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Modal Logic

Philosophy – Logic – Computer Science

� A

Necessity – Provability – Program Execution

�A→ A

Philosophy: necessity implies truth

Math. Logic: provability implies validity

Comp. Sci.: program is sound

A = ⊥: ¬�⊥

Falsity is not necessary.

Contradiction is not provable (consistent).

Program does not result in absurdity.



Other modalities

♦ A

Possibility – Consistency – Probable result

Define ♦A = ¬�¬A or �A = ¬♦¬A.

♦♦A→ ♦A or �A→ ��A

Philosophy: “necessity” is necessary

(If possibility of A is possible, then A is indeed possible.)

Math. Logic: “provability” is provable

(If consistency of A is consistent, then A is consistent.)

Comp. Sci.: “executability” is executable

Mathematical Logic:

�A ⇔ ‘A is provable’ ⇔ ‘¬A is not consistent’

♦A ⇔ ‘A is consistent’ ⇔ ‘¬A is not provable’



Propositional Modal Logics

Classical Propositional Calculus +

Modality Axioms and Rules

Language: {⊥,→,�}
Propositional Variables {p, q, r, . . .}

Axioms of CPC:

• A→ (B → A)

•
(
A→ (B → C)

)
→
(
(A→ B)→ (A→ C)

)
•
(
(A→ ⊥)→ ⊥

)
→ A

Rule: (Modus Ponens)

A, A→ B

B

Convention: > = ⊥ → ⊥; ¬A = A→ ⊥;

A ∨B = ¬A→ B; A ∧B = ¬(¬A ∨ ¬B);

A↔ B = (A→ B) ∧ (B → A).



Normal Modal Logics

Axiom: (K) �(A→ B)→ (�A→ �B)

Rule:

(RN)
A

�A

This base logic is denoted K.

Add more axioms, get stronger modal logics.

(4) �A→ ��A; logic K4.

(L) �(�A→ A)→ �A; Gödel-Löb logic GL.

(K) + (L) + (RN) = GL ` (4).



Semantics for Normal Modal Logics

Kripke Models: K = (W,R,)

R ⊆W ×W ;  ⊆ W × {Prop. Var.}
u, v, w ∈W : uRv; u  p.

Extend  ⊆ W × {Modal Fromulas}:
u 6 ⊥; u  A→ B iff (u 6 A or u  B);

u  �A iff for any v ∈W (if uRv then v  A).

In every Kripke model the axiom

(K) �(A→ B)→ (�A→ �B) is forced, and

the rule (RN) A
�A is valid.

(4) �A→ ��A is forced when R is transitive.

GL is sound and complete w.r.t transitive and

reversely well-founded Kripke models.



Modal Logics Weaker than K

When � is interpreted as cut-free provability,
(K) does not hold (in weak arithmetics).

Another semantics for modal logics:
Lindenbaum-Tarski (Boolean) Algebras
B = (B,∧˜ ,∨˜ , ′,6, 0, 1,�˜ ) �˜ : B → B

Let T be a theory. [ϕ]T = {ψ | T ` ϕ↔ ψ}.
[ϕ]T ∧˜ [ψ]T = [ϕ ∧ ψ]T ; [ϕ]T ∨˜ [ψ]T = [ϕ ∨ ψ]T ;

[ϕ]′T = [¬ϕ]T ; [ϕ]T 6 [ψ]T iff T ` ϕ→ ψ;

0 = [⊥]T ; 1 = [>]T ; �˜ [ϕ]T = [�ϕ]T .

Well−defined iff
T ` ϕ↔ ψ

T ` �ϕ↔ �ψ
.

zzz Minimal Modal Logic E zzz

CPC + Rule of Inference

(RE)
ϕ↔ ψ

�ϕ↔ �ψ
.



Add more axioms or rules, get stronger logics.

Rule

(RM)
ϕ→ ψ

�ϕ→ �ψ
(or equivalently) the Axiom

(M) �(A ∧B)→ �A ∧ �B.

Semantically, �˜ is monotone:

a 6 b⇒ �˜ a 6 �˜ b a` �˜ (a∧˜b) 6 �˜ a ∧˜ �˜ b.

Rule

(RN)
ϕ

�ϕ

(or equivalently) the Axiom

(N) �>.

Semantically, �˜ 1 = 1.



Axiom (C) �A ∧ �B → �(A ∧B);

In models: �˜ a ∧˜ �˜ b 6 �˜ (a ∧˜ b).

