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ABSTRACT. By introducing an appropriate definition of Herbrand Consistency in
weak arithmetics, we show Gdédel’s Second Incompleteness Theorem for Herbrand
consistency of theories containing IAg.

1 Introduction

Consider a formula ¢ in the prenex normal form

vmlayl e meaymo(mlu Y1, Tm, ym)

with the Skolem functions ff T ffn, its Skolemized form by definition is
V1 Vem(zy, fA(z1), - Tm, fﬂl(ml, ey Tm))-
For a sequence of terms o = (t1,- - ,t;,), the Skolem instance Sk(0,0) is

g(tlu flo(tl)a T 7t7H7ffn(t17 s 7tm))

Herbrands’s Theorem states that a theory T is consistent if and only if
every finite set of its Skolem instances is propositionally satisfiable (see (5).)
Let A be a set of Skolem terms of T (i.e. constructed from the Skolem func-
tion symbols of T') awvailable Skolem instances of 0 in A are Sk(6, o) for all se-
quence of terms o = (t1, -+ ,tp) C A such that {f0(t1), -, f2(t1, .., tm)}
is a subset of A too.

Any function, p, whose domain is a set of atomic formulae and its range
is {0,1} is called an evaluation, if it preserves the equality (for all a,b and
atomic formulae ¢, pla = b] = 1 implies p[p(a)] = p[e(b)]) and satisfies the
equality axioms (p[a = a] =1 for all a.) For a set of terms A, an evaluation
on A is an evaluation whose domain is the set of all atomic formulae with
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constants from A (i.e. the variables are substituted by the terms from A.)
An evaluation p satisfies an atomic formula ¢ if p[¢] = 1. This definition
can be extended to all open (quantifier-less) formulae in a unique way.
Evaluation p on A is an T-evaluation for a theory T, if it satisfies all the
available Skolem instances of T in A.

When A is the set of all Skolem terms of T', any T-evaluation on A determines
a Herbrand model of T' (see (5).)

Toward formalizing the definition of Herbrand Consistency, we read the
above Herbrand’s Theorem as:

A theory T is consistent if and only if for every finite set of Skolem terms
of T, say A, there is an T-evaluation on A.

So Herbrand Consistency of a theory T can be defined as:

“for every set of Skolem terms of T, there is an T-evaluation on it.”

Herbrand’s Theorem is provable in IAg + SupExp, and it is known
that Herbrand consistency is not equivalent to the standard, say Hilbert’s,
consistency in IAg + Ezp (see (3), (7).) Unprovability or provability of
Herbrand’s Consistency for weak arithmetics (i.e. proper fragments of TAg+
Ezxp) had been an open problem (see (6),(7).) Herbrand Consistency of
IAy + Ezp is unprovable in itself ((3),(7).)

Adamowicz ((1)) has shown the unprovability of Herbrand Consistency
of Ay + Qs in itself (also in another unpublished paper for IAg + Q4.)

In this paper we modify the definition of Herbrand Consistency such that
its negation gives a real Herbrand proof of contradiction even when Exp is
not available, and show unprovability of formalized Herbrand Consistency
of IAy (by the new definition) in itself. So it turns out that 1Ay does not
prove its own Herbrand Consistency, since the new Herbrand Consistency
predicate is implied by the old one.

2 Formalization of Herbrand Consistency in A

We take the language of arithmetic £ = {0, 5,4+, ., <} in which the opera-
tions “S” (successor) “+” (addition) and “.” (multiplication) are regarded
as predicates. For example “z+y = 2” is a 3-array predicate, and the tradi-
tional statements should be re-read in this language by using the predicates
S,+,. ; as an example Vz,y,2(z + (y + 2) = (r + y) + 2) can be read as
Vo, y, z,u,v,w(y+z=0v"ANc+v=w" Ac+y=u" = “u+z=w").

So we may need some extra universal quantifiers (and variables) to rep-
resent the arithmetical formulae in this language, but for simplicity, and
when there is no confusion, we will use the old notation.

All atomic formulae in our language are of the form 1 = x9, zo = S(z1),
1+ 9 = 3, 1.29 = x3 and z7 < z9, where z1, z9, x3 are variables or the
constant 0.
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Denote the cardinal of a set A by |Al; by terms we mean terms constructed
from the Skolem function symbols of a theory 7' under consideration.

