└─ SAEED SALEHI, Self-Reference and Diagonalization, Category Theory Seminar 2022. 1/24

SELF-REFERENCE AND DIAGONALIZATION: THEIR DIFFERENCE AND A SHORT HISTORY

SAEED SALEHI

The New York City Category Theory Seminar

CUNY Graduate Center 23 November 2022

└─ SAEED SALEHI, Self-Reference and Diagonalization, Category Theory Seminar 2022. 2/24

Fixed-Points, Diagonalization, and Self-Reference

Fixed Points

There is a *mapping*, and <u>an object</u> is proved to exist that **is mapped to itself**, in the Theorem or in the Proof.

Diagonalization

The <u>diagonal of a matrix</u> is used (or referred to) in the Theorem or in the Proof.

Self-Reference

<u>Something</u> (an object, or a concept) <u>refers</u> to (the code, the name, or something of) <u>itself</u>, either in the Theorem or in the Proof.

└─ SAEED SALEHI, Self-Reference and Diagonalization, Category Theory Seminar 2022. 3/24

Self-Referential

Something (an object, or a concept) refers to (the code, the name, or something of) itself, either in the Theorem or in the Proof.

Theorem (BARBER's Paradox)

F.O.Logic $\vdash \neg \exists$ barber $\forall x$ (barber shaves $x \leftrightarrow \neg [x \text{ shaves } x]$).

Proof.

If \exists barber $\forall x$ (barber shaves $x \leftrightarrow \neg [x \text{ shaves } x]$), then for x = barber we get the contradiction (similar to the LIAR's paradox) barber shaves barber $\leftrightarrow \neg [\text{barber shaves barber}]!$

FIXED POINT? DIAGONAL?

THEOREM. S.O.Logic $\vdash \neg \exists X^{(2)} \exists \alpha \forall x [X(\alpha, x) \longleftrightarrow \neg X(x, x)].$ **QUESTION:** What about YABLO's Paradox? └─ SAEED SALEHI, Self-Reference and Diagonalization, Category Theory Seminar 2022. 4/24

Fixed-Points

There is a mapping, and <u>an object</u> is proved to exist that is mapped to itself, in the Theorem or in the Proof.

LAWVERE: In a cartesian closed category, if there is a point-surjective map $\mathfrak{h}: B \to A^B$ (for objects A, B), then every map $\mathfrak{f}: A \to A$ has a fixed point ($\mathfrak{s}: \mathbf{1} \to A$ such that $\mathfrak{s} = \mathfrak{fs}$).

KNASTER-TARSKI: Every monotonic function on a complete lattice has some fixed points (which constitute a complete lattice).

KLEENE: Every Scott-continuous function on a directed complete partial order with a least element, has a (least) fixed point.

SELF-REFERENTIAL? DIAGONAL?

Kleene's Recursion Theorem

For every computable $F(x, \vec{y})$ there is an *e* such that $\varphi_e(\vec{y}) \cong F(e, \vec{y})$. For every computable f(x) there is an *e* such that $\varphi_e(\vec{y}) \cong \varphi_{f(e)}(\vec{y})$.

Proof.

Let S(i,j) be a recursive index of $\vec{y} \mapsto \varphi_i(j, \vec{y})$. Consider the matrix $[F(S(i,j), \vec{y})]_{i,j \in \mathbb{N}}$ and its diagonal $(x, \vec{y}) \mapsto F(S(x, x), \vec{y})$, which is recursive and so has an index m; put e = S(m, m). Now, we have $\varphi_e(\vec{y}) \cong \varphi_{S(m,m)}(\vec{y}) \cong \varphi_m(m, \vec{y}) \cong F(S(m,m), \vec{y}) \cong F(e, \vec{y})$.

e may not be equal to $\mathfrak{f}(e)$, they just code the same function!

