# Modal Logics Provability Logics

# Weak Arithmetics Bounded Arithmetics

# Cut-Free Consistency Herbrand Consistency

## Saeed Salehi

http://staff.cs.utu.fi/staff/saeed/

# Modal Logic

Philosophy – Logic – Computer Science

 $\Box A$ 

Necessity – Provability – Program Execution

 $\Box A \to A$ 

Philosophy: necessity implies truthMath. Logic: provability implies validityComp. Sci.: program is sound

 $A = \bot$ :  $\neg \Box \bot$ 

Falsity is not necessary.

Contradiction is not provable (consistent). Program does not result in absurdity.

#### Other modalities

 $\Diamond A$ 

Possibility – Consistency – Probable result

Define  $\Diamond A = \neg \Box \neg A$  or  $\Box A = \neg \Diamond \neg A$ .

 $\Diamond \Diamond A \to \Diamond A$  or  $\Box A \to \Box \Box A$ 

Philosophy: "necessity" is necessary
(If possibility of A is possible, then A is indeed possible.)
Math. Logic: "provability" is provable
(If consistency of A is consistent, then A is consistent.)
Comp. Sci.: "executability" is executable

Mathematical Logic:

 $\Box A \Leftrightarrow A \text{ is provable'} \Leftrightarrow \neg A \text{ is not consistent'}$  $\Diamond A \Leftrightarrow A \text{ is consistent'} \Leftrightarrow \neg A \text{ is not provable'}$ 

# Propositional Modal Logics

Classical Propositional Calculus + Modality Axioms and Rules

Language:  $\{\perp, \rightarrow, \Box\}$ Propositional Variables  $\{p, q, r, \ldots\}$ 

Axioms of CPC:

• 
$$A \to (B \to A)$$
  
•  $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$   
•  $((A \to \bot) \to \bot) \to A$ 

Rule: (Modus Ponens)

$$\begin{array}{cc} A, & A \to B \\ \hline & B \end{array}$$

Convention:  $\top = \bot \rightarrow \bot$ ;  $\neg A = A \rightarrow \bot$ ;  $A \lor B = \neg A \rightarrow B$ ;  $A \land B = \neg (\neg A \lor \neg B)$ ;  $A \leftrightarrow B = (A \rightarrow B) \land (B \rightarrow A).$ 

#### Normal Modal Logics

Axiom: (K)  $\Box(A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$ 

Rule:

(RN) 
$$\frac{A}{\Box A}$$

This base logic is denoted  $\boldsymbol{K}.$ 

Add more axioms, get stronger modal logics.

(4)  $\Box A \rightarrow \Box \Box A$ ; logic K4.

(L)  $\Box(\Box A \rightarrow A) \rightarrow \Box A$ ; Gödel-Löb logic GL.

 $(K) + (L) + (RN) = GL \vdash (4).$ 

### Semantics for Normal Modal Logics

Kripke Models:  $\mathcal{K} = (W, R, \Vdash)$   $R \subseteq W \times W$ ;  $\Vdash \subseteq W \times \{\text{Prop. Var.}\}$   $u, v, w \in W$ : uRv;  $u \Vdash p$ . Extend  $\Vdash \subseteq W \times \{\text{Modal Fromulas}\}$ :  $u \nvDash \bot$ ;  $u \Vdash A \rightarrow B$  iff  $(u \nvDash A \text{ or } u \Vdash B)$ ;  $u \Vdash \Box A$  iff for any  $v \in W$  (if uRv then  $v \Vdash A$ ).

In every Kripke model the axiom (K)  $\Box(A \to B) \to (\Box A \to \Box B)$  is forced, and the rule (RN)  $\frac{A}{\Box A}$  is valid.

(4)  $\Box A \rightarrow \Box \Box A$  is forced when R is transitive.

GL is sound and complete w.r.t transitive and reversely well-founded Kripke models.

## Modal Logics Weaker than K

When  $\Box$  is interpreted as cut-free provability, (K) does not hold (in weak arithmetics).

Another semantics for modal logics: Lindenbaum-Tarski (Boolean) Algebras  $\mathcal{B} = (B, \&, \lor, ', \leqslant, 0, 1, \Box) \quad \Box : B \to B$ 

Let *T* be a theory.  $[\varphi]_T = \{\psi \mid T \vdash \varphi \leftrightarrow \psi\}.$   $[\varphi]_T \land [\psi]_T = [\varphi \land \psi]_T; \ [\varphi]_T \lor [\psi]_T = [\varphi \lor \psi]_T;$   $[\varphi]'_T = [\neg \varphi]_T; \quad [\varphi]_T \leqslant [\psi]_T \text{ iff } T \vdash \varphi \rightarrow \psi;$  $0 = [\bot]_T; \ 1 = [\top]_T; \quad \Box[\varphi]_T = [\Box \varphi]_T.$ 

Well-defined iff 
$$\frac{T \vdash \varphi \leftrightarrow \psi}{T \vdash \Box \varphi \leftrightarrow \Box \psi}$$

 $\overline{\mathbf{W}}$ Minimal Modal Logic E $\overline{\mathbf{W}}$ CPC + Rule of Inference

$$(\texttt{RE}) \ \frac{\varphi \leftrightarrow \psi}{\Box \varphi \leftrightarrow \Box \psi}.$$

Add more axioms or rules, get stronger logics.