For a set of terms A, there are 2|Al3 +3|A|? different atomic formulae with
constants from A. So there are 22A°+3IA1” different evaluations on A. This
shows that the above definition has a deficiency in weak arithmetics, from
the viewpoint of incompleteness: unprovability of the consistency of T' in T
is equivalent to having a model of T' which contains a proof of contradiction
from T'. By the above definition, a Herbrand proof of contradiction consists
of a set of terms, say A, such that there is no T-evaluation on it. If Exzp
is not available in T', it may happen that all the (few) available evaluations
in the model are T-evaluations. This doesn’t give a real Herbrand proof in
the model! because not all the evaluations are accessible in the model (their
number 221A°+3IA" might be too large to exist.) It would be more reasonable
if we could find a model with a sufficiently small set of terms in it, such that
none of the evaluations on this set (which can be counted in the model) is
an T-evaluation. An upper bound for the codes of the evaluations on a set
of terms is given below.

We use the Hajek-Pudlak’s coding of sets-sequences and terms ((3)) the
main properties of this coding are:

* code({z1, -+ ,z1)),code({z1, - ,z}) < (9(1 + maz{zy, - ,2})?)"

(i.e. the set {z1,---,x;} or the sequence {(x1,---,z;) can have a code
which is less than or equal to [9(1 + maz{z1,--- ,2;})%]")

* code(A U B), code(A * B) < 64.code(A).code(B)

Code the ordered pair {a,b) by (a + b)* + b+ 1.

Fix the function symbols f;”’ which is supposed to be the i-th, k-array
Skolem function for the j-th axiom of a theory T ( so if the j-th axiom is
32VyIuIvA(z, y, u,v) then its Skolemized is VyA(f,™,y, f17 (1), £ (v))-)

Code f}7 by (1, (i, {j,k))), the symbol “)” by (2,0), “(" by (2,1) and
the constant 0 by (2, 2).

And fix the function symbols fl’ which is supposed to be the i-th, l-array
function, these symbols are reserved to be Skolem function of a formula 0
in the definition of HConr(#), and code it by (0, (i,1)). ‘

Terms are well-bracketing sequence constructed from {(,)} U {f?};x U
{fite (see (3).)

Example Let ¢ > 1, and define ¢g = 0, cxpq1 = fll’l(ck) for k£ < 1.
There is a natural number A such that code({co,- - ,¢;}) < A%

Since we have code(cg41) < 644code(f11’1)code(“(”)code(ck)code(“)”) <
64%(1, (1, (1, 1)))(2,0)(2, 1)(2, 1)code(cy),

let m = 644(1, (1, (1,1)))(2,0)(2,1)(2, 1)code(c}), so we have code(c) <
mF.code(cp).

Hence code({cg,---¢;}) < (9(1 + code(c;))?)! < 94(22(m’code(cp))?)? <

2

361(2,2)%m2” < (36(2,2)m?2)", we can take A = 36(2, 2)m?.

Let A be a set of terms with code y, we compute an upper bound for
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evaluations on A: each evaluation is of the form

{yr = yo,plyr = w2l) | y1,92 € AU {{y1 < y2,0[y1 < 2)) | w192 €
AY U {{y2 = S(y1),ply2 = S(w)]) | v1,92 € A} U {{y1.92 = y3,ply1.92 =

ys]) | 1,92, 93 € AL U{(y1 +y2 = 3, plyr + 32 = y3]) | y1, 92,93 € Ay
in which p[¢] € {0,1} for any atomic formula ¢ with constants from A.

Code “=" by (3,0), “<” by (3,1), “S” by (3,2), “+” by (3,3), and
“” by (3,4).
We code formulae by Polish notation, for example
code(zr1 + zo = z3) = code(+(z1.79.73)) =
code({(3, 3), (2, 0), code(x1), code(zs), code(x3), (2, 1))).
There is a natural number a such that for any & € {0,1}

code({y1 = yo,k)) <2+ (1 + ayiye)?,

COde((:Ul <2, k) <2+ (1 +ayiys)?,

code({y2 = S(y1),k)) <2+ (1 +ayiyn)?,

code(<y1 +yo =3, k) <24 (1 + ayiyoys)?, and

code({y1.y2 = y3,k)) <2+ (1 +ayiyays)*.

So code({¢, k)) < 2+ (1+ay®)? for all k € {0,1} and atomic ¢ with constants
from A, with code(A) = y. Hence code(p) < (9.(3+ (1+ay?)2)2)2F+3lul* <
(81(1 + ag®)")2W* 314 (we identify |A] with |y|) for all evaluation p on A.
Call a set of terms A with code(A) = y, admissible if F(y) = (81(1 +
ay3)") vl +3Iu” exigts.