For $\Phi(\hbar) = \varphi_{f(\#\hbar)}$ there is a fixed point $\mathfrak{g} = \Phi(\mathfrak{g})$; and $e = \#\mathfrak{g}$. But $\Phi(\hbar)$ is *not* well-defined, unless $\varphi_i \cong \varphi_j \Rightarrow \varphi_{f(i)} \cong \varphi_{f(j)}$.

SELF-REFERENTIAL V FIXED POINT X DIAGONAL V

└─ SAEED SALEHI, Self-Reference and Diagonalization, Category Theory Seminar 2022. 6/24

Diagonalization

The <u>diagonal of a matrix</u> is used (or referred to) in the Theorem or in the Proof.

WHO INVENTED/DISCOVERED THE DIAGONALIZATION?

- Georg CANTOR (1891)?
- Paul DU BOIS-REYMON (1870,1872,1875)?
- René DESCARTES?^[*]
- EUCLID OF ALEXANDRIA?
- PYTHAGORAS?

If *diagonalization* was not invented/discovered by CANTOR, it was surely matured by him! In a way that everyone after him, including RUSSELL, GÖDEL, TURING, and KLEENE, followed his footsteps.

^[*]T. MEADOWS (2022), Did Descartes Make a Diagonal Argument?, J.Phil.Log. 51₂:219–47.

└─ SAEED SALEHI, Self-Reference and Diagonalization, Category Theory Seminar 2022. 7/24

An Ancient Diagonalization (?)
Theorem (Infinitude of the Primes)
There are infinitely many prime numbers.
Proof.
For every finite number of primes p₁, p₂, ..., p_n, there is a prime ((factor of 1 + p₁ · p₂ ··· p_n, which is)) distinct from p₁, p₂, ..., p_n.

A Diagonal Proof. $n! = 1 \times 2 \times \cdots \times n.$

Let $a_{\langle n,m\rangle} = 1$ if all the primes factors of m!+1 are $\leq n$, and $a_{\langle n,m\rangle} = 0$ if some prime factor of m!+1 is > n. If all the primes are $\leq N$, then the *N*th row is all 1. But the diagonal $\{a_{\langle n,n\rangle}\}_{n\in\mathbb{N}}$ is all 0, since no factor of n!+1 can be $\leq n$. A contradiction; so, there is no such *N*.

A Non-Diagonal Proof.

For every *N*, the *N* numbers $\{k \cdot N! + 1\}_{k=1}^{N}$ are pairwise coprime; so the number of primes cannot be $\langle N \rangle$ by the Pigeonhole Principle.

How was (CANTOR's) diagonalization discovered (?)

THEOREM. $\mathbb{R} \cap (0,1)$ is uncountable. CANTOR's proofs:

Assume (for the sake of a contradiction) that $(0, 1) = \{x_n\}_{n \in \mathbb{N}}$. (1874): Let $b_0 = \min\{x_0, x_1\}$, $d_0 = \max\{x_0, x_1\}$, and inductively let $b_{m+1} < d_{m+1}$ be the first two elements of $\{x_n\}_{n \in \mathbb{N}}$ that lie inside (b_m, d_m) . Then $\ell im\{b_m\}_{m \in \mathbb{N}} \in (0, 1) \setminus \{x_n\}_{n \in \mathbb{N}}$, since $x_n \notin (b_n, d_n)$ for each $n \in \mathbb{N}$. (generalized in 1879)

(1884): Let I_0 be a closed sub-interval of (0, 1) with length $<\frac{1}{2}$ that leaves out x_0 . Inductively, let I_{m+1} be a closed sub-interval of I_m with length $<\frac{1}{2}$ (length of I_m) that leaves out x_{m+1} . Then $\bigcap_m I_m$ is non-empty and disjoint from $\{x_n\}_{n\in\mathbb{N}}$.

(1891): Diagonal Argument.

