Modal Logics Provability Logics

Weak Arithmetics Bounded Arithmetics

Cut-Free Consistency Herbrand Consistency

Saeed Salehi

http://staff.cs.utu.fi/staff/saeed/

Modal Logic

Philosophy - Logic - Computer Science

$\square A$

Necessity - Provability - Program Execution
$\square A \rightarrow A$

Philosophy: necessity implies truth
Math. Logic: provability implies validity
Comp. Sci.: program is sound

$$
A=\perp: \quad \neg \square \perp
$$

Falsity is not necessary.
Contradiction is not provable (consistent). Program does not result in absurdity.

Other modalities

$$
\diamond A
$$

Possibility - Consistency - Probable result

Define $\diamond A=\neg \square \neg A$ or $\square A=\neg \diamond \neg A$.

$$
\diamond \diamond A \rightarrow \diamond A \quad \text { or } \quad \square A \rightarrow \square \square A
$$

Philosophy: "necessity" is necessary
(If possibility of A is possible, then A is indeed possible.)
Math. Logic: "provability" is provable (If consistency of A is consistent, then A is consistent.)
Comp. Sci.: "executability" is executable

Mathematical Logic:
$\square A \Leftrightarrow$ ' A is provable' \Leftrightarrow ' $\neg A$ is not consistent' $\diamond A \Leftrightarrow$ ' A is consistent' \Leftrightarrow ' $\neg A$ is not provable'

Propositional Modal Logics

Classical Propositional Calculus + Modality Axioms and Rules

Language: $\{\perp, \rightarrow, \square\}$ Propositional Variables $\{p, q, r, \ldots\}$

Axioms of CPC:

- $A \rightarrow(B \rightarrow A)$
- $(A \rightarrow(B \rightarrow C)) \rightarrow((A \rightarrow B) \rightarrow(A \rightarrow C))$
- $((A \rightarrow \perp) \rightarrow \perp) \rightarrow A$

Rule: (Modus Ponens)

$$
\frac{A, \quad A \rightarrow B}{B}
$$

Convention: $\top=\perp \rightarrow \perp ; \neg A=A \rightarrow \perp$; $A \vee B=\neg A \rightarrow B ; A \wedge B=\neg(\neg A \vee \neg B)$; $A \leftrightarrow B=(A \rightarrow B) \wedge(B \rightarrow A)$.

Normal Modal Logics

Axiom: $(\mathrm{K}) ~ \square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)$

Rule:

$$
\text { (RN) } \frac{A}{\square A}
$$

This base logic is denoted \mathbf{K}.

Add more axioms, get stronger modal logics.
(4) $\square A \rightarrow \square \square A$; logic K4.
(L) $\square(\square A \rightarrow A) \rightarrow \square A$; Gödel-Löb logic GL.

$$
(\mathrm{K})+(\mathrm{L})+(\mathrm{RN})=\mathrm{GL} \vdash(4) .
$$

Semantics for Normal Modal Logics

Kripke Models: $\mathcal{K}=(W, R, \Vdash)$
$R \subseteq W \times W ; \quad \Vdash \subseteq W \times\{$ Prop. Var. $\}$
$u, v, w \in W: u R v ; u \Vdash p$.
Extend $\Vdash \subseteq W \times\{$ Modal Fromulas $\}$:
$u \Vdash \perp ; u \Vdash A \rightarrow B$ iff $(u \Vdash A$ or $u \Vdash B)$;
$u \Vdash \square A$ iff for any $v \in W$ (if $u R v$ then $v \Vdash A$).

In every Kripke model the axiom
(K) $\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)$ is forced, and the rule (RN) $\frac{A}{\square A}$ is valid.
(4) $\square A \rightarrow \square \square A$ is forced when R is transitive.

GL is sound and complete w.r.t transitive and reversely well-founded Kripke models.

Modal Logics Weaker than K

When \square is interpreted as cut-free provability, (K) does not hold (in weak arithmetics).

Another semantics for modal logics:
Lindenbaum-Tarski (Boolean) Algebras
$\mathcal{B}=\left(B, \wedge, \underset{\sim}{\vee},{ }^{\prime}, \leqslant, 0,1, \underset{\sim}{\square}\right) \quad \underset{\sim}{~}: B \rightarrow B$
Let T be a theory. $\quad[\varphi]_{T}=\{\psi \mid T \vdash \varphi \leftrightarrow \psi\}$.
$[\varphi]_{T} \wedge[\psi]_{T}=[\varphi \wedge \psi]_{T} ;[\varphi]_{T} \vee{ }_{\sim}[\psi]_{T}=[\varphi \vee \psi]_{T} ;$
$[\varphi]_{T}^{\prime}=[\neg \varphi]_{T} ; \quad[\varphi]_{T} \leqslant[\psi]_{T}$ iff $T \vdash \varphi \rightarrow \psi$;
$0=[\perp]_{T} ; 1=[\top]_{T} ; \quad \square[\varphi]_{T}=[\square \varphi]_{T}$.

Well-defined iff $\quad \frac{T \vdash \varphi \leftrightarrow \psi}{T \vdash \square \varphi \leftrightarrow \square \psi}$.
MTM Minimal Modal Logic E
CPC + Rule of Inference
(RE) $\frac{\varphi \leftrightarrow \psi}{\square \varphi \leftrightarrow \square \psi}$.

Add more axioms or rules, get stronger logics.

Rule

$$
\text { (RM) } \frac{\varphi \rightarrow \psi}{\square \varphi \rightarrow \square \psi}
$$

(or equivalently) the Axiom (M) $\square(A \wedge B) \rightarrow \square A \wedge \square B$.