We modify the definition of Herbrand Consistency of a theory T as: ¢ for
every admissible set of Skolem terms of 7', there is an T-evaluation on it”.
This is formalized below.

By “terms” we mean terms constructed from the Skolem function sym-
bols {f;”}i ik U {fi}iy introduced above, the bounded formula Terms(y)
means “y is a set of terms constructed from those symbols”.

There are bounded formulae eva(z) and eval(z, y) which represent “x is
an evaluation” and “y is a set of terms and z is an evaluation on y”.

For atomic formula ¢, p[¢] =1 is a bounded formula, for more complex
¢ the statement p[¢] = 1 can be written by a IIy-formula:

let the bounded formula Sat(p, ¢, s) be

“eva(p)& s is a sequence of pairs (a;, b;), such that:

1) each a; is (the code of) a formula and each b; is 0 or 1,

2) for k = length(s), ax, = ¢ and by =1,

3) each a; is either of the form

3.1) a; = a; N\ ag for some j,k < i and b; = b;.bx,

or 3.2) a; = a; Vag for some j,k < i and b; = bj + by, — bj.by,

or 3.3) a; = aj — ay, for some 4,5 < k and b; =1+ bj.by — b,

or 3.4) a; = —a; for some j < i and b; =1 — bj,

or 3.5) a; is atomic and b; = pla;]. 7

Let S(#) be the number of subformulae of the formula 6. For the above
sequence s we have code( ) < (9(1 + code({¢,1))?)5(®)

< (91 +2+ (¢+ 1)2)2)5@ < (81(1 + ¢)1)5©),
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So we can write p[¢] = 1 as: Vz (z > (81(14+¢))%®) — 3s < 28at(p, ¢, s))

Let |f] be the number of existential quantifiers in the prenex normal form

of 6 (we can assume it has the form 0 = Va13y - - - Ve, Jymb (21, Y1, -+ » Ty Ym),
80 |0 = m in this case.)
For a formula 6 fix its Skolem functions as f{,--- , f¢ where o = |0|. Write

0 = (ty,-++ ,ta) C A for aset of terms A such that {f(t1),--- , f2(t1,... ,ta)}
is a subset of A too.

We have code(Sk(0,0)) < code(f x o (f(t1),- -, fo(t1,. .. ta)))-

On the other hand
code((fo(t1), -, f2(t1,...,ta)))) < 18%code(fl(t1,...,14)))%?, and also
code(fI(t1,...,ta))) < 643 code(f?)code(“(” )code(“)”)code(t1) . . . code(tq)-

So with code(A) = y we have

code(Sk(6, o)) < 6430(18.552)*6420(3+2) code(f0)2 y20" +or

Let G(6,y) = [81(1464°.(18.552)191.6421013+191) 9. code( fl‘f,l)?l"l.y2l6l2+l9l)4]5<9).

Noting that “u = Sk(f,y)” is a bounded formula, we can write “p is an
f-evaluation on y” as:

Terms(y)Aeval(p,y) AVz[z > G(0,y) = Vu < 2Vo < y{o = (t1,--- ,g)) C
y/\{ff(tl)7 . 7f|%|(t1, oy ta))} CyAfu = Sk(0,0)" — Is < 2Sat(p, u, s)}].
Denote its bounded counterpart by SatAvail(p, y, 8, ), that is:

SatAvail(p, y, 0, z) = Terms(y) Aeval(p, y) AVu < 2Vo < y{o = (11, ,tj9) C
ynN{fl(t1), - 7f|%|(t1, oy ta))} CyAfu = Sk(0,0)” — Is < 2Sat(p, u, s)}].
For a finite theory {T1,-- ,T,}, define the predicate HConr(z), as:

Vz(Vy <z[Terms(y) A 22> F(y) A Nicjenz = G(Tj,y) N 22 G(z,y) =

Jp < z3s < z{eval(p, y) A N\ 1< <, SatAvail(p, Tj, y, s) /\SatAvaiI(p,ac,y,s)}]).

We note that the bounds G(7}, y) and for a standard = the bound G(z, y)
for z, are polynomial with respect to y, so for large enough, also for non-
standard ys, they are less than the bound F(y).

The cut log? is defined (informally) by: z € log? <= 22° exists. A
formal definition is given in the next section.