Axiom (K) �(A→ B) ∧ �A→ �B;

In models: �˜ (a′∨˜b) ∧˜ �˜ a 6 �˜ b.
We note that

K ` (N) + (M) + (C),

and

(M) + (C) `E (K).

So,

K = E + (N) + (M) + (C).



E ϕ↔ψ
�ϕ↔�ψ

PP
PP

PP
PP

PP
PP

��
��

��
��

��
��

�A ∧ �B → �(A ∧B) (C)

(N) �>

(M) �(A ∧B)→ �A ∧ �B
�
�
�
�
�
�
�
�
�
�
�
�
�
��

PP
PP

PP
PP

PP
PP

PPP

��
��

��
��

��
��

���

@
@

@
@
@

@
@
@

@
@
@

@
@
@@

(C + N)

(C + M)

(M + N)

��
��

�
��

�
��

�
��

��

H
HH

HH
HH

H
HH

H
HH

HH

K : �(A→ B)→ (�A→ �B) + ϕ
�ϕ

GL : K + �(�A→ A)→ �A

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

K
K
K

K
KK

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		

B. Chellas, Modal logic: An introduction

(Cambridge University Press, 1980).



Minimal (Neighborhood) Models for E

M = 〈W,N, ‖ · ‖〉,
• W is a nonempty set (of worlds);

• N is a mapping W → PP(W )

P(·) is the power set operation;

• ‖ · ‖ : {Prop. Var.} → P(W ) mapping.

‖A‖ is the set of worlds in which A holds;

N : w 7→ Nw the set of propositions that are

necessary at w.

Extend ‖ · ‖ : {Modal Formulas} → P(W ):

‖⊥‖ = ∅; ‖A→ B‖ = ‖A‖{ ∪ ‖B‖;
‖�A‖ = {w ∈W | ‖A‖ ∈ Nw}.

(RE) (A↔ B)/(�A↔ �B) is valid in any M:

if ‖A‖ = ‖B‖ then ‖�A‖ = ‖�B‖.



Completeness:
E ` ϕ iff ϕ is valid (‖ϕ‖ = W ) in any M.

(M) �(A ∧B)→ �A ∧�B is valid in M if every
Nw is closed under super-sets: if X ⊆ Y and
X ∈ Nw, then Y ∈ Nw.

E+ (M) ` ϕ iff ϕ is valid in any M closed under
supersets.

(N) �> is valid in M if every Nw contains W :
W ∈ Nw.

E+ (N) ` ϕ iff ϕ is valid in any M contains W .

(C) �A ∧�B → �(A ∧B) is valid in M if every
Nw is closed under intersections: if X,Y ∈ Nw,
then X ∩ Y ∈ Nw.

E+ (C) ` ϕ iff ϕ is valid in any M closed under
intersections.

K is sound and complete in any M in which
each Nw is a non-empty (principal) filter.



Relations to Kripke Models

Given a Kripke model K = (W,R,) define

M = 〈W,N, ‖ · ‖〉 by ‖p‖ = {w ∈W | w  p},
Nw =

{
X ⊆W | X ⊇ {v ∈W | wRv}

}
(principal) filter.

For any modal formula A, w ∈ ‖A‖ ⇐⇒ w  A.

If in M = 〈W,N, ‖ · ‖〉 each Nw is a principal

filter, define Kripke model K = (W,R,) by

wRv ⇐⇒ v ∈
⋂
Nw, and w  p ⇐⇒ w ∈ ‖p‖.

For any modal formula A, w  A ⇐⇒ w ∈ ‖A‖.



Arithmetic

Language L = {S,+,×,=,≤,0}

Base Theory – Robinson’s Arithmetic Q

�S(x) 6= 0 �S(x) = S(y)→ x = y

�x+ 0 = x �x+ S(y) = S(x+ y)

�x× 0 = 0 �x× S(y) = (x× y) + x

•x 6= 0→ ∃y(x = S(y)) •x ≤ y ↔ ∃z(x+z = y)

•-axioms replaced with some ∀-sentences

�x ≤ x �x ≤ y ≤ x→ x = y �x ≤ y ∨ y ≤ x
�0 ≤ x �x ≤ y ≤ z → x ≤ z �x ≤ y → S(x) ≤ S(y)

�x ≤ S(y)→ x = S(y) ∨ x ≤ y

This base ∀-theory A is useful.