Rule

(RM) 
$$\frac{\varphi \rightarrow \psi}{\Box \varphi \rightarrow \Box \psi}$$

(or equivalently) the Axiom (M)  $\Box(A \land B) \rightarrow \Box A \land \Box B$ .

Semantically,  $\Box$  is monotone:  $a \leq b \Rightarrow \Box a \leq \Box b \quad \dashv \vdash \quad \Box (a \land b) \leq \Box a \land \Box b.$ 

Rule

(RN) 
$$\frac{\varphi}{\Box \varphi}$$

(or equivalently) the Axiom (N)  $\Box \top$ .

Semantically,  $\Box 1 = 1$ .

Axiom (C)  $\Box A \land \Box B \rightarrow \Box (A \land B)$ ; In models:  $\Box a \land \Box b \leqslant \Box (a \land b)$ .

Axiom (K)  $\Box (A \to B) \land \Box A \to \Box B$ ; In models:  $\Box (a' \lor b) \land \Box a \leqslant \Box b$ .

We note that

$$\mathbf{K} \vdash (\mathbf{N}) + (\mathbf{M}) + (\mathbf{C}),$$

and

 $(M) + (C) \vdash_{\mathrm{E}} (K).$ 

So,

$$\mathbf{K} = \mathbf{E} + (\mathbf{N}) + (\mathbf{M}) + (\mathbf{C}).$$



B. Chellas, *Modal logic: An introduction* (Cambridge University Press, 1980).

Minimal (Neighborhood) Models for  ${\bf E}$ 

 $\mathcal{M} = \langle W, N, \| \cdot \| \rangle$ ,

- W is a nonempty set (of worlds);
- N is a mapping  $W \to \mathcal{PP}(W)$

 $\mathcal{P}(\cdot)$  is the power set operation;

•  $\|\cdot\|$ : {Prop. Var.}  $\rightarrow \mathcal{P}(W)$  mapping.

||A|| is the set of worlds in which A holds;  $N: w \mapsto N_w$  the set of propositions that are necessary at w.

Extend  $\|\cdot\|$ : {Modal Formulas}  $\rightarrow \mathcal{P}(W)$ :  $\|\perp\| = \emptyset; \quad \|A \rightarrow B\| = \|A\|^{\complement} \cup \|B\|;$  $\|\Box A\| = \{w \in W \mid \|A\| \in N_w\}.$ 

(RE)  $(A \leftrightarrow B)/(\Box A \leftrightarrow \Box B)$  is valid in any  $\mathcal{M}$ : if ||A|| = ||B|| then  $||\Box A|| = ||\Box B||$ . Completeness:  $\mathbf{E} \vdash \varphi$  iff  $\varphi$  is valid ( $\|\varphi\| = W$ ) in any  $\mathcal{M}$ .

(M)  $\Box (A \land B) \rightarrow \Box A \land \Box B$  is valid in  $\mathcal{M}$  if every  $N_w$  is closed under super-sets: if  $X \subseteq Y$  and  $X \in N_w$ , then  $Y \in N_w$ .

 $\mathbf{E} + (\mathbf{M}) \vdash \varphi$  iff  $\varphi$  is valid in any  $\mathcal{M}$  closed under supersets.

(N)  $\Box \top$  is valid in  $\mathcal{M}$  if every  $N_w$  contains W:  $W \in N_w$ .

 $\mathbf{E} + (\mathbb{N}) \vdash \varphi$  iff  $\varphi$  is valid in any  $\mathcal{M}$  contains W.

(C)  $\Box A \land \Box B \rightarrow \Box (A \land B)$  is valid in  $\mathcal{M}$  if every  $N_w$  is closed under intersections: if  $X, Y \in N_w$ , then  $X \cap Y \in N_w$ .

 $\mathbf{E} + (\mathbf{C}) \vdash \varphi$  iff  $\varphi$  is valid in any  $\mathcal{M}$  closed under intersections.

K is sound and complete in any  $\mathcal{M}$  in which each  $N_w$  is a non-empty (principal) filter.

### Relations to Kripke Models

Given a Kripke model  $\mathcal{K} = (W, R, \Vdash)$  define  $\mathcal{M} = \langle W, N, \| \cdot \| \rangle$  by  $\|p\| = \{w \in W \mid w \Vdash p\},$   $N_w = \{X \subseteq W \mid X \supseteq \{v \in W \mid wRv\}\}$ (principal) filter.

For any modal formula  $A, w \in ||A|| \iff w \Vdash A$ .

If in  $\mathcal{M} = \langle W, N, \| \cdot \| \rangle$  each  $N_w$  is a principal filter, define Kripke model  $\mathcal{K} = (W, R, \Vdash)$  by  $wRv \iff v \in \bigcap N_w$ , and  $w \Vdash p \iff w \in \|p\|$ .

For any modal formula A,  $w \Vdash A \iff w \in ||A||$ .