The predicate HCon’.(z) is obtained from HConr(z) by restricting the
(only unbounded) universal quantifier to log?:

Vz € ZOQQ(Vy <z[Terms(y) A z2> F(y) A Nicj<n? 2 G(Tj.y) A
z > G(z,y) = Tp < 2z3s < z{eval(p,y) A Ni<jcn SatAvail(p, Tj, y, s) A
SatAvaiI(p,:z,y,s)}]).
Proposition 2.1. The above formulae HConr($) and HCon}y($) binu-
merate “Herbrand Consistency of T with ¢” in N:

N = HConr(9) iff N = HCony(0) iff “{¢}UT is Herbrand consis-
tent.”

Herbrand Consistency of T, HCon(T), is HConp(“0 = 07).
For a moment assume we have proved the following proposition:
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Proposition 2.2. There is a finite set of 1Ay-derivable sentences, say B,
such that for every bounded formula 0(x) with = as the only free variable,
and for any finite theory o (in the language of arithmetic) whose axioms
contain the set B,

IAg F HCon(a) A 3z € log*0(z) — HCon?,(“Iz € log?H(z)”)
Now we can prove our main theorem:

Theorem 2.3. Take B as the previous proposition, and let D be the union
of B and a finite fragment of 1Ay containing PA™ such that the last propo-
sition is provable in D, then for any finite consistent theory (in the language
of arithmetic) whose azioms contain the set D, we have alf HCon(e).

Proof. Let 7 be the fixed point of HCon},(—=7) = 7 (it is available in
PA ,ie. PA" + HCon}(—1) = 7, see (4).)

The theory o + —7 is consistent, since otherwise, by proposition 2.1, we
would have N |= =HCon} (—7) and so by the fact that PA~ is ¥;-complete
((4)) we would get PA~ F =HCon},(—7), hence o - —7, then o would be
inconsistent.

Write =7 = 3z € log?6(x) for a bounded 6, then

a+ -1+ HCon(a) - HCon(a) A 3z € log?0(z),

so by proposition 2.2 we get o + -7 + HCon(a) F HCon}(“Jz €
log*0(z)”),

and then a4+ -7+ HCon(a) F HCon},(—7), or a + -7+ HCon(a) - 1.

So a+ HCon(a) — 7, and this shows that o tf HCon(a). A

3 A Herbrand };-Completeness Theorem in 1A

This section is devoted to prove proposition 2.2.

Godel’s original second incompleteness theorem states unprovability of
(formalized) consistency of T in T, for strong enough theories 7. Being
strong enough means being able to code sets-sequences, terms and some
other logical (syntaical) concepts, like provability and prove their properties.

Of those properties are:

1. T+ Prr(p) A Prr(p — ¢) = Prr(1)

2. T+ Prr(¢) = Prr(Prr(¢))

Usually the property 2 is proved by use of formalized ¥;-completeness
theorem:

T+ ¢ — Prr(p) for any ¥i-formula ¢.

So how can one show Godel’s second incompleteness theorem for weak
arithmetics, which are not that strong to prove those properties?

One may have two options here:
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1) try to find a model of T' which does not satisfy Con(T),

2) try to show some weak forms of ¥j-completeness in 7', which can
prove T I Con(T) (by a similar argument of our main theorem’s proof.)

The first method is applied in (2) to show Q I Con(Q) for Robinson’s
arithmetic Q.

There is no hope to use this way for more complex theories like TAg
(and its super-fragments) since there is no recursive non-standard model for
them (see (3).)

So the difficulty rises when one seeks for a kind of formalized 3;-completeness
theorem which can be proved in the (weak) theory and at the same time is
powerful enough to show unprovabolity of the theory’s consistency in itself.

A weak form of X;-incompleteness theorem can be like:

T+ Con(T) A 320(z) — Congy(3z0(x)) for Ag-formulae 6(z) (cf (1).)
Our proposition 2.2 is a form of weak ¥i-incompleteness theorem, in which
the witness = for §(z) is small (restricted to log?) and the second consistency
predicate is rather weak (that is HCon?. instead of HConr.)

Take A be the axiom system:

Al. Vz3y “y = S(z)”

A2.Vz,y, z(“y = S(z)" A “2=8(z)” - y=2)

A3.Vz (z < x)

Ad.Vz,y,z (x SyAy<z—-oz<2)

A5.Vz (2 <0—z=0)

A6.Vz,y,z (“y=SE) AN <y—oz<zVz=y)

AT Vz,y(“y = S(z)” = z < y)

A8.Vz “c+0=2"

A9. Vx,y, z,u,v (“2=SW)" ANe+y=u" A =Su)” = “c+2z=10")

A10. Vz “z.0 =0"

All. Vz,y, z,u,v (“2=Sy) ANzy=u" A“u+z=v" = “c.z2=1")

Al2. Vz,y (“y=85(z)" = -y <)

Fix the terms ¢y = 0, ¢j41 = fll’l(cj).