Semantically, \square is monotone:

$$
a \leqslant b \Rightarrow \underset{\sim}{\square} a \leqslant \underset{\sim}{\square} b \dashv \vdash \square \underset{\sim}{\square}(a \wedge b) \leqslant \underset{\sim}{\square} a \wedge \underset{\sim}{\square} b .
$$

Rule

$$
\text { (RN) } \frac{\varphi}{\square \varphi}
$$

(or equivalently) the Axiom (N) $\square \mathrm{T}$.

Semantically, $\underset{\sim}{\square} 1=1$.

Axiom (C) $\square A \wedge \square B \rightarrow \square(A \wedge B)$;
In models: $\square a \wedge \underset{\sim}{\square} b \leqslant \square(a \wedge b)$.

Axiom (K) $\square(A \rightarrow B) \wedge \square A \rightarrow \square B$;
In models: $\square\left(a^{\prime} \underset{\sim}{\vee}\right) \wedge \underset{\sim}{\square} a \leqslant \square b$.

We note that

$$
\mathbf{K} \vdash(\mathrm{N})+(\mathrm{M})+(\mathrm{C}),
$$

and

$$
(\mathrm{M})+(\mathrm{C}) \vdash_{\mathbf{E}}(\mathrm{K}) .
$$

So,

$$
\mathbf{K}=\mathbf{E}+(\mathrm{N})+(\mathrm{M})+(\mathrm{C}) .
$$

B. Chellas, Modal logic: An introduction (Cambridge University Press, 1980).

Minimal (Neighborhood) Models for E

$\mathcal{M}=\langle W, N,\|\cdot\|\rangle$,

- W is a nonempty set (of worlds);
- N is a mapping $W \rightarrow \mathcal{P} \mathcal{P}(W)$
$\mathcal{P}(\cdot)$ is the power set operation;
- $\|\cdot\|:\{$ Prop. Var. $\} \rightarrow \mathcal{P}(W)$ mapping.
$\|A\|$ is the set of worlds in which A holds; $N: w \mapsto N_{w}$ the set of propositions that are necessary at w.

Extend $\|\cdot\|:\{$ Modal Formulas $\} \rightarrow \mathcal{P}(W)$:
$\|\perp\|=\emptyset ; \quad\|A \rightarrow B\|=\|A\|^{\complement} \cup\|B\| ;$
$\|\square A\|=\left\{w \in W \mid\|A\| \in N_{w}\right\}$.
(RE) $(A \leftrightarrow B) /(\square A \leftrightarrow \square B)$ is valid in any \mathcal{M} :
if $\|A\|=\|B\|$ then $\|\square A\|=\|\square B\|$.

Completeness:
$\mathrm{E} \vdash \varphi \operatorname{iff} \varphi$ is valid $(\|\varphi\|=W)$ in any \mathcal{M}.
(M) $\square(A \wedge B) \rightarrow \square A \wedge \square B$ is valid in \mathcal{M} if every N_{w} is closed under super-sets: if $X \subseteq Y$ and $X \in N_{w}$, then $Y \in N_{w}$.
$\mathrm{E}+(\mathrm{M}) \vdash \varphi$ iff φ is valid in any \mathcal{M} closed under supersets.
(N) $\square \top$ is valid in \mathcal{M} if every N_{w} contains W : $W \in N_{w}$.
$\mathrm{E}+(\mathrm{N}) \vdash \varphi$ iff φ is valid in any \mathcal{M} contains W.
(C) $\square A \wedge \square B \rightarrow \square(A \wedge B)$ is valid in \mathcal{M} if every N_{w} is closed under intersections: if $X, Y \in N_{w}$, then $X \cap Y \in N_{w}$.
$\mathrm{E}+(\mathrm{C}) \vdash \varphi$ iff φ is valid in any \mathcal{M} closed under intersections.
\mathbf{K} is sound and complete in any \mathcal{M} in which each N_{w} is a non-empty (principal) filter.

Relations to Kripke Models

Given a Kripke model $\mathcal{K}=(W, R, \Vdash)$ define $\mathcal{M}=\langle W, N,\|\cdot\|\rangle$ by $\|p\|=\{w \in W \mid w \Vdash p\}$, $N_{w}=\{X \subseteq W \mid X \supseteq\{v \in W \mid w R v\}\}$
(principal) filter.

For any modal formula $A, w \in\|A\| \Longleftrightarrow w \Vdash A$.

If in $\mathcal{M}=\langle W, N,\|\cdot\|\rangle$ each N_{w} is a principal filter, define Kripke model $\mathcal{K}=(W, R, \Vdash)$ by $w R v \Longleftrightarrow v \in \cap N_{w}$, and $w \Vdash p \Longleftrightarrow w \in\|p\|$.

For any modal formula $A, w \Vdash A \Longleftrightarrow w \in\|A\|$.

Arithmetic

Language $\mathcal{L}=\{S,+, \times,=, \leq, 0\}$
Base Theory - Robinson's Arithmetic Q
. $S(x) \neq 0$
$. S(x)=S(y) \rightarrow x=y$
. $x+0=x$
$\cdot x+S(y)=S(x+y)$
$. x \times 0=0$
$. x \times S(y)=(x \times y)+x$
$\bullet x \neq 0 \rightarrow \exists y(x=S(y)) \bullet x \leq y \leftrightarrow \exists z(x+z=y)$
--axioms replaced with some \forall-sentences
$. x \leq x \quad . x \leq y \leq x \rightarrow x=y \quad . x \leq y \vee y \leq x$
$.0 \leq x . x \leq y \leq z \rightarrow x \leq z . x \leq y \rightarrow S(x) \leq S(y)$
. $x \leq S(y) \rightarrow x=S(y) \vee x \leq y$
This base \forall-theory \mathbf{A} is useful. No Skolem term is needed for \forall-theories.