## Arithmetic

Language  $\mathcal{L} = \{S, +, \times, =, \leq, 0\}$ 

Base Theory – Robinson's Arithmetic Q  $S(x) \neq 0$   $S(x) = S(y) \rightarrow x = y$  x + 0 = x x + S(y) = S(x + y)  $x \times 0 = 0$   $x \times S(y) = (x \times y) + x$   $\bullet x \neq 0 \rightarrow \exists y(x = S(y))$   $\bullet x \leq y \leftrightarrow \exists z(x + z = y)$   $\bullet$ -axioms replaced with some  $\forall$ -sentences  $x \leq x$   $x \leq y \leq x \rightarrow x = y$   $x \leq y \lor y \leq x$   $0 \leq x$   $x \leq y \leq z \rightarrow x \leq z$   $x \leq y \rightarrow S(x) \leq S(y)$  $x \leq S(y) \rightarrow x = S(y) \lor x \leq y$ 

This base  $\forall$ -theory A is useful. No Skolem term is needed for  $\forall$ -theories.

Induction axiom (for  $\varphi(x, \overline{y})$ )  $\operatorname{Ind}_{\varphi}$ 

 $\varphi(0,\overline{y}) \land \forall x \{\varphi(x,\overline{y}) \to \varphi(S(x),\overline{y})\} \Rightarrow \forall x \varphi(x,\overline{y})$ 

 $PA = A + {Ind_{\varphi}}_{\varphi}$  Peano's Arithmetic

## Arithmetization

T arithmetical theory.  $\lceil \varphi \rceil$  Gödel code of  $\varphi$   $\operatorname{Proof}_T(z, x) = z$  is a T-proof of x ( $\Delta_0$ )  $\operatorname{Pr}_T(x) = \exists z \operatorname{Proof}_T(z, x)$  ( $\Sigma_1$ )  $\operatorname{Pr}_T(\lceil \varphi \rceil)$  is true (in  $\mathbb{N}$ ) iff  $T \vdash \varphi$ 

#### **Provability Logic**

For sufficiently strong theories T:

- if  $T \vdash \varphi$  then  $T \vdash \Pr_T(\ulcorner \varphi \urcorner)$
- $T \vdash \Pr_T(\ulcorner \varphi \to \psi \urcorner) \to (\Pr_T(\ulcorner \varphi \urcorner) \to \Pr_T(\ulcorner \psi \urcorner))$
- $T \vdash \Pr_T(\ulcorner \varphi \urcorner) \to \Pr_T(\ulcorner \Pr_T(\ulcorner \varphi \urcorner) \urcorner)$
- $T \vdash \Pr_T(\lceil (\Pr_T(\lceil \varphi \rceil) \to \varphi) \rceil) \to \Pr_T(\lceil \varphi \rceil)$

## Weak Arithmetics

Bounded formula – all quantifiers are bounded

 $\begin{array}{ll} \forall x \leq y \exists u \leq v \cdots & \Delta_0 \text{-formula; } \operatorname{Ind}_{\Delta_0} \\ \forall x (x \leq y \rightarrow \ldots); & \exists u (u \leq v \land \ldots) \end{array}$ 

$$\begin{split} &\Sigma_1 \text{-formula} = \exists \dots \exists (\Delta_0); \text{ Ind}_{\Sigma_1} \\ &\Pi_1 \text{-formula} = \forall \dots \forall (\Delta_0); \text{ Ind}_{\Pi_1} \end{split}$$

 $I\Delta_0 = A + Ind_{\Delta_0}$   $I\Sigma_1 = A + Ind_{\Sigma_1}$ The two  $\bullet$ -axioms of Q are provable in  $I\Delta_0$ .

Gödel's Second Incompleteness Theorem can be worked out in  $I\Sigma_1$ 

 $(\supseteq$  Primitive Recursive Arithmetic).

 $I\Delta_0$  is very weak:

If  $I\Delta_0 \vdash \forall x \exists y \ \psi(x, y)$  for bounded  $\psi$ , then for some polynomial p,  $I\Delta_0 \vdash \forall x \exists y \leq p(x) \ \psi(x, y)$ .

So, exp  $(y = 2^x)$  is not provably total in  $I\Delta_0$ (but is in  $I\Sigma_1$ ). We note that exp can be defined by a bounded formula.

## **Bounded Arithmetics**

$$\omega_1(x) = x^{\log x} (> x^n + n) \ \Omega_1 = \forall x \exists y (\underbrace{y = \omega_1(x)}_{\Delta_0})$$

 $I\Delta_0 + \Omega_1$  is just right for treating syntax; e.g. substitution (of terms in formulas) is possible.

$$\omega_2(x) = 2^{(\log x)^{\log \log x}}$$
  $\Omega_2 = \forall x \exists y(y = \omega_2(x))$ 

$$I\Delta_0 \subsetneqq I\Delta_0 + \Omega_1 \subsetneqq I\Delta_0 + \Omega_2 \gneqq \dots \subsetneqq I\Delta_0 + \exp$$

## Arithmetization

T arithmetical theory.  $\lceil \varphi \rceil$  Gödel code of  $\varphi$   $\operatorname{Proof}_T(z, x) = z$  is a T-proof of x ( $\Delta_0$ )  $\operatorname{Pr}_T(x) = \exists z \operatorname{Proof}_T(z, x)$  ( $\Sigma_1$ )  $\operatorname{Pr}_T(\lceil \varphi \rceil)$  is true (in N) iff  $T \vdash \varphi$ 

#### $\boldsymbol{\Sigma}_1\text{-}\text{completeness}$ and Diagonalization in A

Every true (in  $\mathbb{N}$ )  $\Sigma_1$ -formula is provable in  $\mathbf{A}$ . In particular, if  $T \vdash \varphi$  then  $\mathbf{A} \vdash \Pr_T(\ulcorner \varphi \urcorner)$ .

