeness & Soundness are Semantic concepts.

Saeed Salehi

http://SaeedSalehi.ir/

Completeness of Theory T w.r.t Class of Structures \mathcal{K} :

For any formula φ : $\forall \mathcal{M} \in \mathscr{K}(\mathcal{M} \models T \Rightarrow \mathcal{M} \models \varphi) \Longrightarrow T \vdash_{\mathfrak{L}} \varphi$. Soundness of Theory T w.r.t Class of Structures \mathscr{K} : For any formula φ : $T \vdash_{\mathfrak{L}} \varphi \Longrightarrow \forall \mathcal{M} \in \mathscr{K}(\mathcal{M} \models T \Rightarrow \mathcal{M} \models \varphi)$.

The Theory T axiomatizes the Class \mathscr{K} : T is Sound and Complete w.r.t \mathscr{K} ; T = AxTh(\mathscr{K}); $\mathscr{K} = Mod(T)$.

(SEMANTIC) \mathscr{K} is axiomatizable iff $\mathscr{K} = \operatorname{Mod}(\operatorname{Th}(\mathscr{K}))$ iff \mathscr{K} is closed under elementary equivalence and ultra-products iff \mathscr{K} is an elementary class.

(Syntactic) $\operatorname{Der}(T) = \{\theta \mid T \vdash \theta\} = \operatorname{Th}(\operatorname{Mod}(T)).$

Saeed Salehi

http://SaeedSalehi.ir/

Syntactic Completeness of Theory T: For any formula φ : either $T \vdash_{\mathfrak{L}} \varphi$ or $T \vdash_{\mathfrak{L}} \neg \varphi$.

That is Negation Completeness: $T \vdash_{\mathfrak{L}} \neg \varphi \Longleftarrow T \nvDash_{\mathfrak{L}} \varphi$ Conjunction Completeness: $T \vdash_{\mathfrak{L}} \varphi \land \psi \iff T \vdash_{\mathfrak{L}} \varphi \& T \vdash_{\mathfrak{L}} \psi$ Disjunction Completeness: $T \vdash_{\mathfrak{L}} \varphi \lor \psi \iff T \vdash_{\mathfrak{L}} \varphi$ or

It all makes sense in the case of Consistency of Theory T: For any formula φ : either $T \not\vdash_{\mathfrak{L}} \varphi$ or $T \not\vdash_{\mathfrak{L}} \neg \varphi$. $T \vdash_{\mathfrak{L}} \neg \varphi \Longrightarrow T \not\vdash_{\mathfrak{L}} \varphi$.

Saeed Salehi

http://SaeedSalehi.ir/

(SYNTACTIC) Completeness and Consistency ≡ (SEMANTIC) Completeness and Soundness w.r.t a Class of Equivalent Models.

$$\equiv \forall \varphi: \quad \mathbf{T} \vdash \neg \varphi \iff \mathbf{T} \not\vdash \varphi.$$

(Syntactic) Complete + Consistent ↔ Maximally Consistent. So, by Axiom of Choice, every Theory can be COMPLETED. But not in an effective (algorithmic) way !

Saeed Salehi

http://SaeedSalehi.ir/

Axiomatizable Theory: A Consistent Theory whose Axioms can be Algorithmically Listed (be Recursively Enumerable). Then, the Theorems of the Theory will be R.E. too.

A(n Axiomatizable) Theory is called *Decidable* if the set of its Theorems is Decidable (Recursive).

A(n Axiomatizable) Theory T is *Completable* if there exists a(n axiomatizable) Complete Theory T' extending T, i.e., $T \subseteq T'$.

From a Logician's Point of View:

(SYNTACTIC) Complete \implies Decidable \implies Completable.

Saeed Salehi

http://SaeedSalehi.ir/

T is Complete \implies T is Decidable: Since $\{\theta \mid T \vdash \theta\}$ is R.E. then $\{\theta \mid T \not\vdash \theta\} = \{\theta \mid T \vdash \neg\theta\}$ is R.E. So, $\{\theta \mid T \vdash \theta\}$ is Decidable (Recursive).

T is Decidable \implies T is Completable:

The Henkin Construction for a Completion of T is effective, for T is Decidable. Thus that Completion is also Decidable; so T is Completable.