The term ¢; is represented as the i-th numeral in every A-evaluation p:
plco = 0] =1 and plej11 = S(c¢;)] = 1.

Lemma 3.1. (IAg) Suppose for an i, we have {co,--- ,c;} C A for a set of
terms A, and p is an A-evaluation on A, then

1) If pla < ¢] = 1 for an a € A, then there is an j < i such that
pla=¢j] =1.

2) If v is an open formula and y(x1, -+ ,Zm) holds for 1z, < i, then
p[’}/(cmn T 7c«’Em)] =L

Proof. 1) by induction on j, one can prove that if pla < ¢;] = 1 then
pla=cg] =1 for a k < j: for j =0 use A5, and for j + 1 use AG6.

2) The assertion can be proved for the atomic or negated atomic formu-
lae. For 21 < z9 use induction on zg, for 9 = 0 by A3 and for 2o + 1 by
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A3, A4 and A7. Similarly for z1 + zo = z3 and z1.29 = x3 use induction
on z9 and A8, A9, A10 and All. For -z = z9: if -2y = z9 then either
z1+1<x90r 29+1< 27, .8 for 21 + 1 < 29 we have plcg, 11 < ¢z, = 1,
now use A12. For —S(z1) = z2 use A2, and the cases -z + 29 = z3 and
—z1.29 = z3 can be derived from the previous cases. For -z < z9: if
—xz1 < 29 then 29 + 1 < 21 50 pleg,+1 < ¢gy] = 1, now use A4 and Al2.

The induction cases for A, V,— are straightforward. (Note we have as-
sumed that the formula 6 is in normal form: the negation appears only in
front of atomic formulas.) A

Recall Godel’s beta function:
Bla,b,)) =rifa=(g+1)[GE+1b+1]+r A r<(i+1)b for some ¢ (cf
(4).) Define the ordered pairs by (a,b) =a + 2(a + b+ 1)(a +b).

Let ¥(z,4) = Vo < 2Vy < 2Vj < i{{z,y) =2z > > 1+ Dy+1A
B(z,y,0) =2AB(z,y,5 +1) = (5(m7y7]))2}

The formula ¥(z, 1) states that z is a (3)-code of a sequence whose length
is at least 4 + 1, and its first term is 2 and every term is the square of its
preceding term. So such a sequence looks like: (2,22 22° ... 22' ).

We can define the cut log? as: x € log? <= 2V(z,7).

Denote the open part of ¥ by ¥, so ¥(z,z) = Yu¥(z,z,u), in which
u = (uy,--- ,ug) for a natural k.

To get the B asserted in the proposition, we add the following axioms to A:

Al3. (33,0)

Al4. VaVidy (¥ (z,i) — U(y,i+ 1))

The axiom A14 is in fact the TA-derivable statement i € log?> — i+1 € log?.
To be more precise we (can) write the axiom A14 in the prenex normal form:

Al4. YaViTyVuVv (T (z,i,u) — U(y,i+ 1,v)).

Fix the terms zy = c33, Zj41 = f21’14(2:j,0j).

The term z; is represented as a (3)-code of the sequence (2,22, ... ,2%)
in any B-evaluation (note that 33 = (5,2) = a (-code for (2).)

Lemma 3.2. (IAg) Suppose for i > 33, {co, -+ ,¢iy20, -+ ,2i} C A, then
for any B-evaluation p on A, p satisfies all the available Skolem instances
of U(z;,¢).

Proof. By induction on j < i one can show that any such p satisfies all
the available Skolem instances of ¥(z;,c;). A

Now we are close to the proof of the proposition, let a be a theory
whose axioms contain the set B, and take a model M |= IAg such that
M = HCon(a) and M =i € log? A 6(i) for an i € M. Take a set of terms
A with code(A) = y such that F(y) exists and is in log?(M) (we can assume
i and y are non-standard) then we find an admissible set of terms A’, so
by the assumption HCon(a) there is an a-evaluation on A’ which induces
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an (e U {3z € log?0(x)})-evaluation on A. This shows M = HCon},(3z €
log?0(z)).
Write §(z) = V2, < a3y < BV < @mIYm < Bnb(Z, 21, Y15+ 5 Tons Ym)-
There are (partial) functions on M, g1, , g (We may assume, g; : [0,4)7 —
M) such that for all a3, -+ ,a,, € M

MEa <o = [gi(a1) < BIAJam < oy = [gm(ar; - am) <
ﬁ;n A 0(1 alugl(al) T 7gm(a17 s 7am))]] o ']7

in which (o o, }; j < m) is the image of (e ,f;; 7 < m) under the
substitution {z — i,z; = aj,y; — g;(a1,---a;); j < m}.