For any formula  $\Phi(x)$  there exists a (fixed-point) formula  $\varphi$  such that  $\mathbf{A} \vdash \varphi \leftrightarrow \Phi(\ulcorner \varphi \urcorner)$ 

#### **Provability Logic**

Suppose  $T \supseteq I\Delta_0 + \Omega_1$ :

- if  $T \vdash \varphi$  then  $T \vdash \Pr_T(\ulcorner \varphi \urcorner)$
- $T \vdash \Pr_T(\ulcorner \varphi \to \psi \urcorner) \to (\Pr_T(\ulcorner \varphi \urcorner) \to \Pr_T(\ulcorner \psi \urcorner))$
- $T \vdash \Pr_T(\ulcorner \varphi \urcorner) \to \Pr_T(\ulcorner \Pr_T(\ulcorner \varphi \urcorner) \urcorner)$
- $T \vdash \Pr_T(\lceil (\Pr_T(\lceil \varphi \rceil) \to \varphi) \rceil) \to \Pr_T(\lceil \varphi \rceil)$

Gödel's Second Incompleteness Theorem  $T \not\vdash \neg \Pr_T(\ulcorner 0 = 1\urcorner).$ Write  $\operatorname{Con}(T) = \neg \Pr_T(\ulcorner \bot \urcorner)$ :  $T \not\vdash \operatorname{Con}(T).$ 

For T which satisfies above,

$$T \vdash \Pr_{T}(\lceil(\Pr_{T}(\lceil \perp \rceil) \rightarrow \perp)\rceil) \rightarrow \Pr_{T}(\lceil \perp \rceil)$$
$$T \vdash \Pr_{T}(\lceil \operatorname{Con}(T)\rceil) \rightarrow \neg \operatorname{Con}(T)$$
$$T \vdash \operatorname{Con}(T) \rightarrow \neg\Pr_{T}(\lceil \operatorname{Con}(T)\rceil)$$
If  $T \vdash \operatorname{Con}(T)$ ,  $T \vdash \Pr_{T}(\lceil \operatorname{Con}(T)\rceil)$  and  
 $T \vdash \neg\Pr_{T}(\lceil \operatorname{Con}(T)\rceil)$ , so  $T \vdash \perp \#$ 

With other methods  $T \not\vdash \mathsf{Con}(T)$  also for theories as weak as  $T \supseteq Q$ 

# Interpretation

Mapping:

{Modal Formulas}  $\rightarrow$  {Arithmetical Formulas}

T – an arithmetical theory

Atomic  $p \mapsto p^*$  - arbitrary;  $\bot \mapsto \bot^* = (0 = 1)$  $(A \to B)^* = A^* \to B^*$ ,  $(\Box A)^* = \Pr_T(\ulcorner A^* \urcorner)$ 

Provability Logic of T at U: modal axioms and rules valid in U when  $\Box$  is interpreted as  $Pr_T$ .

 $\mathbf{PL}_T$  Provability Logic of T at T.

**Theorem**. For suff. strong T,  $PL_T = GL$ . (Generalized) Solovay's Completeness Thm

# Interpretation

Mapping:

{Modal Formulas}  $\rightarrow$  {Arithmetical Formulas}

T – an arithmetical theory

Atomic  $p \mapsto p^*$  - arbitrary;  $\bot \mapsto \bot^* = (0 = 1)$  $(A \to B)^* = A^* \to B^*$ ,  $(\Box A)^* = \Pr_T(\ulcorner A^* \urcorner)$ 

Provability Logic of T at U: modal axioms and rules valid in U when  $\Box$  is interpreted as  $Pr_T$ .

 $\mathbf{PL}_T$  Provability Logic of T at T.

**Theorem**. For  $T \supseteq I\Delta_0 + \exp$ ,  $PL_T = GL$ . (Generalized) Solovay's Completeness Thm

We also know  $PL_{I\Delta_0+\Omega_1} \supseteq GL$ . Open Question.  $PL_{I\Delta_0+\Omega_1} = GL$ ? Weakening a theory does not weaken its provability logic. E.g., intuitionistic HA: (†)  $\Box(A \lor B) \rightarrow \Box(\Box A \lor \Box B)$  is in  $PL_{HA}$ , indeed by the disjunction property

 $\mathbf{HA} \vdash \varphi \lor \psi \; \Rightarrow \; \mathbf{HA} \vdash \varphi \text{ or } \mathbf{HA} \vdash \psi.$ 

(†) does not hold for PA: take C = Con(PA). Then  $PA \vdash Pr_{PA}(\ulcornerC \lor \lnot C\urcorner)$ , but  $PA \nvDash Pr_{PA}(\ulcornerPr_{PA}(\ulcornerC\urcorner) \lor Pr_{PA}(\ulcorner\lnot C\urcorner)\urcorner)$ 

Though  $PL_{HA} \supseteq GL$ ; open question  $PL_{HA} =$ ?.

For *classical* theories we do not know if  $U \subseteq V$ implies  $\mathbf{PL}_U \subseteq \mathbf{PL}_V$ .

GL is the only provability logic known so far.

