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£:  The Sentence £ is Untrue.

Or, £is True IF AND ONLY IF £ is Untrue. So, £ <—= ¢
Theorem ( )

If all the formulas can be coded by some terms in a language L

( ) and the diagonal lemma

holds for a consistent L-theory T’ (
T F 1 <> U(#)) then there can
be no TRUTH PREDICATE in L for T (
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Proof.
Take £ to be the diagonal sentence of =T(z). Then
T L+——T(#L) £ x Qa
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£:  The Sentence £ is Untrue.

Or, £ is True IF AND ONLY IF £ is Untrue. So, £ «<— ¢
Propositional Logict —(p+«— —p).
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£:  The Sentence £ is Untrue.

Or, £ is True IF AND ONLY IF £ is Untrue. So, £ «<— ¢
Propositional Logict —(p+«— —p).

Theorem (Tarski)

If all the formulas can be coded by some terms in a language L

(#: L-Formulas — L-Terms, p — #) and the diagonal lemma
holds for a consistent L-theory T' (for any V(x) € L-Formulas there
is some 1) € L-Sentences such that T - 1 < U(#))) then there can
be no TRUTH PREDICATE in L forT (an L-formula T(x) such that for
any p € L-Sentences, T F ¢ < T(#p)).
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£:  The Sentence £ is Untrue.

Or, £ is True IF AND ONLY IF £ is Untrue. So, £ «<— ¢
Propositional Logict —(p+«— —p).

Theorem (Tarski)

If all the formulas can be coded by some terms in a language L

(#: L-Formulas — L-Terms, p — #) and the diagonal lemma
holds for a consistent L-theory T' (for any V(x) € L-Formulas there
is some 1) € L-Sentences such that T - 1 < U(#))) then there can
be no TRUTH PREDICATE in L forT (an L-formula T(x) such that for
any p € L-Sentences, T F ¢ < T(#p)).

Proof.

Take £ to be the diagonal sentence of =T (x). Then
TF L+—-T(#L)+—L % Q
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Is This Set a Member of Itself or not?

Theorem (Invalidity of “unrestricted” Comprehension Principle)

For some formula o (x) there can be no set as

Proof

Let p(z) =* .

Proof.

2 I) - 31/[’ =Py Nz & 1/}”
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The Set of All Sets that are not Members of Themselves.
Is This Set a Member of Itself or not?

Theorem (Invalidity of “unrestricted” Comprehension Principle)

For some formula o(x) there can be no set as {x | p(z)}.
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The Set of All Sets that are not Members of Themselves.
Is This Set a Member of Itself or not?

Theorem (Invalidity of “unrestricted” Comprehension Principle)

For some formula o(x) there can be no set as {x | p(z)}.

Proof.
Let p(x) =“x & 2. Q
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Russell’s Paradox

The Set of All Sets that are not Members of Themselves.
Is This Set a Member of Itself or not?

Theorem (Invalidity of “unrestricted” Comprehension Principle)

For some formula o(x) there can be no set as {x | p(z)}.

Proof.
Let p(x) =“x & 2. Q

Proof.

o(z) =TFylz = P(y) Ao & y|”
ola) ="Tylz=yxy Az y|”
p(e) ="ylz={y} Azdy]” - Q

{h(y) | h(y) € v}
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Russell’s Paradox—Theoremized

Set Theoryt —Jywz(z €y +— x ¢ z).

Indeed, the proof does not make any essential use of €.
Any binary relation will do:
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Set Theoryt —Jywz(z €y +— x ¢ z).

Indeed, the proof does not make any essential use of €.
Any binary relation will do:

First-Order Logick —3yvz(R(z,y) +— ~R(z,z)).
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Russell’s Paradox—Theoremized

Set Theoryt —Jywz(z €y +— x ¢ z).

Indeed, the proof does not make any essential use of €.
Any binary relation will do:

First-Order Logick —3yvz(R(z,y) +— ~R(z,z)).

Russell’s Popularization of his paradox:

Barber’s Paradox
Shaves All and Only Those Who Cannot Shave Themselves.
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Russell’s Paradox—Theoremized

Set Theoryt —Jywz(z €y +— x ¢ z).

Indeed, the proof does not make any essential use of €.
Any binary relation will do:

First-Order Logick —3yvz(R(z,y) +— ~R(z,z)).

Russell’s Popularization of his paradox:

Barber’s Paradox
Shaves All and Only Those Who Cannot Shave Themselves.