[[Nested Intervals]]

A (Re-)Discivery of Diagonalization:

Ignore the (countable many) numbers $m/2^n$ and write the *infinite* binary expansion (0, 1's in the base 2) of x_n as $0 \cdot y_n^{(0)} y_n^{(1)} y_n^{(2)} \cdots$. Let $\mathbf{I}_0 = [0, 1]$; and inductively let \mathbf{I}_{m+1} be the half of \mathbf{I}_m that misses the point x_m (we have ignored the boundary x_n 's). For example,

$$x_0 = \mathbf{0.0} y_0^{'1'} y_0^{'2'} y_0^{'3'} \cdots, x_1 = \mathbf{0.11} y_1^{'2'} y_1^{'3'} \cdots, x_2 = \mathbf{0.101} y_2^{'3'} \cdots.$$

So, if $\mathbf{I}_m = [b_m, d_m]$ let $c_m = (b_m + d_m)/2$; if $x_m \in [b_m, c_m]$ let $\mathbf{I}_{m+1} = [c_m, d_m]$, and if $x_m \in [c_m, d_m]$ let $\mathbf{I}_{m+1} = [b_m, c_m]$. Note that in the first case $y_1^{\text{im}} = 0$, and in the second case $y_m^{\text{im}} = 1$. If $\{x\} = \bigcap_{m \in \mathbb{N}} \mathbf{I}_m$, then $x \notin \{x_n\}_{n \in \mathbb{N}}$. Notice that $x = \mathbf{0} \cdot \widehat{y_0^{(0)}} y_1^{(1)} y_2^{(2)} \cdots$. In the example, $x = \mathbf{0} \cdot 100yy' \cdots =$ the anti-diagonal of $[y_i^{(j)}]_{i,j \in \mathbb{N}}$. └─ SAEED SALEHI, Self-Reference and Diagonalization, Category Theory Seminar 2022. 10/24

Some History

CANTOR'S 2nd Proof [of $\mathbb{R} \ncong \mathbb{N}$] (almost missing):

- 1994 A.M.M.: "We begin by analyzing Cantor's original articles, his 1874 article that contains his first proof and his 1891 article that contains his diagonal proof." (... ?)
- 2010 A.M.M.: "In 1874, two years before the publication of his famous diagonalization argument, Georg Cantor's first proof of the uncountability of the real numbers appeared in print...." (X)
- ► 2010 Mathematics Magazine 83(4):283–9, Cantor's Other Proofs that R Is Uncountable, by J. FRANKS.
 (√)

└─ SAEED SALEHI, Self-Reference and Diagonalization, Category Theory Seminar 2022. 11/24

$Fixed-Point \Rightarrow Diagonal \Rightarrow Self-Referential$

Generalized (Relational) Fixed-Point \equiv Self-Referential:

There is a (binary) *relation*, and <u>an object</u> is proved to exist that <u>is related to itself</u>, in the Theorem or in the Proof.

► Fixed-Point⇒Diagonal:

For
$$F: I \to I$$
, let $\mathbf{a}_{\langle i,j \rangle} = \begin{cases} 1 & \text{if } F(i) = j \\ 0 & \text{if } F(i) \neq j \end{cases}$ and $M = [\mathbf{a}_{\langle i,j \rangle}]_{i,j \in I}$

The fixed-points of F are indexed on the diagonal with entry 1.

► Diagonal⇒Self-Referential:

Given $[a_{\langle i,j \rangle}]_{i,j \in I}$ the diagonal entry $a_{\langle k,k \rangle}$ relates $k \in I$ to itself.

└─ SAEED SALEHI, Self-Reference and Diagonalization, Category Theory Seminar 2022. 12/24

Self-Referential \Rightarrow ? Diagonal \Rightarrow ? Fixed-Point

- Self-Referential ¿⇒? Diagonal
 LIAR's Paradox? DESCARTE's Cogito? Non-Trivial Diagonal?
 "I am lying" ¬(λ↔ ¬λ) Cogito, ergo sum ("I think, therefore I am")
- ▶ Diagonal $i \Rightarrow$? Fixed-Point For the matrix $M = [a_{\langle i,j \rangle} (\in \mathcal{A})]_{i,j \in I}$, if for $f: \mathcal{A} \to \mathcal{A}$ the function $g(x) = f(a_{\langle x,x \rangle})$ is *a*-definable [[i.e., $g(x) = a_{\langle k,x \rangle}$, for some $k \in I$, or $g(x) = a_{\langle x,k \rangle}$]], then *f* has a fixed point [[which is $a_{\langle k,k \rangle}$]].