No Skolem term is needed for ∀-theories.

Induction axiom (for ϕ(x, y)) Indϕ

ϕ(0, y) ∧ ∀x{ϕ(x, y)→ ϕ(S(x), y)} ⇒ ∀xϕ(x, y)

PA = A + {Indϕ}ϕ Peano’s Arithmetic



Arithmetization

T arithmetical theory. pϕq Gödel code of ϕ

ProofT (z, x) = z is a T -proof of x (∆0)

PrT (x) = ∃zProofT (z, x) (Σ1)

PrT (pϕq) is true (in N) iff T ` ϕ

Provability Logic

For sufficiently strong theories T :

• if T ` ϕ then T ` PrT (pϕq)

• T ` PrT (pϕ→ ψq)→ (PrT (pϕq)→ PrT (pψq))

• T ` PrT (pϕq)→ PrT (pPrT (pϕq)q)

• T ` PrT (p(PrT (pϕq)→ ϕ)q)→ PrT (pϕq)



Weak Arithmetics

Bounded formula – all quantifiers are bounded

∀x ≤ y∃u ≤ v · · · ∆0-formula; Ind∆0
∀x(x ≤ y → . . .); ∃u(u ≤ v ∧ . . .)

Σ1-formula = ∃ . . . ∃(∆0); IndΣ1
Π1-formula = ∀ . . . ∀(∆0); IndΠ1

I∆0 = A + Ind∆0
IΣ1 = A + IndΣ1

The two •-axioms of Q are provable in I∆0.

Gödel’s Second Incompleteness Theorem can
be worked out in IΣ1

(⊇ Primitive Recursive Arithmetic).

I∆0 is very weak:
If I∆0 ` ∀x∃y ψ(x, y) for bounded ψ, then for
some polynomial p, I∆0 ` ∀x∃y ≤ p(x) ψ(x, y).

So, exp (y = 2x) is not provably total in I∆0
(but is in IΣ1). We note that exp can be
defined by a bounded formula.



Bounded Arithmetics

ω1(x) = xlogx (> xn+n) Ω1 = ∀x∃y(y = ω1(x)︸ ︷︷ ︸
∆0

)

I∆0 + Ω1 is just right for treating syntax; e.g.

substitution (of terms in formulas) is possible.

ω2(x) = 2(logx)log logx
Ω2 = ∀x∃y(y = ω2(x))

I∆0 $ I∆0 +Ω1 $ I∆0 +Ω2 $ . . . $ I∆0 +exp

Arithmetization

T arithmetical theory. pϕq Gödel code of ϕ

ProofT (z, x) = z is a T -proof of x (∆0)

PrT (x) = ∃zProofT (z, x) (Σ1)

PrT (pϕq) is true (in N) iff T ` ϕ



Σ1-completeness and Diagonalization in A

Every true (in N) Σ1-formula is provable in A.

In particular, if T ` ϕ then A ` PrT (pϕq).

For any formula Φ(x) there exists a (fixed-

point) formula ϕ such that A ` ϕ↔ Φ(pϕq)

Provability Logic

Suppose T ⊇ I∆0 + Ω1:

• if T ` ϕ then T ` PrT (pϕq)

• T ` PrT (pϕ→ ψq)→ (PrT (pϕq)→ PrT (pψq))

• T ` PrT (pϕq)→ PrT (pPrT (pϕq)q)

• T ` PrT (p(PrT (pϕq)→ ϕ)q)→ PrT (pϕq)



Gödel’s Second Incompleteness Theorem

T 6` ¬PrT (p0 = 1q).

Write Con(T ) = ¬PrT (p⊥q): T 6` Con(T ).

For T which satisfies above,

T ` PrT (p(PrT (p⊥q)→ ⊥)q)→ PrT (p⊥q)
T ` PrT (pCon(T )q)→ ¬Con(T )

T ` Con(T )→ ¬PrT (pCon(T )q)

If T ` Con(T ), T ` PrT (pCon(T )q) and

T ` ¬PrT (pCon(T )q),

so T ` ⊥ 66=66==

III With other methods

T 6` Con(T ) also for theories as weak as T ⊇ Q



Interpretation

Mapping:

{Modal Formulas} → {Arithmetical Formulas}

T – an arithmetical theory

Atomic p 7→ p∗ - arbitrary; ⊥ 7→ ⊥∗ = (0 = 1)

(A→ B)∗ = A∗ → B∗, (�A)∗ = PrT (pA∗q)

Provability Logic of T at U : modal axioms and

rules valid in U when � is interpreted as PrT .