Consider the formula
3z € log?0(z) =
JrI2Vr1 < aTyr < BV < amTym < B Vu{¥(z, 7, u)A
AT, 21,91, > Ty Ym) ) Its Skolemized form is:

Vi« Ve Va{U(f2, fi,u) A z<a = [fi(@1) <BI A [zm < olfy —
[frln(mla s 7$m) < /3#1 A 9(f01,$1, fl ($1) o 7$m7fm($11 e 7$m))]] T ]}7

in which (o, 8]; j < m) is the image of (a;,$;j; j < m) under the
substitution {z — fl,y; — fjl(xl, e zj); j < m}.

Define the operation $ on terms by:

-foa

- f02 = Z;

- fi(e) = cquh)

- frln(cjm T Cg) P Com(f1s= sdm)
That is the term f§ is mapped (under ) to ¢;, and f& is mapped to z;
and for any 1 < ¢ <m the term f}(cj,,-- ,c;,) is mapped to Cae(G1,1jt)"

By an argument similar to the example in the previous section, it can be
shown that there is a natural K such that code(c;),code(z;) < K’ for any
j > 1, and code({cg, - ,¢i, 20, ,2i}) < K? for any i > 1.

For any term ¢, code(R(t)) < code(t * (zz)|t| % (c)lt) <

< 643.1.36%". code(z;)!".code(c;)! < 64°.£.36% . K**, so maz{code(R(t))|t €
A} < 643.9.36% K%Y hence code(R(y)) < 36/¥1.[643 ¢. 367, K2l

Let A =R(A )U{co, s Cis 20,00 o 2 Zi}

So code(A') =3 < 64. K27 36101 6430, ylvl 363vlvl K2y,

We show that F(y') exists. Note that y € log? because y < F(y) € log?.

Assumlng that 4 Y are non-standard we can write: F(y') < (y’)4|y'|4 =
(") 12i+D* < ()17 (Y4207 and this is less than (22)1 if y < 4, and is
less than (22)1 if i <y. So A’ is admissible.

Hence by the assumption HCon(a) there is an a-evaluation ¢ on A’.
Define the evaluation p on A by

Plo(ar, - a)] = glp(®R(ar), - , R(a)] for any atomic ¢.

It can be shown that the above equality holds for open formulae ¢ as well.
We show that p satisfies all the available Skolem instances of {3z € log?6(z)}U
ain A:
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1) p is an a-evaluation, since ¢ is so and the operation R has nothing to do
with the Skolem functlons of a: ;Lr)[(/ﬁ(tl,f1 (t1),- - ,tk,f,:’J(tl, ctg))] =

glp(R(t1), R (1)), R(Ee), R(F (11, - tk)))] =
qlp(R(t1), f1’]( (1)), -, R(te), fk”( (t1,... 1)) = L.
2) p satisfies all the avallable Skoelm instances of Jz € lo 2¢9( ) in A:
2.1) p[O(f5, fo, 1, -+ s taa)] = ([U(R(SG), R(fo), R(t1), - -, R(taa))] =
q[¥ (2, ci, R(t1), - , R(t24))] =1
since by lemma 3.2, ¢ satisfies all the available Skolem instances of ¥(z;, ¢;)
then the latter equality holds.
2.2) by lemma 3.1 for any term ¢ and any & < i, if p[t < ¢x] = 1 then
plt = ¢j] =1 for some j < k. So for evaluating 0( ) it is enough to consider
Skolem instances like é(f&,cjl,fll(cﬂ) s f(Chrs e -5 G )
p[Q(fﬂlvchfll(ch)a T ,ij,f (CJU : ch))] =
Q[Q(%(fol)a R(cjy ) R(f1(cq,))s -+ (c]m) R(fm(Crs- - €)))] =
q[e(civcjucgl(jl)v T 7cjmﬂcgm(jl_,~--,ym))] 1
the latter equality holds by M = 0(i, 51,91 (J1), -« s Im> 9m(J1,- - -, jm)) and
lemma 3.1.
This completes the proof of the proposition.
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