LAWVERE (CT 1969) & YANOFSKY (BSL 2003).

└─ SAEED SALEHI, Self-Reference and Diagonalization, Category Theory Seminar 2022. 13/24

Self-Referential / Diagonal / Fixed-Point

B. BULDT (2016); "On Fixed Points, Diagonalizatin, and Self-Reference", in: Von Rang und Namen, Brill, pp. 47–64.

"... diagonalization need not result in fixed points and fixed points need not be self-referential." (p. 48)

diagonalization \implies fixed points \iff (objectual) self-reference $\downarrow \downarrow$ incompleteness (p. 63)

> "Yanofsky (2003) shows how all the usual suspects (i.e., paradoxes and limitative theorems) can be couched in terms of this framework and then follow from the generalized Cantor theorem."

└─ SAEED SALEHI, Self-Reference and Diagonalization, Category Theory Seminar 2022. 14/24

Diagonal Lemma (of GÖDEL and CARNAP), popularly

 C. SMORYŃSKI (*forthcoming*); The Early History of Formal Diagonalization, *Logic Journal of IGPL*, online 15 July 2022.

> "Linguistic self-reference goes back at least as far as the Greeks...[to] a variant of the Liar paradox. Self-reference in formal languages, however, originated in Gödel's paper of 1931. In it, as we know, he presented the construction for a formula $\neg Pr_{PM}(v_0)$ of a sentence φ such that $\mathcal{PM} \vdash \varphi \leftrightarrow \neg Pr_{PM}(\ulcorner \varphi \urcorner)$. He also noted that the construction held for any extension \mathcal{T} of \mathcal{PM} which was primitive recursively axiomatized."

C. S. (NDJFL 1981); Fifty Years of Self-Reference in Arithmetic.
 C. S. (1991); The Development of Self-Reference: Löb's Theorem.

Diagonal Lemma of GÖDEL, originally GÖDEL 1931 (Collected Works, Vol. 1):

Let's write diag(y) for $Sb(y_{Z(y)}^{19})$, which results from substituting (all) the free variable(s) of y with the Gödel code of y. Let Q(x, y) say that $\langle x \rangle$ is not a proof-code for the diagonal of $y \rangle$ (p. 175). Since Q is [primitive] recursive, there is a "relation sign" (formula) q such that if m is not a proof-code for **diag**(n), then $PM \vdash q(\overline{m}, \overline{n})$ (9) if *m* is a proof-code for **diag**(*n*), then $PM \vdash \neg q(\overline{m}, \overline{n})$ (10).Let $p(y) = \forall x q(x, y)$ and $r(x) = q(x, \lceil p(y) \rceil)$. "Then we have" $\operatorname{diag}(p) = \forall x q(x, \lceil p \rceil) = \forall x r(x) \models G$; "furthermore" $q(\overline{m}, \lceil p \rceil) = r(\overline{m})$. Now, (9,10) for $n = \lceil p \rceil$ become if m is not a proof-code for $G = \forall x r(x)$, then $T \vdash r(\overline{m})$, and if *m* is a proof-code for $G = \forall x r(x)$, then $T \vdash \neg r(\overline{m})$. Now, if $T \vdash_m G$, then $T \vdash \neg r(\overline{m})$ and $T \vdash \forall x r(x)$; so T is inconsistent! If $T \vdash \neg G$, then $T \vdash \neg \forall x r(x)$ and $\bigwedge_m T \vdash r(\overline{m})$; so T is ω -inconsistent!