PLT Provability Logic of T at T .

Theorem. For suff. strong T , PLT = GL.

(Generalized) Solovay’s Completeness Thm



Interpretation

Mapping:

{Modal Formulas} → {Arithmetical Formulas}

T – an arithmetical theory

Atomic p 7→ p∗ - arbitrary; ⊥ 7→ ⊥∗ = (0 = 1)

(A→ B)∗ = A∗ → B∗, (�A)∗ = PrT (pA∗q)

Provability Logic of T at U : modal axioms and

rules valid in U when � is interpreted as PrT .

PLT Provability Logic of T at T .

Theorem. For T ⊇ I∆0 + exp, PLT = GL.

(Generalized) Solovay’s Completeness Thm

We also know PLI∆0+Ω1
⊇ GL.

Open Question. PLI∆0+Ω1
= GL?



Weakening a theory does not weaken

its provability logic. E.g., intuitionistic HA:

(†) �(A∨B)→ �(�A∨�B) is in PLHA, indeed

by the disjunction property

HA ` ϕ ∨ ψ ⇒ HA ` ϕ or HA ` ψ.

(†) does not hold for PA: take C = Con(PA).

Then PA ` PrPA(pC ∨ ¬Cq), but

PA 6` PrPA
(
pPrPA(pCq) ∨ PrPA(p¬Cq)q

)
Though PLHA % GL; open question PLHA =?.

For classical theories we do not know if U ⊆ V
implies PLU ⊆ PLV .

GL is the only provability logic known so far.



Π1-conservativity

PROVABILITY ⊆ TRUTH;

Truth is not Π1-conservative over Provaility:

N |= Con(PA)
PA 6` Con(PA)

ZFC ` Con(PA)

PA ` Con(IΣ1) IΣ1 6` Con(IΣ1)

But I∆0 +exp 6` Con(I∆0) I∆0 6` Con(I∆0)

For weak arithmetics the predicate of Cut-Free

consistency seemed to be a good alternative

for consistency predicate.

Paris & Wilkie 1981:

I∆0 + exp ` CFCon(I∆0) r/
I∆0 6` CFCon(I∆0) (? - took 20 years)



IΣ1 ` CFCon(T )↔ Con(T )

I∆0 + exp 6` Con(I∆0), Con(Q)

` CFCon(I∆0)

For weak theories:

Initial segment (definable cut): J(x),

J(0) ∧ {J(x)→ J(Sx)} ∧ {J(x) ∧ y ≤ x→ J(y)}

for any cut J, T 6` ConJ(T )

for some cut J, T ` CFConJ(T )

Π1-conservativity of I∆0 + Ω2 over I∆0 + Ω1,

and of I∆0 + Ω1 over I∆0 is still open.

Also I∆0 + Ω2 6` CFCon(I∆0).

A good candidate: CFConI for some I ?

(Kolodziejczyk 2006)



Herbrand Consistency

Skolemization: For any ∃ put a new function

symbol whose arity is the number of ∀’s that

appears before it(s scope).

∃x ψ(x, . . .)
Sk

GGGGGGGGA ψ(c, . . .) constant symbol

∀x∃y ψ(x, y)
Sk

GGGGGGGGA ψ(x, f(x)) unary function

Herbrand-Skolem:

A theory is consistent iff its Skolemized form

is consistent (in the expanded language).

Herbrand model:

(add) Skolem constants, make it closed

under Skolem functions, satisfying the resulted

Skolemized ∀-theory.



Example: Let T be axiomatized by

1. ∀x∃y α(x, y) 2. ∀x∃y β(x, y)

3. ∀x, y(α(x, y)→ γ(x) ∨ δ(y))

4. ∀x, y(β(x, y)→ ¬δ(x))

Skolemized TSk:

1. α(x, f(x)) 2. β(x, g(x)) 3. 4.

Herbrand model: {c, f(c), g(c), ff(c), fg(c), . . .}

Let ϕ = ∀x γ(x). We want to show T ` ϕ.

Suffices to show T + ¬ϕ is not consistent.

Skolemize ¬ϕ = ∃x¬γ(x) as ¬γ(c).

Show TSk + ¬γ(c) cannot be realized in the

above Herbrand set (of Skolem terms).