#### $\Pi_1$ -conservativity

 $\begin{array}{l} \mathsf{PROVABILITY} \subseteq \mathsf{TRUTH}; \\ \mathsf{Truth} \text{ is not } \Pi_1 \text{-conservative over Provaility:} \\ \mathbb{N} \models \mathsf{Con}(\mathsf{PA}) \\ \mathsf{ZFC} \vdash \mathsf{Con}(\mathsf{PA}) \end{array} \xrightarrow{} \mathsf{PA} \not\vdash \mathsf{Con}(\mathsf{PA}) \end{array}$ 

 $PA \vdash Con(I\Sigma_1)$   $I\Sigma_1 \nvDash Con(I\Sigma_1)$ 

But  $I\Delta_0 + \exp \not\vdash \operatorname{Con}(I\Delta_0)$   $I\Delta_0 \not\vdash \operatorname{Con}(I\Delta_0)$ 

For weak arithmetics the predicate of Cut-Free consistency seemed to be a good alternative for consistency predicate.

```
Paris & Wilkie 1981:

I\Delta_0 + \exp \vdash CFCon(I\Delta_0) \checkmark

I\Delta_0 \nvDash CFCon(I\Delta_0) (? - took 20 years)
```

#### $I\Sigma_1 \vdash \mathsf{CFCon}(T) \leftrightarrow \mathsf{Con}(T)$

## $I\Delta_0 + \exp \not\vdash \operatorname{Con}(I\Delta_0), \operatorname{Con}(Q)$ $\vdash \operatorname{CFCon}(I\Delta_0)$

For weak theories:

Initial segment (definable cut): J(x),  $J(0) \land \{J(x) \to J(Sx)\} \land \{J(x) \land y \leq x \to J(y)\}$ 

for any cut J,  $T \not\vdash Con^J(T)$ for some cut J,  $T \vdash CFCon^J(T)$ 

 $\Pi_1\text{-conservativity of } I\Delta_0 + \Omega_2 \text{ over } I\Delta_0 + \Omega_1,$ and of  $I\Delta_0 + \Omega_1$  over  $I\Delta_0$  is still open. Also  $I\Delta_0 + \Omega_2 \not\vdash \text{CFCon}(I\Delta_0).$ 

A good candidate: CFCon<sup>I</sup> for some I ? (Kolodziejczyk 2006)

## Herbrand Consistency

Skolemization: For any  $\exists$  put a new function symbol whose arity is the number of  $\forall$ 's that appears before it(s scope).

$$\exists x \ \psi(x,...) \xrightarrow{\mathsf{Sk}} \psi(\mathfrak{c},...) \text{ constant symbol}$$
$$\forall x \exists y \ \psi(x,y) \xrightarrow{\mathsf{Sk}} \psi(x,\mathfrak{f}(x)) \text{ unary function}$$

Herbrand-Skolem:

A theory is consistent iff its Skolemized form is consistent (in the expanded language).

Herbrand model:

(add) Skolem constants, make it closedunder Skolem functions, satisfying the resultedSkolemized ∀-theory.

## Example: Let *T* be axiomatized by 1. $\forall x \exists y \ \alpha(x, y)$ 2. $\forall x \exists y \ \beta(x, y)$ 3. $\forall x, y(\alpha(x, y) \rightarrow \gamma(x) \lor \delta(y))$ 4. $\forall x, y(\beta(x, y) \rightarrow \neg \delta(x))$

Skolemized  $T^{Sk}$ :

1.  $\alpha(x, f(x))$  2.  $\beta(x, g(x))$  3. 4.

Herbrand model: { $\mathfrak{c}, \mathfrak{f}(\mathfrak{c}), \mathfrak{g}(\mathfrak{c}), \mathfrak{fg}(\mathfrak{c}), \mathfrak{fg}(\mathfrak{c}), \ldots$ }

Let  $\varphi = \forall x \ \gamma(x)$ . We want to show  $T \vdash \varphi$ . Suffices to show  $T + \neg \varphi$  is not consistent. Skolemize  $\neg \varphi = \exists x \neg \gamma(x)$  as  $\neg \gamma(\mathfrak{c})$ . Show  $T^{\mathsf{Sk}} + \neg \gamma(\mathfrak{c})$  cannot be realized in the above Herbrand set (of Skolem terms).

We have  $\alpha(\mathfrak{c},\mathfrak{f}(\mathfrak{c}))$  and  $\beta(\mathfrak{f}(\mathfrak{c}),\mathfrak{gf}(\mathfrak{c}))$  by 1.,2.; so  $\gamma(\mathfrak{c}) \lor \delta(\mathfrak{f}(\mathfrak{c}))$  by 3., and  $\neg \delta(\mathfrak{f}(\mathfrak{c}))$  by 4. Thus  $\gamma(\mathfrak{c})$  contradicting the assumption  $\neg \gamma(\mathfrak{c})$ .

Actually the finite set  $\{\mathfrak{c},\mathfrak{f}(\mathfrak{c}),\mathfrak{gf}(\mathfrak{c})\}\$  of Skolem terms was sufficient for the proof.

Herbrand's Theorem:  $T \vdash \varphi$  iff there is a *finite* set of Skolem terms (of  $(T + \neg \varphi)^{Sk}$ ) such that  $T + \neg \varphi$  cannot be realized in it.

So, Herbrand's proof of  $T \vdash \varphi$  is a finite set of Skolem terms.