Induction axiom (for $\varphi(x, \bar{y})$) Ind $_{\varphi}$

$$
\varphi(0, \bar{y}) \wedge \forall x\{\varphi(x, \bar{y}) \rightarrow \varphi(S(x), \bar{y})\} \Rightarrow \forall x \varphi(x, \bar{y})
$$

$\mathbf{P A}=\mathbf{A}+\left\{\operatorname{Ind}_{\varphi}\right\}_{\varphi}$ Peano's Arithmetic

Arithmetization

T arithmetical theory. $\ulcorner\varphi\urcorner$ Gödel code of φ $\operatorname{Proof}_{T}(z, x)=z$ is a T-proof of $x\left(\Delta_{0}\right)$
$\operatorname{Pr}_{T}(x)=\exists z \operatorname{Proof}_{T}(z, x)$
$\left(\Sigma_{1}\right)$ $\operatorname{Pr}_{T}(\ulcorner\varphi\urcorner$) is true (in \mathbb{N}) iff $T \vdash \varphi$

Provability Logic

For sufficiently strong theories T :

- if $T \vdash \varphi$ then $T \vdash \operatorname{Pr}_{T}(\ulcorner\varphi\urcorner)$
- $T \vdash \operatorname{Pr}_{T}(\ulcorner\varphi \rightarrow \psi\urcorner) \rightarrow\left(\operatorname{Pr}_{T}(\ulcorner\varphi\urcorner) \rightarrow \operatorname{Pr}_{T}(\ulcorner\psi\urcorner)\right)$
- $T \vdash \operatorname{Pr}_{T}(\ulcorner\varphi\urcorner) \rightarrow \operatorname{Pr}_{T}\left(\left\ulcorner\operatorname{Pr}_{T}(\ulcorner\varphi\urcorner)\right\urcorner\right)$
- $T \vdash \operatorname{Pr}_{T}\left(\left\ulcorner\left(\operatorname{Pr}_{T}(\ulcorner\varphi\urcorner) \rightarrow \varphi\right)\right\urcorner\right) \rightarrow \operatorname{Pr}_{T}(\ulcorner\varphi\urcorner)$

Weak Arithmetics

Bounded formula - all quantifiers are bounded
$\forall x \leq y \exists u \leq v \cdots \quad \Delta_{0}$-formula; Ind $_{\Delta_{0}}$
$\forall x(x \leq y \rightarrow \ldots) ; \quad \exists u(u \leq v \wedge \ldots)$
Σ_{1}-formula $=\exists \ldots \exists\left(\Delta_{0}\right) ; \operatorname{Ind}_{\Sigma_{1}}$
Π_{1}-formula $=\forall \ldots \forall\left(\Delta_{0}\right) ;$ Ind $_{\Pi_{1}}$
$I \Delta_{0}=\mathrm{A}+\operatorname{Ind}_{\Delta_{0}} \quad I \Sigma_{1}=\mathrm{A}+\operatorname{Ind}_{\Sigma_{1}}$
The two \bullet-axioms of Q are provable in $I \Delta_{0}$.
Gödel's Second Incompleteness Theorem can be worked out in $I \Sigma_{1}$
(\supseteq Primitive Recursive Arithmetic).
$I \Delta_{0}$ is very weak:
If $I \Delta_{0} \vdash \forall x \exists y \psi(x, y)$ for bounded ψ, then for some polynomial $p, I \Delta_{0} \vdash \forall x \exists y \leq p(x) \psi(x, y)$.

So, $\exp \left(y=2^{x}\right)$ is not provably total in $I \Delta_{0}$ (but is in $I \Sigma_{1}$). We note that exp can be defined by a bounded formula.

Bounded Arithmetics

$\omega_{1}(x)=x^{\log x}\left(>x^{n}+n\right) \Omega_{1}=\forall x \exists y \underbrace{y=\omega_{1}(x)}_{\Delta_{0}})$
$I \Delta_{0}+\Omega_{1}$ is just right for treating syntax; e.g. substitution (of terms in formulas) is possible.

$$
\begin{aligned}
& \omega_{2}(x)=2^{(\log x)^{\log \log x}} \quad \Omega_{2}=\forall x \exists y\left(y=\omega_{2}(x)\right) \\
& I \Delta_{0} \varsubsetneqq I \Delta_{0}+\Omega_{1} \varsubsetneqq I \Delta_{0}+\Omega_{2} \varsubsetneqq \cdots \varsubsetneqq I \Delta_{0}+\exp
\end{aligned}
$$

Arithmetization

T arithmetical theory. $\ulcorner\varphi\urcorner$ Gödel code of φ
$\operatorname{Proof}_{T}(z, x)=z$ is a T-proof of $x \quad\left(\Delta_{0}\right)$
$\operatorname{Pr}_{T}(x)=\exists z \operatorname{Proof}_{T}(z, x)$
$\left(\Sigma_{1}\right)$
$\operatorname{Pr}_{T}(\ulcorner\varphi\urcorner$) is true (in \mathbb{N}) iff $T \vdash \varphi$
Σ_{1}-completeness and Diagonalization in A

Every true (in \mathbb{N}) Σ_{1}-formula is provable in \mathbf{A}. In particular, if $T \vdash \varphi$ then $\mathbf{A} \vdash \operatorname{Pr}_{T}(\ulcorner\varphi\urcorner)$.