Saeed Salehi

http://SaeedSalehi.ir/

Does Decidability (of T) \implies Completeness (of T)?

NO: Monadic Predicate Logic (without Equality – Unary Relations Only [like P(x)]). Decidable but Incomplete ($\forall \forall x P(x) \& \forall \exists x \neg P(x)$).

$$\begin{array}{c} \text{Completeness} \Longrightarrow \text{Decidability.} \\ \notin = \end{array}$$

Saeed Salehi

http://SaeedSalehi.ir/

Does Completability (of T) \Longrightarrow Decidability (of T)?

NO: First-Order Logic with equality is UNDecidable, but Completable:

 $\mathsf{Logic} + \forall x \forall y (x = y).$

 $\begin{array}{c} \text{Decidability} \Longrightarrow \text{Completability.} \\ \not \Leftarrow \end{array}$

Saeed Salehi

http://SaeedSalehi.ir/

$$\begin{array}{c} \text{Incompletability} \Longrightarrow \text{Undecidability} \Longrightarrow \text{Incompleteness} \\ \not \longleftarrow \qquad \not \longleftarrow \qquad \not \longleftarrow \qquad \end{array}$$

Incompletable = Essentially Undecidable

A Simple Example of an Incompletable Theory ? With a Simple Proof of its Incompletability? Gödel's Incompleteness Theorem ...

Saeed Salehi

http://SaeedSalehi.ir/

A Complete Theory

Axioms A_L over the language $(0, \mathbf{S}, <)$:

- $\forall x \forall y (x < y \rightarrow y \not< x)$
- $\forall x \forall y \forall z (x < y \land y < z \rightarrow x < z)$
- $\forall x \forall y (x < y \lor x = y \lor y < x)$
- $\forall x (x \neq 0)$
- $\forall x \forall y (x < \mathbf{S}(y) \leftrightarrow x < y \lor x = y)$
- $\forall x (x \neq 0 \rightarrow \exists y [y = \mathbf{S}(x)])$

This Axiomatizes the Theory $\langle \mathbb{N}, 0, \mathbf{S}, \langle \rangle$.

Saeed Salehi

http://SaeedSalehi.ir/

A Ternary Predicate $\mathcal{T}(e, x, t)$ =

The (single-input) Algorithm (with code) e with input x takes time t to halt (and it indeed halt).

Let the Theory A_S be A_L +

$$\{\mathcal{T}(\overline{e},\overline{x},\overline{t}) \mid \mathbb{N} \models \mathcal{T}(e,x,t)\}$$

where \overline{n} is $\underbrace{\mathbf{S} \cdots \mathbf{S}}_{n \text{ times}}(0)$.

Theory A_S is UnDecidable but Completable.

Saeed Salehi

http://SaeedSalehi.ir/

A Completion:

 $A_S + \forall y \forall x \forall z \mathcal{T}(y, x, z).$

UnDecidability of A_S : Was A_S decidable then Halting Problem would be solvable: Take e and x, form $\varphi_{e,x} = \exists t \mathcal{T}(\overline{e}, \overline{x}, z)$. $A_S \vdash \varphi_{e,x} \iff \mathbb{N} \models \mathcal{T}(e, x, t)$ for some $t \in \mathbb{N} \iff$ Program e with Input x eventually halts.

Saeed Salehi

http://SaeedSalehi.ir/

UnDecidability of A_S Directly:

If $\{\theta \mid A_S \vdash \theta\}$ is Decidable, then so is

$$\mathfrak{D} = \{ n \mid A_S \not\vdash \exists z \mathcal{T}(\overline{n}, \overline{n}, z) \}.$$

Let the Algorithm (with code) e halt on x whenever $x \in \mathfrak{D}$ and does not halt (loop forever) whenever $x \notin \mathfrak{D}$. Then Algorithm (with code) e with input e:

• (Algorithm *e* Halts in time *t* on input *e*) \iff $\iff [\mathbb{N} \models \mathcal{T}(n, n, t)] \iff [\mathcal{T}(\overline{n}, \overline{n}, \overline{t}) \in A_S] \iff$ $\iff [A_S \vdash \exists z \mathcal{T}(\overline{e}, \overline{e}, z)] \iff [e \notin \mathfrak{D}] \iff$ (Algorithm *e* does NOT halt on input *e*)!