We have α(c, f(c)) and β(f(c), gf(c)) by 1.,2.; so

γ(c)∨δ(f(c)) by 3., and ¬δ(f(c)) by 4. Thus γ(c)

contradicting the assumption ¬γ(c).



Actually the finite set {c, f(c), gf(c)} of Skolem

terms was sufficient for the proof.

Herbrand’s Theorem: T ` ϕ iff there is a finite

set of Skolem terms (of (T +¬ϕ)Sk) such that

T + ¬ϕ cannot be realized in it.

So, Herbrand’s proof of T ` ϕ is a finite set of

Skolem terms.

Evaluation p on a set of terms Λ is a mapping

p : Λ → {0,1} such that p[x = x] = 1 and

p[x = y] = 1⇒ p[φ(x)] = p[φ(y)].

T -evaluation: p[TSk] = 1.

Herbrand’s Theorem: T is consistent iff for

every finite set of Skolem terms there exists

an T -evaluation on it.



Herbrand Consistency Predicate HConT (pϕq):

∀ set of terms, ∃ (T + ϕ)−evaluation on it

HPrT (pϕq) = ¬ HConT (p¬ϕq)

Weak Arithmetics:

Treat {S,+,×} as predicates. For a set of

terms Λ there are 3|Λ|2+2|Λ|3 atomic formulas

with terms in Λ;

(number of evaluations on Λ) = 23|Λ|2+2|Λ|3

code of evaluations ≤ Λ|Λ|
4

For I∆0, HConT (pϕq):

∀Λ { Λ|Λ|
4↓ ⇒ ∃(T + ϕ)−evaluation on Λ }

HPrT (pϕq):

∃Λ { Λ|Λ|
4↓ & 6 ∃(T + ¬ϕ)−evaluation on Λ }



Define I(x): there exists a sequence

〈2,22, . . . , an, an+1, . . . ,2
2x〉 of length x+ 1 s.t.

a0 = 2, an+1 = an × an. In particular 22x↓.

HConIT (pϕq):

∀Λ { I(Λ|Λ|
4
) ⇒ ∃(T + ϕ)−evaluation on Λ }

HPrIT (pϕq):

∃Λ { I(Λ|Λ|
4
) & 6 ∃(T + ¬ϕ)−evaluation on Λ }



T = I∆0+ two I∆0-provable sentences

T ` HCon(T )→
(
∃x∈I θ(x)→

“θ ∈∆0” HConIT (p∃x∈I θ(x)q)
)

T ` HCon(T )→
(
HPrIT (pϕq)→

HConIT (pHPrIT (pϕq)q)
)

HPrT = �0 HConT = ♦0

HPrIT = � HConIT = ♦

F T ` ♦0> → (�ϕ→ ♦�ϕ)

F T ` F↔ ¬� F
F T ` ϕ ⇒ T ` �ϕ
F T ` ϕ↔ ψ ⇒ T ` �ϕ↔ �ψ



T 6` HCon(T ) = ♦0>:

If T ` ♦0>, T ` � F→ ♦� F.

Also T ` � F↔ �¬� F = ¬♦� F, so T ` ¬� F.

From T ` F: T ` � F, T ` ¬� F, T ` ⊥ 66=66==

Also from T ` T ↔ I∆0: I∆0 ` ♦T ↔ ♦I∆0

So, I∆0 6` HCon(I∆0). (Salehi 2002,2006)

(Adamowicz 2001)

I∆0 + Ω2 6` HCon(I∆0 + Ω2) [& Zbierski]

I∆0 + Ω1 6` TabCon(I∆0 + Ω1)

(Willard 2002)

Q+ V 6` TabCon(Q+ V ), Π1, I∆0−provable

also, I∆0 6` TabCon(I∆0)



Herbrand Provability Logic of I∆0

H: CPC{F,C} +

(RE)
ϕ↔ ψ

�ϕ↔ �ψ

(N) �> (M) �(A ∧B)→ �A ∧ �B
(F) F↔ ¬� F (S) C→ (�A→ ♦�A)

By the above proof H 6` C.

If H ` C, then H ` � F→ ♦� F,

also H ` � F ↔ �¬� F = ¬♦� F, so `¬� F or

H ` F. Thus H ` � F & ¬� F, or H ` ⊥ 66=66==

Interpretation.

• ⊥∗ = “0 = 1” • A ` F∗ ↔ ¬ HPrIT (pF∗q)
• C∗ = “HCon(T )” • (�A)∗ = HPrIT (pA∗q)

H ` A ⇒ I∆0 ` A∗ for any modal A

¿⇐?