For any formula $\Phi(x)$ there exists a (fixedpoint) formula φ such that $\mathbf{A} \vdash \varphi \leftrightarrow \Phi(\ulcorner\varphi\urcorner)$

Provability Logic

Suppose $T \supseteq I \Delta_{0}+\Omega_{1}$:

- if $T \vdash \varphi$ then $T \vdash \operatorname{Pr}_{T}(\ulcorner\varphi\urcorner)$
- $T \vdash \operatorname{Pr}_{T}(\ulcorner\varphi \rightarrow \psi\urcorner) \rightarrow\left(\operatorname{Pr}_{T}(\ulcorner\varphi\urcorner) \rightarrow \operatorname{Pr}_{T}(\ulcorner\psi\urcorner)\right)$
- $T \vdash \operatorname{Pr}_{T}(\ulcorner\varphi\urcorner) \rightarrow \operatorname{Pr}_{T}\left(\left\ulcorner\operatorname{Pr}_{T}(\ulcorner\varphi\urcorner)\right\urcorner\right)$
- $T \vdash \operatorname{Pr}_{T}\left(\left\ulcorner\left(\operatorname{Pr}_{T}(\ulcorner\varphi\urcorner) \rightarrow \varphi\right)\right\urcorner\right) \rightarrow \operatorname{Pr}_{T}(\ulcorner\varphi\urcorner)$

Gödel's Second Incompleteness Theorem
$T \nvdash \neg \operatorname{Pr}_{T}(\ulcorner 0=1\urcorner)$.
Write $\operatorname{Con}(T)=\neg \operatorname{Pr}_{T}(\ulcorner\perp\urcorner): T \nvdash \operatorname{Con}(T)$.

For T which satisfies above,
$T \vdash \operatorname{Pr}_{T}\left(\left\ulcorner\left(\operatorname{Pr}_{T}(\ulcorner\perp\urcorner) \rightarrow \perp\right)\right\urcorner\right) \rightarrow \operatorname{Pr}_{T}(\ulcorner\perp\urcorner)$
$T \vdash \operatorname{Pr}_{T}(\ulcorner\operatorname{Con}(T)\urcorner) \rightarrow \neg \operatorname{Con}(T)$
$T \vdash \operatorname{Con}(T) \rightarrow \neg \operatorname{Pr}_{T}(\ulcorner\operatorname{Con}(T)\urcorner)$
If $T \vdash \operatorname{Con}(T), T \vdash \operatorname{Pr}_{T}(\ulcorner\operatorname{Con}(T)\urcorner)$ and $T \vdash \neg \operatorname{Pr}_{T}(\ulcorner\operatorname{Con}(T)\urcorner)$, so $T \vdash \perp$ \#
\Leftrightarrow With other methods
$T \nvdash \operatorname{Con}(T)$ also for theories as weak as $T \supseteq Q$

Interpretation

Mapping:
\{Modal Formulas $\} \rightarrow$ \{Arithmetical Formulas $\}$
T - an arithmetical theory

Atomic $p \mapsto p^{*}$ - arbitrary; $\perp \mapsto \perp^{*}=(0=1)$
$(A \rightarrow B)^{*}=A^{*} \rightarrow B^{*}, \quad(\square A)^{*}=\operatorname{Pr}_{T}\left(\left\ulcorner A^{*}\right\urcorner\right)$

Provability Logic of T at U : modal axioms and rules valid in U when \square is interpreted as Pr_{T}.
$\mathbf{P L}_{T}$ Provability Logic of T at T.

Theorem. For suff. strong $T, \mathbf{P L}_{T}=\mathbf{G L}$.
(Generalized) Solovay's Completeness Thm

Interpretation

Mapping:
\{Modal Formulas $\} \rightarrow$ \{Arithmetical Formulas $\}$
T - an arithmetical theory

Atomic $p \mapsto p^{*}$ - arbitrary; $\perp \mapsto \perp^{*}=(0=1)$
$(A \rightarrow B)^{*}=A^{*} \rightarrow B^{*}, \quad(\square A)^{*}=\operatorname{Pr}_{T}\left(\left\ulcorner A^{*}\right\urcorner\right)$

Provability Logic of T at U : modal axioms and rules valid in U when \square is interpreted as Pr_{T}.
$\mathbf{P L}_{T}$ Provability Logic of T at T.

Theorem. For $T \supseteq I \Delta_{0}+\exp , \mathbf{P L}_{T}=\mathbf{G L}$. (Generalized) Solovay's Completeness Thm

We also know $\mathrm{PL}_{I \Delta_{0}+\Omega_{1}} \supseteq \mathrm{GL}$.
Open Question. $\mathrm{PL}_{I \Delta_{0}+\Omega_{1}}=\mathbf{G L}$?

Weakening a theory does not weaken its provability logic. E.g., intuitionistic HA:
(\dagger) $\square(A \vee B) \rightarrow \square(\square A \vee \square B)$ is in $\mathbf{P L}_{\mathbf{H A}}$, indeed by the disjunction property
$\mathbf{H A} \vdash \varphi \vee \psi \Rightarrow \mathbf{H A} \vdash \varphi$ or $\mathbf{H A} \vdash \psi$.
(\dagger) does not hold for PA: take $C=\operatorname{Con}(P A)$. Then $\mathrm{PA} \vdash \operatorname{Pr}_{\mathrm{PA}}(\ulcorner C \vee \neg C\urcorner)$, but $\mathbf{P A} \nvdash \operatorname{Pr}_{\mathbf{P A}}\left(\left\ulcorner\operatorname{Pr}_{\mathbf{P A}}(\ulcorner\mathrm{C}\urcorner) \vee \operatorname{Pr}_{\mathbf{P A}}(\ulcorner\neg C\urcorner)\right\urcorner\right)$

Though $\mathrm{PL}_{\mathrm{HA}} \supsetneqq \mathrm{GL}$; open question $\mathrm{PL}_{\mathrm{HA}}=$?.