Second-Order Logict -3Z@3ywva(Z, ) +— ~Zua)-



THEOREMIZING PARADOXES: Turning Puzzles into Proofs
SAEED SALEHI University of Tabriz & IPM http://SaeedSalehi.ir/
SWAMPLANDIA 2016 Talk I: Paradoxes and their Theorems 1June 2016

—Iyz (R(z, y) +— R(z,z))

Vydz = (R(z,y) «— —R(z,z))

Ny Vo ~(R(z,y) < ~R(z,2))

AW { (R(y,y) < Ry, y) )) Vv Vm&u “(R(z,y) « %R(;z'_z'))} =

Ay { Ryy) VA Formula}
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—JyVax (?R(x, y) «— R(x, x))

Vydz =(R(z,y) «— R(z,z)) =

Ny V2= (R(z,y) & Rz, z))

A, [ﬂ(%(y,y) & R, 9) V Vo ~(R(z,y) & ~R(z, x))} =

N, [The Liarg(yy) V A Formula}



THEOREMIZING PARADOXES: Turning Puzzles into Proofs
SAEED SALEHI University of Tabriz & IPM http://Sae
SWAMPLANDIA 2016 Talk I: Paradoxes and their Theorems

Russell’s Paradox and Self-Reference

B. RusskLL, On Some Difficulties in the Theory of Transfinite Numbers and Order
Types, Proceedings of the London Mathematical Society 4:1 (1907) 29-53.

Given a property ¢ and a function f, such that, if ¢
belongs to all the members of u [Vzcu:p(x)], flu [f(u)]
always exists, has the property ¢, and is not a member of u
[f(u)le{x|¢(x)}\u]; then the supposition that there is a
class w of all terms having the property ¢ [w = {z|¢(z)}]
and that f‘w exists [ f(w)]] leads to the conclusion that
f‘w both has and has not the property ¢

[B(F ())& (f (w))].

This generalization is important, because it covers all the
contradictions [paradoxes] that have hitherto emerged in
the subject.

edSalehi.ir/
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Russell and Self-Reference

uC{z|g(x)} = flullefz|o(x)}\u
w=A{z|¢(zx) & f(w)l= o(f(w))&—o(f(w))

Definition (Productive)

A set A is productive, if there exists a (partial) computable function
f: N = N such that for every n, if W, (the n-th RE set) is a subset
of A, then f(n)le A\ W,,. WnCA = f(n)le AW,

Creative: a SseMI-DECIDABLE set whose complement is productive.

E. L. PosT, Recursively Enumerable Sets of Positive Integers and their Decision

Problems, Bulletin of the American Mathematical Society 50:5 (1944) 284-316.

“... every symbolic logic is incomplete ... . The conclusion is
unescapable that even for such a fixed, well defined body of
mathematical propositions,

mathematical thinking is, and must remain, essentially creative”
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Origin(s) of RusseLL’s (and others’) Paradox(es)

J.A. CorFa, The Humble Origins of Russell’s Paradox, Russell 33-34 (1979) 31-37.
On several occasions Russell pointed out that the discovery of
his celebrated paradox concerning the class of all classes not
belonging to themselves was intimately related to Cantor’s
proof that there is no greatest cardinal.
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Origin(s) of RusseLL’s (and others’) Paradox(es)

J.A. CoFFa, The Humble Origins of Russell’s Paradox, Russell 33—-34 (1979) 31-37.
On several occasions Russell pointed out that the discovery of
his celebrated paradox concerning the class of all classes not

belonging to themselves was intimately related to Cantor’s
proof that there is no greatest cardinal.

J. FRANKs, Cantor’s Other Proofs that R is Uncountable, Math. Magazine 83:4 (2010) 283-289.
CaNTOR’s 3rd Proof for the Uncountability of R
Could Also Show that A ¢ Z(A) (or Z(A) £ A).
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J.A. CoFFa, The Humble Origins of Russell’s Paradox, Russell 33—-34 (1979) 31-37.
On several occasions Russell pointed out that the discovery of
his celebrated paradox concerning the class of all classes not
belonging to themselves was intimately related to Cantor’s
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J. FRANKs, Cantor’s Other Proofs that R is Uncountable, Math. Magazine 83:4 (2010) 283-289.
CaNTOR’s 3rd Proof for the Uncountability of R
Could Also Show that A ¢ Z(A) (or Z(A) £ A).