The Proof Works for Every Sound $T \supseteq A_S$ (s.t. $\mathbb{N} \models T$). So, A_S is NOT Soundly Completable.

Saeed Salehi

http://SaeedSalehi.ir/

So, we can complete A_S as $A_S + \forall y \forall x \forall z \mathcal{T}(y, x, z)$. But there is no complete $T \supseteq A_S$ such that $\mathbb{N} \models T$. Thus $\text{Th}(\mathbb{N}, 0, \mathbf{S}, <, \mathcal{T})$ is NOT R.E.

The Proof is the Classical Argument:

A Sound Theory (of \mathbb{N}) Can Not Be Complete: Because of the Existence of a Definable non-E.R. Set, or an R.E. Set Which is Not Decidable. For example, $K = \{n \in \mathbb{N} \mid n \in W_n\}$ is R.E. and UnDecidable. Thus $\overline{K} = \{n \mid n \notin W_n\}$ is not R.E. For a Sound Theory *T*, we have the R.E. Set $\{m \mid T \vdash ``m \notin W_m"\} \subset \overline{K}$. So, there must Exist some $n \in \overline{K}$ for which $T \nvDash ``n \notin W_n"$. Thus $(\mathbb{N} \models)``n \notin W_n"$ is a True Sentence which is Not *T*-Provable.

Saeed Salehi

http://SaeedSalehi.ir/

Let A_T be $A_S + \{\neg \mathcal{T}(\overline{e}, \overline{x}, \overline{t}) \mid \mathbb{N} \models \neg \mathcal{T}(e, x, t)\}$ in a Language that Contains a (Definable) Pairing Function π .

So, A_T is Axiomatized over $(0, \mathbf{S}, <, \mathcal{T}, \pi)$ by • $\forall x \forall y (x < y \rightarrow y \lessdot x)$ • $\forall x \forall y \forall z (x < y \land y < z \rightarrow x < z)$ • $\forall x \forall y (x < y \lor x = y \lor y < x)$ • $\forall x (x \neq 0)$ • $\forall x \forall y (x < \mathbf{S}(y) \leftrightarrow x < y \lor x = y)$ • $\forall x (x \neq 0 \rightarrow \exists y [y = \mathbf{S}(x)])$ • { $\mathcal{T}(\overline{e}, \overline{x}, \overline{t}) \mid \mathbb{N} \models \mathcal{T}(e, x, t)$ } • { $\neg \mathcal{T}(\overline{e}, \overline{x}, \overline{t}) \mid \mathbb{N} \models \neg \mathcal{T}(e, x, t)$ } • $\forall x \forall y \forall u \forall v \Big(\pi(x, y) = \pi(u, v) \iff x = u \land y = v \Big)$

Saeed Salehi

http://SaeedSalehi.ir/

Theory A_T is Consistent (and \mathbb{N} -Sound) but INCOMPLETABLE:

Let $\varphi_{\langle k,l \rangle} = \exists x [\mathcal{T}(\overline{k}, \pi(\overline{k}, \overline{l}), x) \land \forall y \leq x \neg \mathcal{T}(\overline{l}, \pi(\overline{k}, \overline{l}), y)].$ If $T \supseteq A_T$ is Complete (Not-Sound), then are Decidable: $\{\langle k,l \rangle \mid T \vdash \varphi_{\langle k,l \rangle}\}$ and $\{\langle k,l \rangle \mid T \vdash \neg \varphi_{\langle k,l \rangle}\}.$

Let Algorithm (with code) m on input $\langle k, l \rangle$ Halt Whenever $T \vdash \varphi_{\langle k, l \rangle}$ and Never Halt Whenever $T \nvDash \varphi_{\langle k, l \rangle}$. Let Algorithm (with code) n on input $\langle k, l \rangle$ Halt Whenever $T \vdash \neg \varphi_{\langle k, l \rangle}$ and Never Halt Whenever $T \nvDash \neg \varphi_{\langle k, l \rangle}$.