└─ SAEED SALEHI, Self-Reference and Diagonalization, Category Theory Seminar 2022. 16/24

What Happened to $Q \vdash G \leftrightarrow \neg \Pr(\ulcorner G \urcorner)$?

Did GÖDEL have a formula $\pi(x, y)$ for proof predicate such that if *m* is a proof-code for ψ , then $PM \vdash \pi(\overline{m}, \lceil \psi \rceil)$ and if *m* is not a proof-code for ψ , then $PM \vdash \neg \pi(\overline{m}, \lceil \psi \rceil)$? Could he show then that $PM \vdash G \leftrightarrow \neg \exists x \pi(x, \lceil G \rceil)$??

If we start from π , then $\Pr(y) = \exists x \pi(x, y)$. But since **diag** is not a function symbol in our language, we need a formula $\delta(x, y)$ such that

if *m* is the code of $\varphi[\vec{v}/\lceil \varphi \rceil]$, then $PM \vdash \forall z(\delta(z, \lceil \varphi \rceil) \leftrightarrow z = \overline{m})$. Thus, if *m* is not the code of $\varphi[\vec{v}/\lceil \varphi \rceil]$, then $PM \vdash \neg \delta(\overline{m}, \lceil \varphi \rceil)$. Now, let $q(x, y) = \forall z[\delta(z, y) \rightarrow \neg \pi(x, z)]$. Note that $q, r, G \in \Pi_1$. Yes, $PM \vdash G \leftrightarrow \neg \Pr(\lceil G \rceil)!$ for $G = \forall x q(x, \lceil \forall x q(x, y) \rceil)$.

Diagonal Lemma of CARNAP, originally

 R. CARNAP (1934); Logische Syntax der Sprache, Springer. English translation: A. SMEATON, The Logical Syntax of Language, Kegan Paul, Trench, Trubner & Co Ltd (1937). (page 130)

"Let any syntactical property of expressions be chosen \cdots . Let \mathfrak{G}_1 be the sentence with the free variable 'x' (for which we will take the term-number 3) which expresses this property \cdots . Let \mathfrak{G}_2 be that sentence which results from \mathfrak{G}_1 if for 'x' 'subst[x,3,str(x)]' is substituted. ... Thus, if \mathfrak{G}_2 is given, the series-number of \mathfrak{G}_2 can be calculated; let it be designated by 'b' ('b' is a defined \mathfrak{B}). Let the ^{SN} sentence subst[b,3,str(b)] be \mathfrak{G}_3 ; thus \mathfrak{G}_3 is the sentence which results from \mathfrak{G}_2 when the \mathfrak{G}_t with the value b is substituted for 'x'. It is easy to see that, syntactically interpreted, \mathfrak{G}_3 measn that \mathfrak{G}_3 itself has the chosen syntactical property."

Diagonal / Self-Referential Lemma

- ► GÖDEL: There exists a formula r(x) such that for every $m \in \mathbb{N}$: if *m* is *not* a *T*-proof-code for $\forall x r(x)$, then $T \vdash r(\overline{m})$, and if *m* is a *T*-proof-code for $\forall x r(x)$, then $T \vdash \neg r(\overline{m})$.
- CARNAP: For every formula F(x) there is a sentence σ such that σ is true iff $F(\lceil \sigma \rceil)$ is true. (Semantic Diagonal Lemma)
- Rosser(1936,37,39); KREISEL(1950,53); HENKIN(1952); TARSKI-MOSTOWSKI-ROBINSON(1953,68,71,2010[1938-9]); LÖB(1955); — MOSTOWSKI(1952).
- FEFERMAN(1960); MONTAGUE(1962);
 KREISEL-TAKEUTI(1974); SMORYŃSKI(1977) ...
 - For every formula F(x) there is a sentence σ such that

 $Q \vdash \sigma \leftrightarrow \mathcal{F}(\lceil \sigma \rceil).$

└─ SAEED SALEHI, Self-Reference and Diagonalization, Category Theory Seminar 2022. 19/24

More History

B. ROSSER (1939); An Informal Exposition of Proofs of Gödel's Theorems and Church's Theorem, J. Symbolic Logic 4(2):53–60.