CANTOR’S DIAGONAL ARGUMENT
Foran FF: A — Z(A)put Dpr ={a € A|a & F(a)}. Then
x € Dp «—x ¢ F(x)
and so Dp # F(«a) for any a € A:
if Dp = F(a)then o€ Dp+—ad Fla)+—a¢ D! Q
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Diagonal Argument and Self-Reference

K. Simmons, The Diagonal Argument and the Liar, J. Philosophical Logic 19:3 (1990) 277-303.

There are arguments found in various areas of mathematical
logic that taken to form a family: the family of diagonal
arguments. Much of recursion theory may be described as a
theory of diagonalization; diagonal arguments establish basic
results of set theory; and they play a central role in the proofs of
limitative theorems of Godel and Tarski. Diagonal arguments
also give rise to set-theoretical and semantical paradoxes.
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Diagonal Argument and Self-Reference

K. Simmons, The Diagonal Argument and the Liar, J. Philosophical Logic 19:3 (1990) 277-303.

There are arguments found in various areas of mathematical
logic that taken to form a family: the family of diagonal
arguments. Much of recursion theory may be described as a
theory of diagonalization; diagonal arguments establish basic
results of set theory; and they play a central role in the proofs of
limitative theorems of Godel and Tarski. Diagonal arguments
also give rise to set-theoretical and semantical paradoxes.

W. HopcEs, An Editor Recalls Some Hopeless Papers, BSL 4:1 (1998) 1-16.
I dedicate this essay to the two-dozen-odd people whose
refutations of Cantor’s diagonal argument ... have come to me
either as a referee or an editor in the last twenty years or so. ...
A few years ago it occurred to me to wonder why so many
people devote so much energy to refuting this harmless little
argument—what had it done to make them so angry with it?

10

1June 2016
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In Applied Mathematics:
Y. TANAKA, Undecidability Of Uzawa Equivalence Theorem And Cantor’s Diagonal
Argument, Applied Mathematics E-Notes 9 (2009) 1-9.
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In Applied Mathematics:

Y. TANAKA, Undecidability Of Uzawa Equivalence Theorem And Cantor’s Diagonal

Argument, Applied Mathematics E-Notes 9 (2009) 1-9.
In Economics:

R.P. MurPHY, Cantor’s Diagonal Argument: An Extension to the Socialist
Calculation Debate, The Quarterly J. of Australian Economics 9:2 (2006) 3—11.
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In Physics:
> D.H. WoLpeRT, Physical Limits of Inference, Physica D 237 (2008) 1257-1281.
B> P.-M. BINDER, Theories of Almost Everything, Nature 455 (2008) 884-885.
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Using Cantor’s Diagonalization, Laplace’s Demon Is Disproved...
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In Mathematical Logic:
S. VALENTINI, Cantor Theorem and Friends, in Logical Form, Annals of Pure and
Applied Logic 164 (2013) 502-508.
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Ongoingness of The Diagonal Argument

In Mathematical Logic:
S. VALENTINI, Cantor Theorem and Friends, in Logical Form, Annals of Pure and

Applied Logic 164 (2013) 502-508.
In Computer Science:

R. WiLLIAMs, Diagonalization Strikes Back: Some Recent Lower Bounds in
Complexity Theory, Proc. COCOON 2011, LNCS 6842 (2011) 237-239.
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Ongoingness of The Diagonal Argument

In Mathematical Logic:
S. VALENTINI, Cantor Theorem and Friends, in Logical Form, Annals of Pure and
Applied Logic 164 (2013) 502-508.

In Computer Science:
R. WiLLiAms, Diagonalization Strikes Back: Some Recent Lower Bounds in
Complexity Theory, Proc. COCOON 2011, LNCS 6842 (2011) 237-239.