For classical theories we do not know if $U \subseteq V$ implies $\mathrm{PL}_{U} \subseteq \mathrm{PL}_{V}$.

GL is the only provability logic known so far.
Π_{1}-conservativity

PROVABILITY \subseteq TRUTH;
Truth is not Π_{1}-conservative over Provaility:
$\mathbb{N}=\operatorname{Con}(\mathbf{P A})$
ZFC $\vdash \operatorname{Con}(P A)$
$\mathbf{P A} \nvdash \operatorname{Con}(\mathrm{PA})$
$\mathrm{PA} \vdash \operatorname{Con}\left(I \Sigma_{1}\right) \quad I \Sigma_{1} \nvdash \operatorname{Con}\left(I \Sigma_{1}\right)$

But $I \Delta_{0}+\exp \nvdash \operatorname{Con}\left(I \Delta_{0}\right) \quad I \Delta_{0} \nvdash \operatorname{Con}\left(I \Delta_{0}\right)$

For weak arithmetics the predicate of Cut-Free consistency seemed to be a good alternative for consistency predicate.

Paris \& Wilkie 1981:
$I \Delta_{0}+\exp \vdash \operatorname{CFCon}\left(I \Delta_{0}\right) \chi$
$I \Delta_{0} \nvdash C F C o n\left(I \Delta_{0}\right)(?-$ took 20 years)

$$
\begin{aligned}
& I \Sigma_{1} \vdash \operatorname{CFCon}(T) \leftrightarrow \operatorname{Con}(T) \\
& I \Delta_{0}+\exp \\
& \nvdash \operatorname{Con}\left(I \Delta_{0}\right), \operatorname{Con}(Q) \\
& \\
& \vdash \operatorname{CFCon}\left(I \Delta_{0}\right)
\end{aligned}
$$

For weak theories:

Initial segment (definable cut): $J(x)$,
$J(0) \wedge\{J(x) \rightarrow J(S x)\} \wedge\{J(x) \wedge y \leq x \rightarrow J(y)\}$
for any cut $J, \quad T \nvdash \operatorname{Con}^{J}(T)$
for some cut $J, \quad T \vdash \operatorname{CFCon}^{J}(T)$
Π_{1}-conservativity of $I \Delta_{0}+\Omega_{2}$ over $I \Delta_{0}+\Omega_{1}$, and of $I \Delta_{0}+\Omega_{1}$ over $I \Delta_{0}$ is still open. Also $I \Delta_{0}+\Omega_{2} \nvdash \operatorname{CFCon}\left(I \Delta_{0}\right)$.

A good candidate: CFCon ${ }^{I}$ for some I ? (Kolodziejczyk 2006)

Herbrand Consistency

Skolemization: For any \exists put a new function symbol whose arity is the number of \forall 's that appears before it(s scope).
$\exists x \psi(x, \ldots) \xrightarrow{\text { Sk }} \psi(\mathfrak{c}, \ldots)$ constant symbol
$\forall x \exists y \psi(x, y) \xrightarrow{\text { Sk }} \psi(x, \mathfrak{f}(x))$ unary function Herbrand-Skolem:

A theory is consistent iff its Skolemized form is consistent (in the expanded language).

Herbrand model:
(add) Skolem constants, make it closed under Skolem functions, satisfying the resulted Skolemized \forall-theory.

Example: Let T be axiomatized by

1. $\forall x \exists y \alpha(x, y)$
2. $\forall x \exists y \beta(x, y)$
3. $\forall x, y(\alpha(x, y) \rightarrow \gamma(x) \vee \delta(y))$
4. $\forall x, y(\beta(x, y) \rightarrow \neg \delta(x))$

Skolemized T^{Sk} :

1. $\alpha(x, \mathfrak{f}(x)) \quad$ 2. $\beta(x, \mathfrak{t}(x))$ 3. 4.

Herbrand model: $\{\mathfrak{c}, \mathfrak{f}(\mathfrak{c}), \mathfrak{g}(\mathfrak{c}), \mathfrak{f f}(\mathfrak{c}), \mathfrak{f g}(\mathfrak{c}), \ldots\}$

Let $\varphi=\forall x \gamma(x)$. We want to show $T \vdash \varphi$.
Suffices to show $T+\neg \varphi$ is not consistent.
Skolemize $\neg \varphi=\exists x \neg \gamma(x)$ as $\neg \gamma(\mathfrak{c})$.
Show $T^{\mathrm{Sk}}+\neg \gamma(\mathfrak{c})$ cannot be realized in the above Herbrand set (of Skolem terms).

We have $\alpha(\mathfrak{c}, \mathfrak{f}(\mathfrak{c}))$ and $\beta(\mathfrak{f}(\mathfrak{c}), \mathfrak{g f}(\mathfrak{c}))$ by $1 ., 2$.; so $\gamma(\mathfrak{c}) \vee \delta(\mathfrak{f}(\mathfrak{c}))$ by 3., and $\neg \delta(\mathfrak{f}(\mathfrak{c}))$ by 4. Thus $\gamma(\mathfrak{c})$ contradicting the assumption $\neg \gamma(\mathfrak{c})$.