"LEMMA 1. Let "x has the property Q" be expressible in L. Then for suitable L, there can be found a sentence F of L, with a number n, such that F expresses "n has the property Q." That is, F expresses "F has the property P." [Formula has the property P iff its number has the property Q]. ... "for suitable L" [means] that " $z = \phi(x, x)$ " [is] expressible in L ...

DEFINITION. $\phi(x, y)$ is the number of the formula got by taking the formula with the number *x* and replacing all occurrences of *v* in it by the term of *L* which denotes the number of *y*.

[PROOF.] Let *G* be the formula of *L* which expresses " $\phi(x, x)$ has the property *Q*." *G* has a number, *n*. Now get *F* from *G* by replacing all *v*'s of *G* by the term of *L* which denotes *n*. Then *F* denotes " $\phi(n, n)$ has the property *Q*" · · · . However · · · , $\phi(n, n)$ is the number of *F*, because *F* was got by taking the formula with the number *n* and replacing all occurrences of *v* in it by the term of *L* which denotes *n*. So *F* expresses "the number of *F* has the property *Q*," that is "*F* has the property *P*."

Even More History

G. KREISEL (1950); Note on Arithmetic Models for Consistent Formulae of the Predicate Calculus, *Fund. Math.* 37(1):265–85.

"... what Gödel [did was] to apply the diagonal definition to a system of predicates which are not systematically decidable, but quantified; now we must expect that the formal definition of the diagonal predicate is of the given sequence $\mathfrak{A}_n(m)$, say the p^{th} ; then $\mathfrak{A}_n(p)$ is undecided in the system. This situation occurs in \cdots Gödel's argument. \cdots s(a, b) is a function whose value is the number of the expression got when the free variable in the expression with number b is replaced by the number a. Then Gödel orders all expressions of a formalism by his numbering, so that, say, $\mathfrak{A}_n(\alpha)$ with the free variable α has the number *n*. He considers the sequence of formulae $\exists y \mathbf{prf}[y, s(m, n)]$ which will be provable if $\mathfrak{A}_n(m)$ can be proved in the system. The [anti-]diagonal definition is $\forall y \neg prf[y, s(n, n)]$ and \cdots ; i.e. the [anti-]diagonal definition is one of the sequence, and here the diagonal argument establishes undecidability.

└─ SAEED SALEHI, Self-Reference and Diagonalization, Category Theory Seminar 2022. 21/24

A Fixed-Point Lemma?

• For every formula F(x) there is a sentence σ such that $Q \vdash \sigma \leftrightarrow F(\lceil \sigma \rceil)$.

Looks Like a Fixed-Point!?

Consider $\psi \mapsto F(\ulcorner \psi \urcorner)$. Under monotone codings, $\ulcorner F(\ulcorner \psi \urcorner) \urcorner > \ulcorner \psi \urcorner$. Let $\mathfrak{F}: Sent_{\mathfrak{T}} \to Sent_{\mathfrak{T}}$ be $\mathfrak{F}([\psi]_{\mathfrak{T}}) = [F(\ulcorner \psi \urcorner)]_{\mathfrak{T}}$. A fixed-point is $[\sigma]_{\mathfrak{T}} = [F(\ulcorner \sigma \urcorner)]_{\mathfrak{T}}$, or $\mathfrak{T} \vdash \sigma \leftrightarrow F(\ulcorner \sigma \urcorner)$. If \mathfrak{F} is a well-defined function: $\mathfrak{T} \vdash \varphi \leftrightarrow \psi \Rightarrow \mathfrak{T} \vdash F(\ulcorner \varphi \urcorner) \leftrightarrow F(\ulcorner \psi \urcorner)$.