“Abstract. ... In spite of its apparent weakness, the ancient method of
diagonalization has played a key role in recent lower bounds. This short article ...
describes a little about how diagonalization had made a recent comeback in

complexity theory ...”
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Diagonal Argument Again (1)

QUINE’s Proof (inconsistency of comprehension principle)

Qn={z| 321, - ,z[x€zmEzn1€---€E21€1]}

W. V. QUINE, Mathematical Logic, Harvard University Press (2nd ed. 1981).
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— Qn & Qn.
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For n = 0: RusseLL’s Proof (and Paradox).
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Z. Sixi¢, Cantor’s Theorem and Paradoxical Classes, Zeitschrift fiir mathematische
Logik und Grundlagen der Mathematik 32:13-16 (1986) 221-226.
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n times

fap" =gt-A {4
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Proof.
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n— t[mes

3z, 7%1[{{@11}}” €E2n€2p-1€---€21 € {{Qn}}n]
— Elzlu o 7271[{@71}” € zp N\ A?:l zj = {QNB’”_J]
> Elzn[{[Qn}}n €EznNzp = Qn] — {[Qn}}n S Qn Q
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The Paradox of Well-Founded Sets
Sets Whose Every Membership Chain Finitely Terminates

Qoo = {2

—52‘1,22,"'["'6226216.’1:]}
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The Paradox of Well-Founded Sets
Sets Whose Every Membership Chain Finitely Terminates

Qoo ={x | ~F21,29, - [ - Ezo €21 €2]}
° Qoeroo—>"'€Qoo€Qoeroo€Qoo

— 321,,22,-'-['-‘6226,21€Q00]

— Qoo & Qo

* Qoo & Qoo —> J21, 22, [ EEZ €EQu)
— 32’1(32’2,23-“['”EZgEZQEZﬂ /\Zlero)

— dz (z1 Z Qo N21 € Qoo) — contradiction !
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Qoo = {x | 7321, 29, - [ - Ezo€2z1€2]}
S. YUTING, Paradox of the Class of All Grounded Classes, JSL 18:2 (1953) 114.

N. RAJA, A Negation-Free Proof of Cantor’s Theorem, NDJFL 46:2 (2005) 231-233.
N. RaJA, Yet Another Proof of Cantor’s Theorem, DLC, Colegao CLE 54 (2009) 209-217.
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Paradoxes and Self-Reference / Circularity

A General Belief:
all the paradoxes involve self-reference / circularity
(in a way or another).
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For all n, Y}, is True if and only if All Y;’s for £ > n are Untrue.

Yi: Y5,Y3, Yy --- areall untrue.
Yo: Y3,Y4 Y5, - areall untrue.
Ys: Yy Y5, Y, are all untrue.
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A General Belief:
all the paradoxes involve self-reference / circularity
(in a way or another).

YaBLO’s Paradox Y1,Y5,Y3,---

For all n, Y}, is True if and only if All Y;’s for £ > n are Untrue.

Yi: Y5,Y3, Yy --- areall untrue.
Yo: Y3,Y4 Y5, - areall untrue.
Ys: Yy Y5, Y, are all untrue.

« If some Y,, is true, then Y, 11, Y42, Yints, - - - are all untrue.
Whence Y;,,+1 is untrue but also true (by Ai2m+2 Y)).
« If all Y}’s are untrue, then Yp, Y7, Y5, - - - are true!
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+ S. YaBLO, Paradox without Self-Reference, Analysis (1993).
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SAEEDSALEHI.1r
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*A Joint Work with AHMAD KARIMI. ‘
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(always):

+ If some Y,, is true, then Y, 11, Y42, Yints, - - - are all untrue.
Whence Y;,,+1 is untrue but also true (by Ai}m—i—? Y).

« If all Y},’s are untrue, then Yy, Y7, Yo, - - - are true!
(almost always):

%g
+ If some Y, is true, then for some k>m, all Yy, Y11, Yiyo,- -+
are untrue. Whence Y} 1 is simultaneously true and untrue! %
i
E
f

« If all Y},’s are untrue, then Yy, Y7, Yo, - - - are true!
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YAaBLO’s Paradoxes

YaBLO’s Paradoxes

(always)

Vi, Y2, Vs, -
Vn <= Vi>n(); is untrue)
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YAaBLO’s Paradoxes

YaBLO’s Paradoxes Vi,V2, V3, -
(always) Vn <= Vi>n(); is untrue)
(sometimes) Yn <= FJi>n(); is untrue)

(almost always) ), <= 3Ji>nVj>i(Y; is untrue)
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YABLO’s Paradoxes Vi, V2, V3,