Actually the finite set $\{\mathfrak{c}, \mathfrak{f}(\mathfrak{c}), \mathfrak{g f}(\mathfrak{c})\}$ of Skolem terms was sufficient for the proof.

Herbrand's Theorem: $T \vdash \varphi$ iff there is a finite set of Skolem terms (of $(T+\neg \varphi)^{\text {Sk }}$) such that $T+\neg \varphi$ cannot be realized in it.

So, Herbrand's proof of $T \vdash \varphi$ is a finite set of Skolem terms.

Evaluation p on a set of terms Λ is a mapping $p: \wedge \rightarrow\{0,1\}$ such that $p[x=x]=1$ and $p[x=y]=1 \Rightarrow p[\phi(x)]=p[\phi(y)]$. T-evaluation: $p\left[T^{\mathrm{Sk}}\right]=1$.

Herbrand's Theorem: T is consistent iff for every finite set of Skolem terms there exists an T-evaluation on it.

Herbrand Consistency Predicate $\mathrm{HCon}_{T}(\ulcorner\varphi\urcorner)$: \forall set of terms, $\exists(T+\varphi)$-evaluation on it $\operatorname{HPr}_{T}(\ulcorner\varphi\urcorner)=\neg \operatorname{HCon}_{T}(\ulcorner\neg \varphi\urcorner)$

Weak Arithmetics:

Treat $\{S,+, \times\}$ as predicates. For a set of terms \wedge there are $3|\wedge|^{2}+2|\wedge|^{3}$ atomic formulas with terms in \wedge;
(number of evaluations on Λ) $=2^{3|\Lambda|^{2}+2|\Lambda|^{3}}$ code of evaluations $\leq \Lambda|\Lambda|^{4}$

For $I \Delta_{0}, \operatorname{HCon}_{T}(\ulcorner\varphi\urcorner)$:
$\forall \wedge\left\{\wedge^{|\wedge|^{4}} \downarrow \Rightarrow \exists(T+\varphi)\right.$-evaluation on $\left.\wedge\right\}$ $\operatorname{HPr}_{T}(\ulcorner\varphi\urcorner)$:
$\exists \wedge\left\{\wedge^{\left.|\wedge|^{4} \downarrow \& \nexists(T+\neg \varphi) \text {-evaluation on } \wedge\right\}}\right.$

Define $I(x)$: there exists a sequence $\left\langle 2,2^{2}, \ldots, a_{n}, a_{n+1}, \ldots, 2^{2^{x}}\right\rangle$ of length $x+1$ s.t. $a_{0}=2, a_{n+1}=a_{n} \times a_{n}$. In particular $2^{2^{x}} \downarrow$.
$\operatorname{HCon}_{T}^{I}(\ulcorner\varphi\urcorner)$:
$\forall \wedge\left\{I\left(\wedge^{|\Lambda|^{4}}\right) \Rightarrow \exists(T+\varphi)\right.$-evaluation on $\left.\wedge\right\}$
$\operatorname{HPr}_{T}^{I}(\ulcorner\varphi\urcorner):$
$\exists \wedge\left\{I\left(\wedge^{|\wedge|^{4}}\right) \& \nexists(T+\neg \varphi)\right.$-evaluation on $\left.\wedge\right\}$
$T=I \Delta_{0}+$ two $I \Delta_{0}$-provable sentences
$T \vdash \operatorname{HCon}(T) \rightarrow(\exists x \in I \theta(x) \rightarrow$
$\left." \theta \in \Delta_{0} " \quad \operatorname{HCon}_{T}^{I}(\ulcorner\exists x \in I \theta(x)\urcorner)\right)$
$T \vdash \operatorname{HCon}(T) \rightarrow\left(\operatorname{HPr}_{T}^{I}(\ulcorner\varphi\urcorner) \rightarrow\right.$
$\left.\operatorname{HCon}_{T}^{I}\left(\left\ulcorner\operatorname{HPr}_{T}^{I}(\ulcorner\varphi\urcorner)\right\urcorner\right)\right)$
$\operatorname{HPr}_{T}=\square^{0} \quad \mathrm{HCon}_{T}=\diamond^{0}$
$\operatorname{HPr}_{T}^{I}=\square \quad \mathrm{HCon}_{T}^{I}=\diamond$
$\star \quad T \vdash \diamond^{0} \top \rightarrow(\square \varphi \rightarrow \diamond \square \varphi)$
$\star \quad T \vdash \mathbb{F} \leftrightarrow \neg \square \mathbb{F}$
$\star T \vdash \varphi \Rightarrow T \vdash \square \varphi$
$\star \quad T \vdash \varphi \leftrightarrow \psi \Rightarrow T \vdash \square \varphi \leftrightarrow \square \psi$
$T \nvdash \mathrm{HCon}(T)=\diamond^{0} T:$
If $T \vdash \diamond^{0} \top, T \vdash \square \mathbb{F} \rightarrow \diamond \square \mathbb{F}$.
Also $T \vdash \square \mathbb{F} \leftrightarrow \square \neg \square \mathbb{F}=\neg \diamond \square \mathbb{F}$, so $T \vdash \neg \square \mathbb{F}$.
From $T \vdash \mathbb{F}: T \vdash \square \mathbb{F}, T \vdash \neg \square \mathbb{F}, T \vdash \perp \#$