 $\blacktriangleright \text{ GÖDEL's: } \mathfrak{I} \vdash \varphi \leftrightarrow \psi \implies \mathfrak{I} \vdash \neg \mathtt{Pr}(\ulcorner \varphi \urcorner) \leftrightarrow \neg \mathtt{Pr}(\ulcorner \psi \urcorner).$

► CARNAP's: Let H(x) say that "x starts with \neg ", and let A be a \neg -free sentence. Then $A \equiv \neg \neg A$, but $H(\ulcorner A \urcorner)$ is false while $H(\ulcorner \neg \neg A \urcorner)$ is true. So, $[\psi]_{\Im} \mapsto [H(\ulcorner \psi \urcorner)]_{\Im}$ is not well-defined.

Strong Diagonal/Direct Self-Referential Lemma

LEMMA. In a sufficiently expressive language $\forall F(x) \exists \sigma: \sigma = F(\lceil \sigma \rceil)$.

Proof. Recall diag($\lceil \varphi \rceil$) = $\lceil \varphi [\vec{v} / \lceil \varphi \rceil] \rceil$. Let $n = \lceil F(\text{diag}(x)) \rceil$ and $\sigma = F(\text{diag}(\overline{n}))$. Then $\sigma = F(\lceil F(\text{diag}(n)) \rceil) = F(\lceil \sigma \rceil)$.

R.G. JEROSLOW (1973); Redundancies in the Hilbert-Bernays Derivability Conditions for Gödel's 2nd Thm, JSL 38(3):359–67. "The...lemma was discovered by the referee..."

LEMMA. There are Gödel codings (computable injections $\eta \mapsto \lfloor \eta \rfloor$ from strings to closed terms) such that $\forall F(x) \exists \sigma: \sigma = F(\lfloor \sigma \rfloor)$.

- S.A. KRIPKE (1975); Outline of a Theory of Truth, *The Journal of Philosophy* 72(19):690–716.
- A. VISSER (1989); "Semantics and the Liar Paradox", Handbook of Philosophical Logic IV, pp. 617–706 (2nd ed. 2004, 11, pp. 149–240).
- S.A. KRIPKE (*forthcoming*); Gödel's Theorem and Direct Self-Reference, *Review of Symbolic Logic*, online 02 December 2021.

└─ SAEED SALEHI, Self-Reference and Diagonalization, Category Theory Seminar 2022. 23/24

Where is the Original GÖDEL-CARNAP Lemma? $\checkmark F(x) \exists \sigma: Q \vdash \sigma \leftrightarrow F(\lceil \sigma \rceil).$

Many sentences σ leak in.

► GÖDEL-CARNAP: write $F(x) = \forall y \theta(y, x) [\theta = \neg prf]$; let $q(y, z) = \theta(y, diag(z)), [\uparrow] p(z) = \forall y q(y, z), r(y) = q(y, \lceil p(z) \rceil),$ and $\sigma = \forall y r(y)$. Then, we have $diag(\lceil p(z) \rceil) = \lceil \sigma \rceil, [\ddagger]$ so $\sigma = \forall y \theta(y, diag(\lceil p(z) \rceil)) = \forall y \theta(y, \lceil \sigma \rceil) = F(\lceil \sigma \rceil). [\$]$

GÖDEL had **diag** at his disposal, but didn't use it!

$$\blacktriangleright \forall F(x) \exists \sigma: \sigma = F(\lceil \sigma \rceil).$$

^[†] $q(y,z) = \forall w [\delta(w,z) \rightarrow \theta(y,w)]$ or $q(y,z) = \exists w [\delta(w,z) \land \theta(y,w)],$ ^[‡] $\delta(\ulcorner \sigma \urcorner, \ulcorner p(z) \urcorner) [\dashv Q].$ ^[§] $\sigma \leftrightarrow F(\ulcorner \sigma \urcorner) [\dashv Q].$ └─ SAEED SALEHI, Self-Reference and Diagonalization, Category Theory Seminar 2022. 24/24