(always) Vn <= Vi>n(); is untrue)
(sometimes) Yn <= FJi>n(); is untrue)
(almost always) ), <= 3Ji>nVj>i(Y; is untrue)
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(always):
+ If some Y,, is true, then Y, 11, Y42, Yints, - - - are all untrue.
Whence Y;,,+1 is untrue but also true (by Ai>m+2 Y).
« If all Y},’s are untrue, then Yy, Y7, Yo, - - - are true!
(almost always):
+ If some Y,, is true, then for some k>m, all Yy, Yii1, Yiyo, -
are untrue. Whence Y} 1 is simultaneously true and untrue!
« If all Y}’s are untrue, then Y, Y7, Y5, - - - are true!
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Theoremizing YABLO’s Paradox (1)

J. KETLAND, Yablo’s Paradox and w-Inconsistency, Synthese 145:3 (2005) 295-302.
{VaIy(x<y),Va,y,z(z<y<z — x < 2)}
F Vo (p(z) < Vylz <y — —¢(y)]).
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J. KETLAND, Yablo’s Paradox and w-Inconsistency, Synthese 145:3 (2005) 295-302.
{VaIy(x<y),Va,y,z(z<y<z — x < 2)}

-V (p(x) < Vylz <y — o))
More generally,

Theorem (First-Order Logic)

VoIy (zRy A Vz[yRz — aRz]) F -V (p(z) < Vy[zRy — —o(y)])
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J. KETLAND, Yablo’s Paradox and w-Inconsistency, Synthese 145:3 (2005) 295-302.
{VaIy(x<y),Va,y,z(z<y<z — x < 2)}

- Va(p(z) < Vylz <y — —o(y)]).
More generally,

Theorem (First-Order Logic)

VoIy (zRy A Vz[yRz — aRz]) F -V (p(z) < Vy[zRy — —o(y)])

Proof.
IfV:z:(cp(x) > Vy[zRy — _'90(?/)])
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Theoremizing YABLO’s Paradox (1)

J. KETLAND, Yablo’s Paradox and w-Inconsistency, Synthese 145:3 (2005) 295-302.
{VaIy(x<y),Va,y,z(z<y<z — x < 2)}

-V (p(z) < Yylz<y — —p(y)]).
More generally,

Theorem (First-Order Logic)

VoIy (zRy A Vz[yRz — aRz]) F -V (p(z) < Vy[zRy — —o(y)])

Proof.

If Va (¢(z) > VylzRy — —¢(y)]) then for any aRb with
Vz(bRz — aRz), we have
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Theoremizing YABLO’s Paradox (1)

J. KETLAND, Yablo’s Paradox and w-Inconsistency, Synthese 145:3 (2005) 295-302.
{VaIy(x<y),Va,y,z(z<y<z — x < 2)}

=V (p(z) < Vylz <y — —¢(y)]).
More generally,

Theorem (First-Order Logic)
VoIy (zRy A Vz[yRz — aRz]) F -V (p(z) < Vy[zRy — —o(y)])

Proof.
If Va (¢(z) > VylzRy — —¢(y)]) then for any aRb with

Vz(bRz — aRz), we have ¢ (a) = —p(b)&—p(c) for any ¢ with
bRe (and so aRe)
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Theoremizing YABLO’s Paradox (1)

J. KETLAND, Yablo’s Paradox and w-Inconsistency, Synthese 145:3 (2005) 295-302.
{Vady(z<y),Vr,y,z(x<y<z = x < 2)}

F =V (p(z) < Vylz <y — —¢(y)]).

More generally,

Theorem (First-Order Logic)
VoIy (zRy A Vz[yRz — aRz]) F -V (p(z) < Vy[zRy — —o(y)])

Proof.

If Va (¢(z) > VylzRy — —¢(y)]) then for any aRb with
Vz(bRz — aRz), we have ¢ (a) = —p(b)&—p(c) for any ¢ with
bRc (and so aRc) a contradiction with the arbitrariness of c.
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If Va (¢(z) > VylzRy — —¢(y)]) then for any aRb with
Vz(bRz — aRz), we have ¢ (a) = —p(b)&—p(c) for any ¢ with
bRc (and so aRe) a contradiction with the arbitrariness of ¢. So,
—p(a) for every a,
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Theoremizing YABLO’s Paradox (1)

J. KETLAND, Yablo’s Paradox and w-Inconsistency, Synthese 145:3 (2005) 295-302.
{Vady(z<y),Vr,y,z(x<y<z = x < 2)}

=V (p(2) ¢ Vylz <y = —~p(y)]).
More generally,

Theorem (First-Order Logic)
VoIy (zRy A Vz[yRz — aRz]) F -V (p(z) < Vy[zRy — —o(y)])

Proof.