Evaluation p on a set of terms  $\Lambda$  is a mapping  $p : \Lambda \rightarrow \{0, 1\}$  such that p[x = x] = 1 and  $p[x = y] = 1 \Rightarrow p[\phi(x)] = p[\phi(y)].$ *T*-evaluation:  $p[T^{Sk}] = 1.$ 

Herbrand's Theorem: T is consistent iff for every finite set of Skolem terms there exists an T-evaluation on it. Herbrand Consistency Predicate  $\operatorname{HCon}_T(\lceil \varphi \rceil)$ :  $\forall$  set of terms,  $\exists (T + \varphi) - \operatorname{evaluation}$  on it  $\operatorname{HPr}_T(\lceil \varphi \rceil) = \neg \operatorname{HCon}_T(\lceil \neg \varphi \rceil)$ 

### Weak Arithmetics:

Treat  $\{S, +, \times\}$  as predicates. For a set of terms  $\Lambda$  there are  $3|\Lambda|^2+2|\Lambda|^3$  atomic formulas with terms in  $\Lambda$ ;

(number of evaluations on  $\Lambda)=2^{3|\Lambda|^2+2|\Lambda|^3}$  code of evaluations  $\leq \Lambda^{|\Lambda|^4}$ 

For  $I\Delta_0$ ,  $\operatorname{HCon}_T(\ulcorner \varphi \urcorner)$ :  $\forall \Lambda \{ \Lambda | \Lambda |^4 \downarrow \Rightarrow \exists (T + \varphi) - \text{evaluation on } \Lambda \}$  $\operatorname{HPr}_T(\ulcorner \varphi \urcorner)$ :  $\exists \Lambda \{ \Lambda | \Lambda |^4 \downarrow \& \nexists (T + \neg \varphi) - \text{evaluation on } \Lambda \}$  Define I(x): there exists a sequence  $\langle 2, 2^2, \ldots, a_n, a_{n+1}, \ldots, 2^{2^x} \rangle$  of length x + 1 s.t.  $a_0 = 2, a_{n+1} = a_n \times a_n$ . In particular  $2^{2^x} \downarrow$ .

$$\begin{aligned} \mathsf{HCon}_T^I(\lceil \varphi \rceil) &: \\ \forall \Lambda \{ I(\Lambda^{|\Lambda|^4}) \Rightarrow \exists (T + \varphi) - \text{evaluation on } \Lambda \} \end{aligned}$$

 $\mathsf{HPr}_T^I(\lceil \varphi \rceil) : \\ \exists \Lambda \{ I(\Lambda^{|\Lambda|^4}) \& \not \exists (T + \neg \varphi) - \text{evaluation on } \Lambda \}$ 

$$T = I\Delta_0 + \text{ two } I\Delta_0 \text{-provable sentences}$$
$$T \vdash \mathsf{HCon}(T) \rightarrow \left( \exists x \in I \ \theta(x) \rightarrow \\ ``\theta \in \Delta_0'' \qquad \qquad \mathsf{HCon}_T^I(\ulcorner \exists x \in I \ \theta(x) \urcorner) \right)$$

$$T \vdash \mathsf{HCon}(T) \rightarrow \left(\mathsf{HPr}_T^I(\lceil \varphi \rceil) \rightarrow \mathsf{HCon}_T^I(\lceil \mathsf{HPr}_T^I(\lceil \varphi \rceil) \rceil)\right)$$

$$\mathsf{HPr}_T = \Box^0 \quad \mathsf{HCon}_T = \Diamond^0 \mathsf{HPr}_T^I = \Box \quad \mathsf{HCon}_T^I = \Diamond$$

$$\star \quad T \vdash \Diamond^0 \top \to (\Box \varphi \to \Diamond \Box \varphi)$$

$$\star \quad T \vdash \mathbb{F} \leftrightarrow \neg \Box \mathbb{F}$$

$$\star \quad T \vdash \varphi \implies T \vdash \Box \varphi$$

$$\bigstar \quad T \vdash \varphi \leftrightarrow \psi \;\; \Rightarrow \;\; T \vdash \Box \varphi \leftrightarrow \Box \psi$$

 $T \not\vdash \mathsf{HCon}(T) = \Diamond^0 \top:$ If  $T \vdash \Diamond^0 \top$ ,  $T \vdash \Box \mathbb{F} \rightarrow \Diamond \Box \mathbb{F}$ . Also  $T \vdash \Box \mathbb{F} \leftrightarrow \Box \neg \Box \mathbb{F} = \neg \Diamond \Box \mathbb{F}$ , so  $T \vdash \neg \Box \mathbb{F}$ . From  $T \vdash \mathbb{F}$ :  $T \vdash \Box \mathbb{F}$ ,  $T \vdash \neg \Box \mathbb{F}$ ,  $T \vdash \bot \#$ 

Also from  $T \vdash T \leftrightarrow I\Delta_0$ :  $I\Delta_0 \vdash \Diamond T \leftrightarrow \Diamond I\Delta_0$ So,  $I\Delta_0 \nvDash HCon(I\Delta_0)$ . (Salehi 2002,2006)

(Adamowicz 2001)  $I\Delta_0 + \Omega_2 \not\vdash \text{HCon}(I\Delta_0 + \Omega_2)$  [& Zbierski]  $I\Delta_0 + \Omega_1 \not\vdash \text{TabCon}(I\Delta_0 + \Omega_1)$ 