H ↪→ GL: F,C 7→ ♦>
GL ` ♦> ↔ ¬�♦>; GL ` ♦> → (�A→ ♦�A).

GL ` �(�ϕ→ ϕ)↔ �ϕ ϕ = ⊥;

K ` ♦> ∧ �B → ♦B:

K ` �B ∧ ¬♦B → �B ∧ �¬B → �⊥ → ¬♦>.

K4 ` ♦> ∧ �A→ ♦> ∧ ��A→ ♦�A.

Open Question. HPLI∆0
=? HPLI∆0+Ω1

=?

(C) �A ∧ �B → �(A ∧B) and

(K) �(A→ B) ∧ �A→ �B
are not in HPLI∆0

,HPLI∆0+Ω1
.

Conjecture. HPLI∆0
,HPLI∆0+Ω1

$ GL



There is an arithmetical formula F such that

for weak arithmetics T :

F T ` C→ (�ϕ→ ♦�ϕ)

F T ` F↔ ¬� F
F T ` ϕ ⇒ T ` �ϕ (or T ` �>)

F T ` ϕ↔ ψ ⇒ T ` �ϕ↔ �ψ

where C denotes Cut-Free Consistency of T .

T 6` C:

If T ` C, then T ` � F→ ♦� F.

Also T ` � F↔ �¬� F = ¬♦� F, so T ` ¬� F.

From T ` F: T ` � F, T ` ¬� F, T ` ⊥ 66=66==



H: CPC{F,C} +

(RE)
ϕ↔ ψ

�ϕ↔ �ψ

(N) �> (M) �(A ∧B)→ �A ∧ �B
(F) F↔ ¬� F (S) C→ (�A→ ♦�A)

This modal logic H is an approximation of Cut-
Free provability logic of bounded arithmetics.

By the above proof H 6` C.

We note that H ↪→ GL: F,C 7→ ♦>
GL ` ♦> ↔ ¬�♦>; GL ` ♦> → (�A→ ♦�A).

GL ` �(�ϕ→ ϕ)↔ �ϕ
let ϕ = ⊥, so GL ` ♦> ↔ ¬�♦>.

K ` ♦> ∧ �B → ♦B:

K ` �B ∧ ¬♦B → �B ∧ �¬B → �⊥ → ¬♦>.

K4 ` ♦> ∧ �A→ ♦> ∧ ��A→ ♦�A.



Interpretation

Mapping:
{Modal Formulas} → {Arithmetical Formulas}

T – an arithmetical theory

Atomic p 7→ p∗ - arbitrary; ⊥ 7→ ⊥∗ = (0 = 1)
(A→ B)∗ = A∗ → B∗, (�A)∗ = PrT (pA∗q)

PLT Provability Logic of T at T .

Theorem. For T ⊇ I∆0 + exp, PLT = GL.
(Generalized) Solovay’s Completeness Thm

We also know PLI∆0+Ω1
⊇ GL.

Open Question. PLI∆0+Ω1
= GL?

For classical theories we do not know if U ⊆ V
implies PLU ⊆ PLV .

GL is the only provability logic known so far.
(for sound theories)



Π1-conservativity

PROVABILITY ⊆ TRUTH;

Truth is not Π1-conservative over Provaility:

N |= Con(PA)
PA 6` Con(PA)

ZFC ` Con(PA)

PA ` Con(IΣ1) IΣ1 6` Con(IΣ1)

But I∆0 +exp 6` Con(I∆0) I∆0 6` Con(I∆0)

For weak arithmetics the predicate of Cut-Free

consistency seemed to be a good alternative

for consistency predicate.

Paris & Wilkie 1981:

I∆0 + exp ` CFCon(I∆0) X

I∆0 6` CFCon(I∆0) (? - took 20 years)



I = a suitable initial segment / cut

T = I∆0+ two I∆0-provable sentences

T ` HCon(T )→
(
HPrIT (pϕq)→

HConIT (pHPrIT (pϕq)q)
)

HPrT = �0 HConT = ♦0

HPrIT = � HConIT = ♦

F T ` ♦0> → (�ϕ→ ♦�ϕ)

F T ` F↔ ¬� F
F T ` ϕ ⇒ T ` �ϕ
F T ` ϕ↔ ψ ⇒ T ` �ϕ↔ �ψ