If Va (¢(z) > VylzRy — —¢(y)]) then for any aRb with

Vz(bRz — aRz), we have ¢ (a) = —p(b)&—p(c) for any ¢ with
bRc (and so aRe) a contradiction with the arbitrariness of ¢. So,
—p(a) for every a, hence ¢(a) for any a, contradiction! Q
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Theoremizing YABLO ’s Paradox (2)

Theorem (Second-Order Logic)
Vrdy (x%y/\v,z[y%z —>x§Rz]) F —EIZ(I)VJC(ZQC - VylxRy — ﬂZy])
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Theoremizing YABLO ’s Paradox (2)

Theorem (Second-Order Logic)

Vrdy (x%y/\Vz[y?Rz — x%z]) F=3Z2MWvg (Zx - VylxRy — ﬁZy])

Definition (YABLO System)

Let us call a directed graph (4; R) (with R C A?) a Yablo system
when -3Z(Nvz (Zz & VylzRy ——Z,]).
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Theoremizing YABLO ’s Paradox (2)

Theorem (Second-Order Logic)

Vrdy (x%y/\Vz[y?Rz — a:%z]) F=3Z2MWvg (Zx - VylxRy — ﬁZy])

Definition (YABLO System)

Let us call a directed graph (A; R) (with R C A?) a Yablo system
when -3Z(Nvz (Zz & VylzRy ——Z,]).

example Any odd-cycle, such as ({a}; {aRa}). The Liar’s Paradox
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Theoremizing YABLO ’s Paradox (2)

Theorem (Second-Order Logic)

Vrdy (x%y/\Vz[y?Rz — a:%z]) F=3Z2MWvg (Zx - VylxRy — ﬁZy])

Definition (YABLO System)

Let us call a directed graph (A; R) (with R C A?) a Yablo system
when -3Z(Nvz (Zz & VylzRy ——Z,]).

example Any odd-cycle, such as ({a}; {aRa}). The Liar’s Paradox
£xamplé Any even-cycle, such as ({a, b}; {aRbRa}) (with Z={a}).
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YAaBLO’s Paradox — 1st or 2nd Order? (1)

The first-order condition Vz3y (.T%y/\VZ[y%Z*){E%Z]) (and many
more weaker conditions) imply the Yablo-ness of the graph.
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The first-order condition Vz3y (x%yAVz[y%z%x%z]) (and many
more weaker conditions) imply the Yablo-ness of the graph.

Theorem (Nonfirstorderizability of YABLONness)

The YaBLOness =321z (Zy > —3y[zRyAZ,)) is not equivalent to
any first-order formula (in the language (R)).
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YAaBLO’s Paradox — 1st or 2nd Order? (1)

The first-order condition Vz3y (:B?Ry/\Vz[y%zH:E%z]) (and many
more weaker conditions) imply the Yablo-ness of the graph.

Theorem (Nonfirstorderizability of YABLONness)

The YaBLOness =321z (Zy > —3y[zRyAZ,)) is not equivalent to
any first-order formula (in the language (R)).

https://en.wikipedia.org/wiki/Nonfirstorderizability

G. BooLos, To Be is To Be a Value of a Variable (or to be some values of some

variables), The Journal of Philosophy 81:8 (1984) 430—449.

Geach-Kaplan sentence: some critics admire only one another
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YAaBLO’s Paradox — 1st or 2nd Order? (2)

YagLoness: —3ZWVa(Z, <> =Jy[zRynZ,])
there is no group which contains all and only those
whose no related one is (already) in the group
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YAaBLO’s Paradox — 1st or 2nd Order? (2)

YaBLoness: —3ZMvz (Zy > —Fy[aRyNZ,))
there is no group which contains all and only those
whose no related one is (already) in the group

Theorem ((Very) Nonfirstorderizability of Non-YABLOness)

The Non-YasLoness 32V (Z, <+ —Jy[zRyAZ,)) is not equivalent
to any first-order (})-theory.
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YAaBLO’s Paradox — 1st or 2nd Order? (2)

YagLoness: —3ZWVa(Z, <> =Jy[zRynZ,])
there is no group which contains all and only those
whose no related one is (already) in the group

Theorem ((Very) Nonfirstorderizability of Non-YABLOness)

The Non-YasLoness 32V (Z, <+ —Jy[zRyAZ,)) is not equivalent
to any first-order (})-theory.