(Willard 2002)  $Q + V \not\vdash \mathsf{TabCon}(Q + V), \ \Pi_1, I\Delta_0 - \mathsf{provable}$ also,  $I\Delta_0 \not\vdash \mathsf{TabCon}(I\Delta_0)$  Herbrand Provability Logic of  $I\Delta_0$ 

 $\mathcal{H}$ : CPC $\{\mathbb{F}, \mathbb{C}\}$  +

$$(\texttt{RE}) \ \frac{\varphi \leftrightarrow \psi}{\Box \varphi \leftrightarrow \Box \psi}$$

 $(N) \Box \top$  $(M) \Box (A \land B) \rightarrow \Box A \land \Box B$  $(F) \mathbb{F} \leftrightarrow \neg \Box \mathbb{F}$  $(S) \mathbb{C} \rightarrow (\Box A \rightarrow \Diamond \Box A)$ 

By the above proof  $\mathcal{H} \not\vdash \mathbb{C}$ . If  $\mathcal{H} \vdash \mathbb{C}$ , then  $\mathcal{H} \vdash \Box \mathbb{F} \to \Diamond \Box \mathbb{F}$ , also  $\mathcal{H} \vdash \Box \mathbb{F} \leftrightarrow \Box \neg \Box \mathbb{F} = \neg \Diamond \Box \mathbb{F}$ , so  $\vdash \neg \Box \mathbb{F}$  or  $\mathcal{H} \vdash \mathbb{F}$ . Thus  $\mathcal{H} \vdash \Box \mathbb{F} \& \neg \Box \mathbb{F}$ , or  $\mathcal{H} \vdash \bot \#$ 

Interpretation.

• 
$$\bot^* = "0 = 1"$$
 •  $A \vdash \mathbb{F}^* \leftrightarrow \neg \operatorname{HPr}_T^I(\ulcorner \mathbb{F}^* \urcorner)$   
•  $\mathbb{C}^* = "\operatorname{HCon}(T)"$  •  $(\Box A)^* = \operatorname{HPr}_T^I(\ulcorner A^* \urcorner)$   
 $\mathcal{H} \vdash A \Rightarrow I\Delta_0 \vdash A^*$  for any modal  $A$   
 $i \Leftarrow ?$ 

 $\begin{array}{ll} \mathcal{H} \hookrightarrow \mathbf{GL} \colon & \mathbb{F}, \mathbb{C} \mapsto \Diamond \top \\ \mathbf{GL} \vdash \Diamond \top \leftrightarrow \neg \Box \Diamond \top; & \mathbf{GL} \vdash \Diamond \top \to (\Box A \to \Diamond \Box A). \end{array}$  $\mathbf{GL} \vdash \Box (\Box \varphi \to \varphi) \leftrightarrow \Box \varphi \qquad \qquad \varphi = \bot; \end{array}$ 

$$\begin{split} \mathbf{K} \vdash \Diamond \top \wedge \Box B \to \Diamond B \\ \mathbf{K} \vdash \Box B \wedge \neg \Diamond B \to \Box B \wedge \Box \neg B \to \Box \bot \to \neg \Diamond \top \\ \mathbf{K} 4 \vdash \Diamond \top \wedge \Box A \to \Diamond \top \wedge \Box \Box A \to \Diamond \Box A. \end{split}$$

Open Question. HPL<sub> $I\Delta_0$ </sub> =? HPL<sub> $I\Delta_0+\Omega_1$ </sub> =?

(C)  $\Box A \land \Box B \rightarrow \Box (A \land B)$  and (K)  $\Box (A \rightarrow B) \land \Box A \rightarrow \Box B$ are not in  $\operatorname{HPL}_{I\Delta_0}, \operatorname{HPL}_{I\Delta_0+\Omega_1}$ . Conjecture.  $\operatorname{HPL}_{I\Delta_0}, \operatorname{HPL}_{I\Delta_0+\Omega_1} \subsetneqq \operatorname{GL}$  There is an arithmetical formula  $\mathbb{F}$  such that for weak arithmetics T:

$$\begin{array}{l} \bigstar \quad T \vdash \mathbb{C} \rightarrow (\Box \varphi \rightarrow \Diamond \Box \varphi) \\ \bigstar \quad T \vdash \mathbb{F} \leftrightarrow \neg \Box \ \mathbb{F} \\ \bigstar \quad T \vdash \varphi \Rightarrow \quad T \vdash \Box \varphi \qquad \qquad (\text{or } T \vdash \Box \top) \\ \bigstar \quad T \vdash \varphi \leftrightarrow \psi \Rightarrow \quad T \vdash \Box \varphi \leftrightarrow \Box \psi \end{array}$$

where  $\mathbb{C}$  denotes Cut-Free Consistency of T.

 $T \not\vdash \mathbb{C}:$ If  $T \vdash \mathbb{C}$ , then  $T \vdash \Box \mathbb{F} \to \Diamond \Box \mathbb{F}$ . Also  $T \vdash \Box \mathbb{F} \leftrightarrow \Box \neg \Box \mathbb{F} = \neg \Diamond \Box \mathbb{F}$ , so  $T \vdash \neg \Box \mathbb{F}$ . From  $T \vdash \mathbb{F}: T \vdash \Box \mathbb{F}, T \vdash \neg \Box \mathbb{F}, T \vdash \bot \#$ 

$$\mathcal{H}: \mathsf{CPC}\{\mathbb{F},\mathbb{C}\} +$$

$$(\texttt{RE}) \ \frac{\varphi \leftrightarrow \psi}{\Box \varphi \leftrightarrow \Box \psi}$$

 $(N) \Box \top$  $(M) \Box (A \land B) \rightarrow \Box A \land \Box B$  $(F) \mathbb{F} \leftrightarrow \neg \Box \mathbb{F}$  $(S) \mathbb{C} \rightarrow (\Box A \rightarrow \Diamond \Box A)$ 

This modal logic  $\mathcal{H}$  is an approximation of Cut-Free provability logic of bounded arithmetics.