Saeed Salehi

http://SaeedSalehi.ir/

Algorithm (with code) m on input $\langle k, l \rangle$ Halts Whenever $T \vdash \varphi_{\langle k, l \rangle}$ and Never Halts Whenever $T \nvDash \varphi_{\langle k, l \rangle}$. Algorithm (with code) n on input $\langle k, l \rangle$ Halts Whenever $T \vdash \neg \varphi_{\langle k, l \rangle}$ and Never Halts Whenever $T \nvDash \neg \varphi_{\langle k, l \rangle}$.

$$\begin{array}{l} \text{Consider } \varphi_{\langle n,m\rangle} \text{: Was T Complete, then} \\ \text{ either } \mathbf{T} \vdash \varphi_{\langle n,m\rangle} \text{ or } \mathbf{T} \vdash \neg \varphi_{\langle n,m\rangle}. \end{array}$$

We Will Get A Contradiction For Each Case ...

Saeed Salehi

http://SaeedSalehi.ir/

- If $\mathbf{T} \vdash \varphi_{\langle n,m \rangle}$ Then $\mathbf{T} \nvDash \neg \varphi_{\langle n,m \rangle}$. Thus $\mathcal{T}(m, \pi(n,m), t)$ holds for some t and $\neg \mathcal{T}(n, \pi(n,m), s)$ holds for every s. Also $\mathbf{T} \vdash \exists x [\mathcal{T}(\overline{n}, \pi(\overline{n}, \overline{m}), x) \land \forall y \leqslant x \neg \mathcal{T}(\overline{m}, \pi(\overline{n}, \overline{m}), y)]$. Since $\mathbf{T} \vdash \mathcal{T}(\overline{m}, \pi(\overline{n}, \overline{m}), \overline{t})$, then $x_0 < \overline{t}$. Whence, $\bigvee_{\{i < \overline{t}\}} x_0 = \overline{i}$, but then $A_T \vdash \bigwedge_{\{i < t\}} \neg \mathcal{T}(\overline{n}, \pi(\overline{n}, \overline{m}), \overline{i})$, so $\mathbf{T} \vdash \neg \mathcal{T}(\overline{n}, \pi(\overline{n}, \overline{m}), x_0)$. Contradiction!
- If $T \vdash \neg \varphi_{\langle n,m \rangle}$ Then $T \not\vdash \varphi_{\langle n,m \rangle}$. Thus $\mathcal{T}(n, \pi(n,m), t)$ holds for some t and $\neg \mathcal{T}(m, \pi(n,m), s)$ holds for every s. Also $T \vdash \forall x [\mathcal{T}(\overline{n}, \pi(\overline{n}, \overline{m}), x) \rightarrow \exists y \leq x \mathcal{T}(\overline{m}, \pi(\overline{n}, \overline{m}), y)]$. Since $A_T \vdash \mathcal{T}(\overline{n}, \pi(\overline{n}, \overline{m}), \overline{t})$, then $T \vdash \mathcal{T}(\overline{m}, \pi(\overline{n}, \overline{m}), y_0)$ for some $y_0 \leq \overline{t}$. But then $\bigvee_{\{i \leq t\}} y_0 = \overline{i}$ and $A_T \subseteq T \vdash \bigwedge_{\{i \leq t\}} \neg \mathcal{T}(\overline{m}, \pi(\overline{n}, \overline{m}), \overline{i})$. Contradiction!

 \triangleright The Proof Resembles Rosser's Strengthening of Gödel's Theorem for All Consistent Theories, instead of Sound or ω -Consistent Theories.

\triangleright The Proof is Effective:

For any (Hypothetical Code for) Enumeration of T, one can effectively find a (Gödel-Rosser) T-independent Sentence.

- \triangleright Any Theory Capable of Interpreting A_T is INCOMPLETABLE
- = Essentially Undecidable.

Like Robinson's Arithmetic Q or PRA or ...

 \triangleright In the Proof Was Avoided:

Coding of Syntax (Coding of Algorithms Was Needed) Constructing Gödel Sentence (I Am Not Provable) Finding a Fixed Point Formula (Diagonalization)

Several Other Theorems Can Be Proved Similarly ...

PROBLEM: Find A Similar (Computational) Argument For Gödel's Second Incompleteness Theorem.

Thanks To The Participants and The Organizers of IPM Weekly Seminars in Mathematical Logic

Saeed Salehi

http://SaeedSalehi.ir/