Conjecture (Any Help is Appreciated!)

The YABLOness —EZ(l)Va:(Zx < —Jy[zRyAZ,)) is not equivalent to
any first-order (R)-theory, either.
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Yablo’s Paradox — 1st or 2nd Order? or non?

Is THAT IT?

L. M. PicoLLo, Yablo’s Paradox in Second-Order Languages: Consistency and
Unsatisfiability, Studia Logica 101:3 (2013) 601-617.

If we embrace the second-order notion of logical consequence
we must subscribe to the idea that the second-order calculus
is not powerful enough for representing Yablo’s argument,
and neither is the first-order calculus.
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Yablo’s Paradox — 1st or 2nd Order? or non?

Is THAT IT?

L. M. PicoLLo, Yablo’s Paradox in Second-Order Languages: Consistency and
Unsatisfiability, Studia Logica 101:3 (2013) 601-617.

If we embrace the second-order notion of logical consequence
we must subscribe to the idea that the second-order calculus
is not powerful enough for representing Yablo’s argument,
and neither is the first-order calculus.

Is there a better (or just another) logic that represents
Yablo’s Paradox (and his argument)?
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Linear Temporal Logic (syntax)

(Propositional) Linear Temporal Logic (LTL):
O Next O Always (from now on)

Formulas: p (atomic) | =@ | p1 A2 | @1V | o1 —p2 | Op | Op

—O : not in the next step ¢
O~ : in the next step not ¢
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Linear Temporal Logic (syntax)

(Propositional) Linear Temporal Logic (LTL):
O Next O Always (from now on)

Formulas: p (atomic) | =@ | p1 A2 | @1V | o1 —p2 | Op | Op

—O : not in the next step ¢
O~ : in the next step not ¢

OO : in the next time always (from then on) ¢
OO : always (from now on) in the next step ¢
from the next step onward ¢
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“everyone in an infinite linear row claims that
all the forthcoming ones are lying”

“Iwill always deny all my future (from the next step onward) sayings”
“I will always deny whatever | will have said afterwards”

“All I will say from the next step on are lies!”

ST i SRR MO AR AT SO
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LTL and YaBLO’s Paradox

YaBLO’s Paradox:

“everyone in an infinite linear row claims that
all the forthcoming ones are lying”
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p — OO (=00—p) (=0-0¢p)
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LTL and YAaBLO’s Paradox

YaBLO’s Paradox:

“everyone in an infinite linear row claims that
all the forthcoming ones are lying”

p — OO (=00—p) (=0-0¢p)

“I will always deny all my future (from the next step onward) sayings”

“I will always deny whatever | will have said afterwards”
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YaBLO’s Paradox:

“everyone in an infinite linear row claims that
all the forthcoming ones are lying”

p — OO (=00—p) (=0-0¢p)

“I will always deny all my future (from the next step onward) sayings”
“I will always deny whatever | will have said afterwards”

“All I will say from the next step on are lies!”
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Linear Temporal Logic (semantics)

(Propositional) Linear Temporal Logic (LTL):
O: Next O: Always {: Sometime
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Linear Temporal Logic (semantics)

(Propositional) Linear Temporal Logic (LTL):
O: Next O: Always {: Sometime

The Intended Model: (N, I-) where IF C N x Atoms can be extended
to all formulas by:

e nlFoAYiff nlkpandn ik

e nlF—piffnlf ¢
cnlFOpiff(n+1)IF¢

« nlF Opiff m |- @ for every m > n
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Linear Temporal Logic (semantics)

(Propositional) Linear Temporal Logic (LTL):
O: Next O: Always {: Sometime

The Intended Model: (N, I-) where IF C N x Atoms can be extended
to all formulas by:

e nlFoAYiff nlkpandn ik

e nlF—piffnlf ¢

cnlFOpiff(n+1)IF¢

« nlF Opiff m |- @ for every m > n

An Example of a Law of LTL: O0O0p = O0p
n b 00y iff Vo > nlz Ik Og] iff Vo > nf(z + 1) IF ¢
iff Vo > n+ 1z IF o] iff (n + 1) IF Op iff n |- OO
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Linear Temporal Logic (semantics)