Also from $T \vdash T \leftrightarrow I \Delta_{0}: I \Delta_{0} \vdash \diamond T \leftrightarrow \diamond I \Delta_{0}$
So, $I \Delta_{0} \nvdash \mathrm{HCon}\left(I \Delta_{0}\right)$. (Salehi 2002,2006)
(Adamowicz 2001)
$I \Delta_{0}+\Omega_{2} \nvdash \mathrm{HCon}\left(I \Delta_{0}+\Omega_{2}\right)$ [\& Zbierski] $I \Delta_{0}+\Omega_{1} \nvdash \operatorname{TabCon}\left(I \Delta_{0}+\Omega_{1}\right)$
(Willard 2002)
$Q+V \nvdash \operatorname{TabCon}(Q+V), \Pi_{1}, I \Delta_{0}$-provable also, $I \Delta_{0} \nvdash \operatorname{TabCon}\left(I \Delta_{0}\right)$

Herbrand Provability Logic of $I \Delta_{0}$
$\mathcal{H}: \quad \operatorname{CPC}\{\mathbb{F}, \mathbb{C}\}+$
(RE) $\frac{\varphi \leftrightarrow \psi}{\square \varphi \leftrightarrow \square \psi}$
(N) $\square \top$
(M) $\square(A \wedge B) \rightarrow \square A \wedge \square B$
(F) $\mathbb{F} \leftrightarrow \neg \square \mathbb{F}$
(S) $\mathbb{C} \rightarrow(\square A \rightarrow \diamond \square A)$

By the above proof $\mathcal{H} \nvdash \mathbb{C}$.
If $\mathcal{H} \vdash \mathbb{C}$, then $\mathcal{H} \vdash \square \mathbb{F} \rightarrow \diamond \square \mathbb{F}$, also $\mathcal{H} \vdash \square \mathbb{F} \leftrightarrow \square \neg \square \mathbb{F}=\neg \diamond \square \mathbb{F}$, so $\vdash \neg \square \mathbb{F}$ or $\mathcal{H} \vdash \mathbb{F}$. Thus $\mathcal{H} \vdash \square \mathbb{F} \& \neg \square \mathbb{F}$, or $\mathcal{H} \vdash \perp \#$

Interpretation.

- $\perp^{*}=" 0=1 " \quad$ A $\vdash \mathbb{F}^{*} \leftrightarrow \neg \operatorname{HPr}_{T}^{I}\left(\left\ulcorner\mathbb{F}^{*}\right\urcorner\right)$
- $\mathbb{C}^{*}=" \operatorname{HCon}(T) " ~ \bullet(\square A)^{*}=\operatorname{HPr}_{T}^{I}\left(\left\ulcorner A^{*}\right\urcorner\right)$
$\mathcal{H} \vdash A \Rightarrow I \Delta_{0} \vdash A^{*}$ for any modal A ¿ \Leftarrow ?
$\mathcal{H} \hookrightarrow \mathbf{G L}: \quad \mathbb{F}, \mathbb{C} \mapsto \diamond \top$
$\mathbf{G L} \vdash \diamond \top \leftrightarrow \neg \square \diamond T ; \mathbf{G L} \vdash \diamond \top \rightarrow(\square A \rightarrow \diamond \square A)$.
$\mathrm{GL} \vdash \square(\square \varphi \rightarrow \varphi) \leftrightarrow \square \varphi$
$\varphi=\perp ;$
$\mathbf{K} \vdash \diamond T \wedge \square B \rightarrow \diamond B:$
$\mathrm{K} \vdash \square B \wedge \neg \diamond B \rightarrow \square B \wedge \square \neg B \rightarrow \square \perp \rightarrow \neg \diamond \top$.
$\mathbf{K 4} \vdash \diamond \top \wedge \square A \rightarrow \diamond \top \wedge \square \square A \rightarrow \diamond \square A$.

Open Question. $\mathbf{H P L}_{I \Delta_{0}}=$? $\mathbf{H P L}_{I \Delta_{0}+\Omega_{1}}=$?
(C) $\square A \wedge \square B \rightarrow \square(A \wedge B)$ and
(K) $\square(A \rightarrow B) \wedge \square A \rightarrow \square B$ are not in $\mathrm{HPL}_{I \Delta_{0}}, \mathrm{HPL}_{I \Delta_{0}+\Omega_{1}}$.

Conjecture. $\mathrm{HPL}_{I \Delta_{0}}, \mathrm{HPL}_{I \Delta_{0}+\Omega_{1} \varsubsetneqq} \varsubsetneqq \mathrm{GL}$

There is an arithmetical formula \mathbb{F} such that for weak arithmetics T :
$\star \quad T \vdash \mathbb{C} \rightarrow(\square \varphi \rightarrow \diamond \square \varphi)$
$\star \quad T \vdash \mathbb{F} \leftrightarrow \neg \square \mathbb{F}$
$\star T \vdash \varphi \Rightarrow T \vdash \square \varphi$
(or $T \vdash \square T$)
$\star \quad T \vdash \varphi \leftrightarrow \psi \Rightarrow T \vdash \square \varphi \leftrightarrow \square \psi$
where \mathbb{C} denotes Cut-Free Consistency of T.
$T \nvdash \mathbb{C}$:
If $T \vdash \mathbb{C}$, then $T \vdash \square \mathbb{F} \rightarrow \diamond \square \mathbb{F}$.
Also $T \vdash \square \mathbb{F} \leftrightarrow \square \neg \square \mathbb{F}=\neg \diamond \square \mathbb{F}$, so $T \vdash \neg \square \mathbb{F}$.
From $T \vdash \mathbb{F}: T \vdash \square \mathbb{F}, T \vdash \neg \square \mathbb{F}, T \vdash \perp \#$
$\mathcal{H}: \quad \operatorname{CPC}\{\mathbb{F}, \mathbb{C}\}+$

$$
\text { (RE) } \frac{\varphi \leftrightarrow \psi}{\square \varphi \leftrightarrow \square \psi}
$$

(N) $\square \top$
(M) $\square(A \wedge B) \rightarrow \square A \wedge \square B$
(F) $\mathbb{F} \leftrightarrow \neg \square \mathbb{F}$
(S) $\mathbb{C} \rightarrow(\square A \rightarrow \diamond \square A)$

This modal logic \mathcal{H} is an approximation of CutFree provability logic of bounded arithmetics.