By the above proof  $\mathcal{H} \not\vdash \mathbb{C}$ .

We note that  $\mathcal{H} \hookrightarrow \mathbf{GL}$ :  $\mathbb{F}, \mathbb{C} \mapsto \Diamond \top$  $\mathbf{GL} \vdash \Diamond \top \leftrightarrow \neg \Box \Diamond \top$ ;  $\mathbf{GL} \vdash \Diamond \top \to (\Box A \to \Diamond \Box A)$ .

 $\mathbf{GL} \vdash \Box(\Box \varphi \rightarrow \varphi) \leftrightarrow \Box \varphi$ let  $\varphi = \bot$ , so  $\mathbf{GL} \vdash \Diamond \top \leftrightarrow \neg \Box \Diamond \top$ .

$$\begin{split} \mathbf{K} \vdash \Diamond \top \wedge \Box B \to \Diamond B \\ \mathbf{K} \vdash \Box B \wedge \neg \Diamond B \to \Box B \wedge \Box \neg B \to \Box \bot \to \neg \Diamond \top \\ \mathbf{K} \mathbf{4} \vdash \Diamond \top \wedge \Box A \to \Diamond \top \wedge \Box \Box A \to \Diamond \Box A. \end{split}$$

# Interpretation

Mapping:

{Modal Formulas}  $\rightarrow$  {Arithmetical Formulas}

T – an arithmetical theory

Atomic  $p \mapsto p^*$  - arbitrary;  $\bot \mapsto \bot^* = (0 = 1)$  $(A \to B)^* = A^* \to B^*$ ,  $(\Box A)^* = \Pr_T(\ulcorner A^* \urcorner)$ 

 $\mathbf{PL}_T$  Provability Logic of T at T.

**Theorem**. For  $T \supseteq I\Delta_0 + \exp$ ,  $PL_T = GL$ . (Generalized) Solovay's Completeness Thm

We also know  $PL_{I\Delta_0+\Omega_1} \supseteq GL$ . Open Question.  $PL_{I\Delta_0+\Omega_1} = GL$ ?

For *classical* theories we do not know if  $U \subseteq V$  implies  $\mathbf{PL}_U \subseteq \mathbf{PL}_V$ .

 ${\bf GL}$  is the only provability logic known so far. (for sound theories)

#### $\Pi_1$ -conservativity

 $\begin{array}{l} \mathsf{PROVABILITY} \subseteq \mathsf{TRUTH}; \\ \mathsf{Truth} \text{ is not } \Pi_1 \text{-conservative over Provaility:} \\ \mathbb{N} \models \mathsf{Con}(\mathsf{PA}) \\ \mathsf{ZFC} \vdash \mathsf{Con}(\mathsf{PA}) \end{array} \xrightarrow{} \mathsf{PA} \not\vdash \mathsf{Con}(\mathsf{PA}) \end{array}$ 

 $PA \vdash Con(I\Sigma_1)$   $I\Sigma_1 \nvDash Con(I\Sigma_1)$ 

But  $I\Delta_0 + \exp \not\vdash \operatorname{Con}(I\Delta_0)$   $I\Delta_0 \not\vdash \operatorname{Con}(I\Delta_0)$ 

For weak arithmetics the predicate of Cut-Free consistency seemed to be a good alternative for consistency predicate.

```
Paris & Wilkie 1981:

I\Delta_0 + \exp \vdash CFCon(I\Delta_0) \checkmark

I\Delta_0 \nvDash CFCon(I\Delta_0) (? - took 20 years)
```

I = a suitable initial segment / cut $T = I\Delta_0 + \text{two } I\Delta_0 \text{-provable sentences}$  $T \vdash \mathsf{HCon}(T) \rightarrow \left(\mathsf{HPr}_T^I(\ulcorner \varphi \urcorner) \rightarrow \mathsf{HCon}_T^I(\ulcorner \mathsf{HPr}_T^I(\ulcorner \varphi \urcorner) \urcorner\right)$ 

$$\mathsf{HPr}_T = \Box^0 \quad \mathsf{HCon}_T = \Diamond^0 \\ \mathsf{HPr}_T^I = \Box \quad \mathsf{HCon}_T^I = \Diamond$$

$$\begin{array}{l} \bigstar \quad T \vdash \Diamond^0 \top \rightarrow (\Box \varphi \rightarrow \Diamond \Box \varphi) \\ \bigstar \quad T \vdash \mathbb{F} \leftrightarrow \neg \Box \ \mathbb{F} \\ \bigstar \quad T \vdash \varphi \ \Rightarrow \ T \vdash \Box \varphi \end{array}$$

 $\bigstar \quad T \vdash \varphi \leftrightarrow \psi \quad \Rightarrow \quad T \vdash \Box \varphi \leftrightarrow \Box \psi$