(Propositional) Linear Temporal Logic (LTL):
O: Next O: Always {>: Sometime

The Intended Model: (N, I) where IF C Nx Atoms can be extended
to all formulas by:

enlEpAYiffnl- pandnl-

e nlF—piffnlf ¢
snlFOpiff(n+1)IF¢

« nlF Opiff m 1= @ for every m > n

Another Law of LTL: O—p = Op
nlk O—piff (n+ 1) Ik =@ iff (n + 1) If @ iff n If Op iff n IF ~O¢p
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YABLO’s Paradox as an LTL-Theorem

13/20



THEOREMIZING PARADOXES: Turning Puzzles into Proofs
SAEED SALEHI

University of Tabriz & IPM
SWAMPLANDIA 2016

Talk Il: Theoremizing Yablo’s Paradoxes

YABLO’s Paradox as an LTL-Theorem

http://SaeedSalehi.ir/
1June 2016

A. KARIMI & S. SALEHI, Diagonal Arguments and Fixed Points,
Bulletin of the Iranian Mathematical Society, to appear.

Theorem (YaBLO’s Paradox

=> Genuine Theorem)
(Propositional) Linear Temporal Logic = =0 (Lp — @D—'Lp).
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A. KARIMI & S. SALEHI, Diagonal Arguments and Fixed Points,
Bulletin of the Iranian Mathematical Society, to appear.

Theorem (YaBLO’s Paradox

=> Genuine Theorem)
(Propositional) Linear Temporal Logic = =0 (tp — @D—mp).

Proof.

Ifn - D(tp @D—\go) for some model, then
Vi>n:ilkg <= ilFOO0~¢ <= i+ 1IF 0.
(i) If for some j > n we have j Ik ¢, then j + 1 IF O—¢ and so
Jj+ LI pforall £ > 1. In particular, j + 1 Iff ¢ whence
j + 2 I 0= which is in contradiction with j + 1 I O—.
(ii) If for all 5 > n we have j I ¢, then n Iff ¢ son + 11 O—; hence
there must exist some ¢ > n with ¢ I ¢ which contradicts (i) ! a
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YABLO’s Paradoxes as LTL-Theorems

A. KARIMI & S. SALEHI, Theoremizing Yablo’s Paradox,
arXiv:1406.0134 [math.LO], http://arxiv.org/abs/1406.0134

YABLO’s Paradoxes Vi, V2, V3,

(always) Vn <= Vi>n(); is untrue)
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YABLO’s Paradoxes as LTL-Theorems

A. KARIMI & S. SALEHI, Theoremizing Yablo’s Paradox,
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Proposition

The operators x — —0Ox and x© — O—x do not have any fixed—points
inLTL; i.e, LTL |= -0O(p <> =O¢p) and LTL = =0O(p < O-¢p).
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The operators x — —0Ox and x© — O—x do not have any fixed—points
inLTL; i.e, LTL |= -0O(p <> =O¢p) and LTL = =0O(p < O-¢p).
Proof.

If n Ik O(e <> O-¢p), then for any i >n we have i IF ¢ < i |- O-p.
Now, by = O—¢ — = we have i |- ¢ = i IF =, so i IF = for all
i >mn. Thus, in particular n |- =, and also n IF O—p, ! a
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Proposition

The operators x — —0Ox and x© — O—x do not have any fixed—points
inLTL; i.e, LTL |= -0O(p <> =O¢p) and LTL = =0O(p < O-¢p).

Proof.

If n Ik O(e <> O-¢p), then for any i >n we have i IF ¢ < i |- O-p.
Now, by = O—¢ — —¢ we have i IF ¢ = i |- =, so i I = for all
i >mn. Thus, in particular n |- =, and also n IF O—p, ! a

Remark

Some other operators like x — Ox or x — —Qx do have fixed—points;
(t,t,t,t,t,t,---) forthe formerand (f, t,§,t,f,t,---) for the latter. %>
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See Bou Later

THAT WAS FOR NOW ...

e TalkI:
Paradoxes and their Theorems

o Talk IT:
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Thank Bon!

The Participants ................ For Listening - - -

The Organizers — For Taking Care of Everything - - -
SAEEDSALEHI.1r

20/20



	Saeed Salehi   University of Tabriz  & IPM http://SaeedSalehi.ir/
	SWAMPLANDIA 2016   Talk I: Paradoxes and their Theorems1 June 2016

	Saeed Salehi   University of Tabriz  & IPM http://SaeedSalehi.ir/
	SWAMPLANDIA 2016   Talk II: Theoremizing Yablo's Paradoxes 1 June 2016