By the above proof $\mathcal{H} \nvdash \mathbb{C}$.
We note that $\mathcal{H} \hookrightarrow \mathbf{G L}: \quad \mathbb{F}, \mathbb{C} \mapsto \diamond \top$
$\mathbf{G L} \vdash \diamond \top \leftrightarrow \neg \square \diamond T ; \quad \mathbf{G L} \vdash \diamond \top \rightarrow(\square A \rightarrow \diamond \square A)$.
GL $\vdash \square(\square \varphi \rightarrow \varphi) \leftrightarrow \square \varphi$ let $\varphi=\perp$, so GL $\vdash \diamond \top \leftrightarrow \neg \square \diamond \top$.
$\mathbf{K} \vdash \diamond \top \wedge \square B \rightarrow \diamond B:$
$\mathrm{K} \vdash \square B \wedge \neg \diamond B \rightarrow \square B \wedge \square \neg B \rightarrow \square \perp \rightarrow \neg \diamond \top$.
$\mathrm{K} 4 \vdash \diamond \top \wedge \square A \rightarrow \diamond \top \wedge \square \square A \rightarrow \diamond \square A$.

Interpretation

Mapping:
\{Modal Formulas $\} \rightarrow$ \{Arithmetical Formulas $\}$
T - an arithmetical theory
Atomic $p \mapsto p^{*}$ - arbitrary; $\perp \mapsto \perp^{*}=(0=1)$ $(A \rightarrow B)^{*}=A^{*} \rightarrow B^{*}, \quad(\square A)^{*}=\operatorname{Pr}_{T}\left(\left\ulcorner A^{*}\right\urcorner\right)$
$\mathbf{P L}_{T}$ Provability Logic of T at T.
Theorem. For $T \supseteq I \Delta_{0}+\exp , \mathrm{PL}_{T}=\mathbf{G L}$. (Generalized) Solovay's Completeness Thm

We also know $\mathrm{PL}_{I \Delta_{0}+\Omega_{1}} \supseteq \mathrm{GL}$.
Open Question. $\mathrm{PL}_{I \Delta_{0}+\Omega_{1}}=\mathbf{G L}$?
For classical theories we do not know if $U \subseteq V$ implies $\mathrm{PL}_{U} \subseteq \mathrm{PL}_{V}$.

GL is the only provability logic known so far. (for sound theories)
Π_{1}-conservativity

PROVABILITY \subseteq TRUTH;
Truth is not Π_{1}-conservative over Provaility:
$\mathbb{N}=\operatorname{Con}(\mathbf{P A})$
ZFC $\vdash \operatorname{Con}(P A)$
$\mathbf{P A} \nvdash \operatorname{Con}(\mathrm{PA})$
$\mathrm{PA} \vdash \operatorname{Con}\left(I \Sigma_{1}\right) \quad I \Sigma_{1} \nvdash \operatorname{Con}\left(I \Sigma_{1}\right)$

But $I \Delta_{0}+\exp \nvdash \operatorname{Con}\left(I \Delta_{0}\right) \quad I \Delta_{0} \nvdash \operatorname{Con}\left(I \Delta_{0}\right)$

For weak arithmetics the predicate of Cut-Free consistency seemed to be a good alternative for consistency predicate.

Paris \& Wilkie 1981:
$I \Delta_{0}+\exp \vdash \operatorname{CFCon}\left(I \Delta_{0}\right) \quad \checkmark$ $I \Delta_{0} \nvdash C F C o n\left(I \Delta_{0}\right)(?-$ took 20 years)
$I=$ a suitable initial segment / cut
$T=I \Delta_{0}+$ two $I \Delta_{0}$-provable sentences
$T \vdash \operatorname{HCon}(T) \rightarrow\left(\operatorname{HPr}_{T}^{I}(\ulcorner\varphi\urcorner) \rightarrow\right.$
$\left.\operatorname{HCon}_{T}^{I}\left(\left\ulcorner\operatorname{HPr}_{T}^{I}(\ulcorner\varphi\urcorner)\right\urcorner\right)\right)$
$\operatorname{HPr}_{T}=\square^{0} \quad \mathrm{HCon}{ }_{T}=\diamond^{0}$
$\operatorname{HPr}_{T}^{I}=\square \quad \mathrm{HCon}_{T}^{I}=\diamond$
$\star \quad T \vdash \diamond^{0} \top \rightarrow(\square \varphi \rightarrow \diamond \square \varphi)$
$\star \quad T \vdash \mathbb{F} \leftrightarrow \neg \square \mathbb{F}$
$\star T \vdash \varphi \Rightarrow T \vdash \square \varphi$
$\star \quad T \vdash \varphi \leftrightarrow \psi \Rightarrow T \vdash \square \varphi \leftrightarrow \square \psi$

